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Abstract

The adaptive estimation of a time-varying parameter vector in a linear Gaussian model is considered

where we a priori know that the parameter vector belongs to a known arbitrary subset. We consider a

family of efficient recursive estimators for this problem: the recursive constrained maximum likelihood

(ML) estimator, the recursive affine minimax, and the recursive minimum mean squared error (MMSE)

estimator. We show that all three estimators can be substantially simplified by using the recursive weighted

least squares (RWLS) algorithm in a first step as the RWLS computes the sufficient statistic for this

estimation problem. The recursive constrained ML needs to solve an optimization problem in the second

step for the case that the RWLS solution does not fulfill the constraint. In case of affine minimax, we

have to solve an optimization problem and to perform an affine transform. The MMSE estimator needs

to calculate the mean of a truncated Gaussian density in the second step which is done by Monte Carlo

integration. A simple rejection scheme is used to take general constraints for the parameter vector into

account. An example shows the superior performance of our proposed estimators in comparison to many

other estimators.

Index Terms

Recursive constrained maximum likelihood, Recursive affine minimax, Recursive minimum mean

squared error, Tracking, Sufficient statistic, Recursive weighted least squares
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I. INTRODUCTION

In this correspondence, we study the estimation of an unknown, time-variant parameter vector

θ0(n) ∈ Θ ⊂ R
M (1)

from observations x(n) ∈ R
K of a linear, time-variant Gaussian model

x(n) = H(n)θ0(n) + z(n), n ≥ 0. (2)

H(n) ∈ R
K×M is a known model matrix, z(n) is Gaussian noise with z(n) ∼ N (0,C(n)) which is

temporally uncorrelated, i.e. E[z(n1)z(n2)
T ] = 0 for all n1 6= n2, and n denotes the discrete time. In

addition, we assume to know a priori θ0(n) ∈ Θ, where Θ is an arbitrary subset of R
M . Thus, the task

is to estimate θ0(n) for all n ≥ 0 subject to θ0(n) ∈ Θ given all observations x(0), . . . , x(n).

Such a constrained time-varying parameter estimation problem is interesting for many applications.

The constraints may either naturally arise from physical problems or are artificially introduced, e.g. in

regularized regression problems. An example of natural constraints is a power limitation on θ0(n), i.e.

‖θ0(n)‖2 ≤ Emax or an energy passivity constraint for the estimation of a channel impulse response.

Another important class of constraints are l1-norm constraints that are used to obtain sparse results.

In [1], for example, Tibshirani introduced the LASSO (least absolute shrinkage and selection operator)

which is a least squares approach with the l1-norm constraint Θ = {θ0 : ‖θ0‖l1 ≤ t}.

The aim of this correspondence is to derive and compare three recursive estimators that reduce the

mean squared error (MSE) for the estimation of θ0(n) from the observations x(0), . . . , x(n) by exploiting

the a priori knowledge θ0(n) ∈ Θ. The first estimator is the constrained maximum likelihood (CML)

estimator which maximizes the likelihood function over Θ. This estimator was e.g. used in [2], [3]

for linear equality/inequality and quadratic constraints and in [4] for a l1-norm constraint. The second

estimator we consider is the affine minimax (AMX) estimator [5]–[7] which has attracted a lot of interest

in the past. The AMX minimizes the worst-case MSE for θ0(n) ∈ Θ. So far, the AMX has either only be

considered for a time-invariant estimation problem or for the blind minimax tracking problem [8] and we

will extend the AMX to the problem given by (1) and (2). The third estimator is the Bayesian minimum

mean squared error (MMSE) estimator with a uniform prior on Θ [9]–[11] which we formulate in a

recursive way.

The main challenge is to apply the three estimators (CML, AMX, and MMSE) to a time-varying

estimation problem with an increasing number of observations x(0), . . . , x(n). A direct application of

these estimators would lead to a growing computational complexity as the time n proceeds. The use
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of a suitable sufficient statistic transforms the original estimation problem to an equivalent one with a

fixed number of “observations”, thus resulting in a fixed computational complexity at each time step

n. It will turn out that the recursive weighted least squares (RWLS) algorithm provides an efficient

way to calculate this sufficient statistic. Hence, the correspondence provides a uniform framework that

allows the constrained tracking of θ0(n) from an increasing number of observations x(0), . . . , x(n). This

unified framework, which has not been considered in the literature before, is the main contribution of

this correspondence.

