ehem. Wiss. Mitarbeiter
E-Mail Link
Adresse Universität Stuttgart
Pfaffenwaldring 47
70550 Stuttgart
Deutschland
Fachgebiet
You can find my new webpage here:
Publikationen
- S. Uhlich and B. Yang
Bayesian Estimation for Non-Standard Loss Functions Using a Parametric Family of Estimators
IEEE Transactions on Signal Processing, Volume 60, Issue 3, pp. 1022 - 1031, 2012 [ local copy ] - S. Uhlich and B. Yang
© Recursive Estimation of Room Impulse Responses with Energy Conservation Constraints
Proc. IEEE ICASSP 2011, Prague, Czech Republic, May 2011 - S. Uhlich and B. Yang
Efficient Recursive Estimators for a Linear, Time-Varying Gaussian Model with General Constraints
Transactions on Signal Processing, Volume 58, Issue 9, pp. 4910 - 4915, 2010 [ local copy ] - S. Uhlich and B. Yang
© A Parametric Family of Bayesian Estimators for Non-Standard Loss Functions
EUSIPCO 2010, Aalborg, DK, August 2010 - S. Uhlich, B. Lösch and B. Yang
© Polynomial LMMSE Estimation: A Case Study
IEEE Workshop on Statistical Signal Processing 2009, Cardiff, UK, September 2009 - R. Blind, S. Uhlich, B. Yang and F. Allgöwer
© Robustification and Optimization of a Kalman Filter with Measurement Loss using Linear Precoding
American Control Conference 2009, St. Louis, USA, June 2009 - S. Uhlich and B. Yang
© MMSE Estimation in a Linear Signal Model with Ellipsoidal Constraints
Proc. IEEE ICASSP 2009, Taipeh, Taiwan, April 2009 - S. Uhlich and B. Yang
© A generalized optimal Correlating Transform for Multiple Description Coding and its theoretical Analysis
Proc. IEEE ICASSP 2008, Las Vegas, USA, pp. 2969-2972, April 2008 - T. Strach and S. Uhlich
Estimating the first voltage drop for ICs with leakage
Proc. IEEE Workshop on Signal Propagation on Interconnects (SPI), Berlin, 2006
Weitere Angaben
Matlab Source Code
Estimator Family Toolbox for Nonstandard Loss Functions
This toolbox contains an implementation of the parametric estimator family which was proposed here .
Estimator Family Toolbox V1.0 (May 2011)
Keywords: Multiple description coding, MDC, correlating transform
Multiple Description Toolbox
This Matlab toolbox contains several scripts to determine the optimal correlating transform. Multiple description coding is used to safely transmit data packets (descriptions) over erasure channels. This toolbox contains a demo together with scripts to calculate the correlating transform. It builds upon the work from Romano and was extended to handle also the case, that redundant descriptions were transmitted.
MDC Toolbox V1.2 (November 2007)
Keywords: Multiple description coding, MDC, correlating transform
Classification Toolbox
This Matlab toolbox contains several classifiers for pattern recognition together with a documentation. Additionally, it includes functions for feature selection and feature extraction.
Classification Toolbox V1.5 (September 2010)
Keywords: Classification, Neural network, Bayes classifier, Fisher LDA, PCA, SFFS
Estimation in a linear Gaussian Model with Ellipsoidal Constraints
This is a Matlab implementation of various estimators for the estimation of an unknown parameter vector in a linear Gaussian model with ellipsoidal constraints. The signal model is
x = H * theta + z
where theta is assumed to lie in or on an ellipsis.
Version 1.0 (September 2008)
Keywords: Parameter estimation, Minimum mean squared error estimation, Restricted parameter space