The correspondence is organized as follows: Sec. II-A formulates the time-varying estimation problem

we consider in this correspondence. The sufficient statistic is derived in Sec. II-B. We show that the

RWLS algorithm is an efficient way to compute the sufficient statistic. Sec. III is the main part of the

correspondence. There, we consider the CML estimator and also generalize the concepts of AMX and

MMSE estimation to the time-variant signal model (2). We show that all three estimators can be efficiently

calculated by using RWLS as a preprocessing step. Finally, Sec. IV shows some simulation results and

compares the performance of the estimators.

The following notations are used throughout this correspondence: x denotes a vector, X denotes a

matrix and I is the identity matrix. X � 0 (X ≻ 0) means that X is symmetric and non-negative

(positive) definite. x = vec{X} is the vector we obtain after stacking the columns of X.

II. SIGNAL MODEL AND SUFFICIENT STATISTICS

A. Signal Model

The aim of this correspondence is to derive recursive estimators for the estimation of θ0(n) in (2)

from the observations x(0), . . . , x(n) subject to the a priori constraint θ0(n) ∈ Θ. Assume that θ0(n)

is slowly time-varying, such an adaptive estimation (tracking) is feasible. Given the instantaneous signal

model (2) without any constraint on θ0(n), the following exponentially weighted least squares (WLS)

estimator is popular in adaptive filtering (see [12], [13])

θ̂WLS(n) = arg min
θ(n)

n
∑

i=0

βn−i (x(i) − H(i)θ(n))T C(i)−1 (x(i) − H(i)θ(n)) (3)

where 0 < β ≤ 1 is the exponential forgetting factor. This estimator can be efficiently calculated by the

recursive weighted least squares (RWLS) algorithm, see Sec. II-B. The solution θ̂WLS(n) of (3) can also

be interpreted as the ML estimator of the following stacked signal model

xn = Hnθ(n) + zn. (4)
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xn, Hn, and zn are stacked versions of x(i), H(i), and z(i) for i = 0, . . . , n, respectively:

xn =
[

x(n)T · · · x(0)T
]T
,

Hn =
[

H(n)T · · · H(0)T
]T
, (5)

zn =
[

z(n)T β−1/2z(n− 1)T · · · β−n/2z(0)T
]T
.

Note that the noise term zn is not merely the stacking of z(i), but also incorporates an intentional

weighting of z(i) with β−(n−i)/2. This results in a tendentiously larger noise (as it is in reality) for past

measurements, marking them to be less valuable than recent observations for the estimation of θ0(n). The

effect is exactly the same as the exponential down-weighting of error terms caused by past observations

in (3). As the noise z(n) is temporally uncorrelated, we have zn ∼ N (0,Cn) where the covariance

matrix Cn ∈ R
(n+1)K×(n+1)K is a block diagonal matrix

Cn = diag
(

C(n), β−1C(n− 1), · · · , β−nC(0)
)

. (6)

The unconstrained maximum likelihood estimate to (4) is given by

min
θ(n)

(xn − Hnθ(n))T
C−1

n (xn − Hnθ(n)) . (7)

It is identical to the WLS estimator (3). Using the stacked matrices Hn, Cn and xn defined in (5) and

(6), the solution to (7) can be written as

θ̂WLS(n) = R−1
n HT

nC−1
n xn with Rn = HT

nC−1
n Hn (8)

if Cn is invertible and Hn has a full column rank. It is obvious that θ(n) in (4) is different from θ0(n)

in (2) as (4) is an approximation of the original signal model (2) for a slowly varying parameter θ0(n).

This approximation, however, has proved to be useful in many applications. If θ0(n) = θ0 is constant,

θ̂WLS(n) will approach θ0 with increasing n. For the case that θ0(n) changes slowly, θ̂WLS(n) will follow

θ0(n). Therefore, we will use the stacked signal model (4) below and consider in addition the a priori

constraint (1). We look for estimators for the signal model

xn = Hnθ(n) + zn, θ(n) ∈ Θ (9)

with a smaller MSE than the previous unconstrained WLS estimator in (8). Note that (9) describes a

frequentist estimation problem as θ(n) is deterministic. The length of xn, Hn and Cn grows linearly as

the time n proceeds.
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B. Sufficient Statistics

In order to avoid estimators with a growing computational complexity, we first perform a signal model

transform by using the concept of sufficient statistic [14]. Let x be the random observation about the

unknown, deterministic parameter θ. Furthermore, let t(x) be a statistic of x. Then t(x) is a sufficient

statistic if p(x|t(x) = t0, θ) = p(x|t(x) = t0). Therefore, given t(x) = t0, we can not infer additional

information about θ from the observation x. A convenient way to find the sufficient statistic is to use

the Fisher-Neyman factorization theorem: A sufficient and necessary condition for t(x) being a sufficient

statistic for θ is the factorization

p(x|θ) = g(t(x), θ)h(x). (10)

For our linear signal model in additive Gaussian noise

x = Hθ + z with z ∼ N (0,C), (11)

a well-known sufficient statistic is t(x) = HTC−1x [15]. As any one-to-one function of t(x) is also a

sufficient statistic, we use the following sufficient statistic

t(x) = QHTC−1x (12)

where Q is any square invertible matrix. In other words, the transform TTx of the signal model in (11)

with T = C−1HQT does not result in an information loss for the estimation of θ. The new signal model

is now

x̃ = TTx = TTHθ + TT z = H̃θ + z̃. (13)

We make use of this fact with the special choice of Q =
(

HTC−1H
)

−1
. This yields the transformed

signal model x̃ = θ+ z̃ with z̃ ∼ N (0, C̃) and the new covariance matrix C̃ = TTCT =
(

HTC−1H
)

−1
.

Therefore, instead of the stacked signal model (9), we can look for estimators based on the simpler model

x̃n = θ(n) + z̃n with z̃n ∼ N (0, C̃n). The transformed observation vector x̃n and the new covariance

matrix C̃n are given by

x̃n = t(x) =
(

HT
nC−1

n Hn

)−1
HT

nC−1
n xn = θ̂WLS(n), (14a)

C̃n =
(

HT
nC−1

n Hn

)−1
= R−1

n . (14b)

where θ̂WLS(n) and Rn are defined in (8). The main advantage of this model transform is the fixed vector

length M of x̃n in comparison to the linearly growing vector length (n+ 1)K of xn.
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An efficient way to compute the sufficient statistic is to use the RWLS algorithm. According to the

definition of Hn in (5) and Cn in (6), both matrices can be written recursively

Hn+1 =





H(n+ 1)

Hn



 , Cn+1 =





C(n+ 1) 0

0 β−1Cn



 .

This also implies

Rn+1 = HT
n+1C

−1
n+1Hn+1

= βRn + H(n+ 1)T C(n+ 1)−1H(n+ 1). (15)

By applying the matrix inversion lemma (A + BCD)−1 = A−1 − A−1B
(

C−1 + DA−1B
)

−1
DA−1,

we can update R−1
n and the parameter estimate θ̂WLS(n) in (8) in a time recursive way. Introducing the

gain matrix Gn+1 = R−1
n+1H(n+ 1)T C(n+ 1)−1, we finally obtain the RWLS algorithm

θ̂WLS(n + 1) = θ̂WLS(n) + Gn+1

(

x(n+ 1) − H(n+ 1)θ̂WLS(n)
)

, (16a)

R−1
n+1 =

1

β

(

R−1
n − Gn+1H(n+ 1)R−1

n

)

. (16b)

At each time step, RWLS updates the sufficient statistic θ̂WLS(n) and the inverse correlation matrix R−1
n .

Both values are needed by the three recursive estimators below subject to the constraint θ(n) ∈ Θ.

III. ADAPTIVE ESTIMATION FOR A LINEAR TIME-VARIANT GAUSSIAN MODEL WITH GENERAL

CONSTRAINTS

A. Recursive Constrained Maximum Likelihood

The first estimator we consider is the constrained maximum likelihood (CML) estimator [16]. Given

the linear signal model x = Hθ + z, z ∼ N (0,C) with the constraint θ ∈ Θ, the CML is given by the

optimization problem

θ̂CML = arg max
θ
p(x|θ) s.t. θ ∈ Θ (17)

where p(x|θ) is the probability density function (PDF) of the observation x. Using the sufficient statistic

θ̂WLS in (12), we can rewrite (17) into

θ̂CML = arg min
θ

(θ − θ̂WLS)
T (HTC−1H)(θ − θ̂WLS) s.t. θ ∈ Θ. (18)

As HTC−1H ≻ 0, we have to check whether θ̂WLS satisfies the constraint or not. If θ̂WLS ∈ Θ then

θ̂CML = θ̂WLS. Otherwise we have to find the minimum of (θ − θ̂WLS)
T (HTC−1H)(θ − θ̂WLS) on the

boundary of Θ.
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The extension of the CML to our time-varying signal model (9) is now straightforward. All we have

to do is to replace θ̂WLS, C and H by θ̂WLS(n), Cn and Hn in (18). Therefore, for each time step we

have to check θ̂WLS(n) ∈ Θ. If this is satisfied then θ̂RCML(n) = θ̂WLS(n). Otherwise, we have to find the

minimum of (θ − θ̂WLS(n))T (HT
nC−1

n Hn)(θ − θ̂WLS(n)) on the boundary of Θ. We call this estimator

the recursive constrained ML (RCML) estimator.

B. Recursive Affine Minimax Estimation

The second estimator we consider is the affine minimax (AMX) estimator in the form θ̂AMX = Ux+u.

Here θ is considered to be a deterministic unknown parameter vector from Θ ⊂ R
M . The matrix U and

the offset u are chosen such to minimize the maximum (worst-case) MSE of θ̂AMX for all θ ∈ Θ.

The motivation for the use of the affine minimax estimator is as follows. In contrast to the traditional

concept of Cramer-Rao bound (CRB) for the variance of unbiased estimators and efficient estimators

achieving this bound, Eldar recently proposed a framework to derive estimators achieving the biased

Cramer-Rao bound which is actually an MSE bound [6], [7], [17]. This bound can be made, by allowing

for a suitable bias b, often smaller than the CRB for all θ ∈ Θ. In particular, Eldar presented a linear

bias Mθ in [6] and extended this idea to an affine bias Mθ + u in [7]. Moreover, it was shown that,

given an unbiased and efficient estimator θ̂eff, the following affine transform of θ̂eff

θ̂AMX = (I + M)θ̂eff + u (19)

with the bias Mθ + u achieves the MSE bound and has thus, if M 6= 0 or u 6= 0, a smaller MSE than

θ̂eff for all θ ∈ Θ. The unknown matrix M and vector u can be determined by solving the minimax

problem [7]

min
M,u

max
θ∈Θ

‖Mθ + u‖2 + tr
{

(I + M)J(θ)−1(I + M)T
}

− tr
{

J(θ)−1
}

, (20)

where J(θ)−1 is the inverse Fisher information matrix, i.e. the CRB of θ.

For a linear Gaussian model x = Hθ + z with z ∼ N (0,C) as in our case, the ML estimate

θ̂eff =
(

HTC−1H
)−1

HTC−1x (21)

is known to be unbiased and efficient. Since θ̂eff is a linear function of x, θ̂AMX in (19) becomes an affine

estimator

θ̂AMX = (I + M)
(

HTC−1H
)−1

HTC−1x+ u. (22)

The Fisher information matrix for θ in this case is J(θ) = HTC−1H. For the calculation of the unknown

matrix M and vector u under a special quadratic constraint Θ = {θ : θTAθ+2bT θ+ c ≤ 0}, we can use
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a result from [7]. There, a SDP formulation is given and using standard convex optimization solvers, M

and u can be calculated efficiently. For other constraints, standard techniques from convex optimization

like Finsler’s lemma or the S-procedure can be used [18], [19] after the problem has been rewritten in

epigraphic form. However, the calculation of M and u is in general, i.e. for an arbitrary and possibly

non-convex Θ as in this correspondence, difficult.

The extension of the AMX to our time-variant linear Gaussian model is straightforward. The unbiased

efficient estimator θ̂eff(n) in (21) is identical to θ̂WLS(n) in (8) and can be calculated efficiently by the

RWLS algorithm. After each update of θ̂eff(n), we multiply it with I+M(n) and add u(n) to obtain the

recursive AMX (RAMX) estimator

θ̂RAMX(n) = (I + M(n)) θ̂eff(n) + u(n). (23)

We have to solve the minimax problem (20) to obtain M(n) and u(n). The inverse Fisher information

matrix J(θ(n))−1 in (20) is given by R−1
n =

(

HT
nC−1

n Hn

)

−1
which is also updated by the RWLS

algorithm. Since R−1
n is time-varying, the minimax problem (20) has to be solved repeatedly at each

time step.

In the stationary case with H(n) = H and C(n) = C, we can avoid the repeated solution of the

minimax problem (20) by approximating Rn by its steady state value

R∞ = lim
n→∞

Rn = lim
n→∞

n
∑

k=0

βn−kHTC−1H =
1

1 − β
HTC−1H, (0 < β < 1). (24)

In this case, we only need to compute M and u once from R∞ and use them to change the effi-

cient estimator θ̂eff(n) to the RAMX estimator θ̂RAMX(n) according to (23). This approach reduces the

computational complexity of RAMX at the expense of an increased mean squared error for small n.

C. Recursive MMSE Estimation

The third approach we use after the calculation of the sufficient statistic is the MMSE estimation. In

contrast to the two frequentist approaches (ML and AMX), we now assume θ to be a random vector

and recast the constraint θ ∈ Θ as an a priori probability density function (PDF) p(θ). In this way, we

have reformulated the frequentist estimation problem (θ deterministic) to a Bayesian one. The MMSE

estimator for θ ∈ Θ ⊂ R
M is given by [14]

θ̂MMSE =

∫

Θ

θ p(x|θ)p(θ)dθ

∫

Θ

p(x|θ)p(θ)dθ
(25)
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where p(x|θ) is the likelihood function of the observation x ∈ R
K conditioned on θ. We assume a

uniform a priori PDF (a natural choice as we have no information about θ except for θ ∈ Θ)

p(θ) =







const θ ∈ Θ

0 otherwise
. (26)

This estimator is sometimes called the mean likelihood estimator (MELE) [9], [10] as (25) for this

special prior calculates the mean of the normalized likelihood function p(x|θ)/
∫

Θ p(x|θ)dθ. The main

advantage of MMSE is that it gives the best results with respect to a minimum MSE. However, the

disadvantage of MMSE is the calculation of two multidimensional integrals. A closed-form calculation

of these Bayesian integrals is in general, i.e. for arbitrary p(x|θ) and/or arbitrary Θ ⊂ R
M , impossible. A

numerical integration is only feasible for a small value of M as well as a small number of observations K

and low signal-to-noise ratio (SNR) because otherwise a sharp peak of p(x|θ) would make the numerical

integration difficult. Beside the numerical integration, some other methods have been proven to be useful

[20], [21]. Later in this correspondence, we will use Monte Carlo integration to approximate the MMSE

estimate.

To derive the MMSE estimator for the time-varying model (9), we make use of the Bayesian sufficient

statistic [15], [22]. Let x be the observation about the unknown, random parameter θ. Furthermore, let

t(x) be a statistic of x. Then t(x) is a Bayesian sufficient statistic if for all priors p(θ) the a posteriori

density p(θ|x) can be written as p(θ|x) = p(θ|t(x)). This concept was introduced by Kolmogorov in [23]

and is called Bayesian sufficiency. Therefore, given t(x), we can not infer additional information about θ

from the observations x. The concept of Bayesian sufficiency is directly related to the classical sufficiency

in the deterministic case introduced by Fisher [24]. Using the Fisher-Neyman factorization theorem, it

is easy to proof that the classical sufficiency implies Bayesian sufficiency. The MMSE estimator θ̂MMSE

can then be written as θ̂MMSE =
∫

Θ θ g(t(x), θ)p(θ)dθ/
∫

Θ g(t(x), θ)p(θ)dθ.

This significantly simplifies the adaptive MMSE estimation which is now split into two steps: First,

we apply the RWLS algorithm to simplify the signal model and to compute the sufficient statistic x̃n =

θ̂WLS(n). Then, we calculate the MMSE estimator from the simplified signal model x̃n = θ(n)+ z̃n with

a uniform a priori distribution of θ(n) in Θ. We refer to this estimator as recursive MMSE (RMMSE)

estimator.

Note that the MMSE estimation in the second step still involves two M -dimensional integrals which

we in general can not compute analytically. In [25], we considered the case of ellipsoidal constraints

on θ. The computational complexity was reduced to the calculation of M one-dimensional integrals. In

this correspondence, we apply a more general statistical approach which is not restricted to ellipsoidal
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constraints only. We use the Monte Carlo method to approximate the integrals. Since x̃n|θ ∼ N (θ, C̃n)

after the signal model transform and θ is uniformly distributed in Θ, we only need to generate random

samples from a truncated multivariate Gaussian distribution, i.e. of a Gaussian distribution which is set

to zero for θ /∈ Θ. This becomes clear if we consider the MMSE estimator for the simplified model

θ̂RMMSE(n) =

∫

Θ

θ exp{−1
2(θ − x̃n)T C̃−1

n (θ − x̃n)}dθ

∫

Θ

exp{−1
2(θ − x̃n)T C̃−1

n (θ − x̃n)}dθ
. (27)

Using Monte Carlo integration [26], we have the approximation

θ̂RMMSE(n) ≈
1

I

I
∑

i=1

θi (28)

where θi is a random sample drawn from exp{−1
2 (θ− x̃n)T C̃−1

n (θ− x̃n)} satisfying θi ∈ Θ. Therefore,

θi is a sample of a truncated Gaussian. To generate θi, we first draw a sample ψ from N (0, I) and then

transform it by ϕ = Unψ + x̃n with UnU
T
n = C̃n. It is accepted as a new value for θi if ϕ ∈ Θ.

Otherwise, it is rejected.

By doing so, we can include any constraints on θ easily into the generation of samples from p(θ)p(x̃n|θ).

This rejection sampling works well when the truncated Gaussian PDF has enough “probability mass” in

Θ as otherwise we would do many rejections before a sample ϕ is accepted. This happens, for example,

for equality constraints. Such constraints can not be handled by a rejection scheme, see [25] for a series

expansion approach for this kind of constraints.

Note that there are also more sophisticated methods to draw multivariate samples from a truncated

Gaussian, see e.g. [27]. They often yield a smaller rejection rate than the simple scheme presented here

but have the drawback that they are only applicable if it is possible to easily compute the lower and

upper truncation bounds of the PDF of the truncated Gaussian random variable.

D. Comparison of the Different Approaches

In this section, we compare all three approaches to solve our time-variant estimation problem (9). We

have four options:

1) Simply ignore the additional information θ(n) ∈ Θ and use the ML estimator for (9). This yields

the WLS estimator (3) and the RWLS algorithm (16) for an efficient calculation.

2) A second option is to consider the constrained ML estimator for (9) which is given in (18). The

advantage of this method is that it will ensure θ̂ ∈ Θ, i.e. the a priori information is taken into

account as a hard constraint. However the drawback of this method is that there are no efficient
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recursive algorithms for the case that θ̂WLS /∈ Θ. Then, we have the original problem (18) at each

time step. An exception is the case of linear equality/inequality, quadratic inequality constraints as

considered in [2], [3] or l1-norm constraints as in [4].

3) Restrict the attention to the class of affine estimators only and find that affine estimator that has

the smallest worst-case MSE for all θ(n) in Θ. By doing this, the a priori information is taken into

account as a soft constraint by using the minimax approach. Although this recursive AMX has in

general an even higher computational complexity than CML, it is in our view still to be favored due

to the following three reasons: First, the AMX estimator often shows a smaller MSE compared to

RCML. Second, if H(n) and C(n) are constant over time, M(n) and u(n) reach their steady state

value after some time steps and hence, no update of M(n) and u(n) is needed anymore. Third, we

can restrict M(n) and u(n) to have a special structure, e.g. M(n) is only allowed to be diagonal.

By this we can reduce the number of optimization variables and consequently the compuational

complexity.

4) Another possibility is to recast the frequentist problem to a Bayesian one by interpreting the a priori

information θ ∈ Θ as a priori PDF p(θ) and thus θ ∈ Θ is used as a soft constraint (see discussion

below). In this correspondence, we choose p(θ) as uniform in Θ and zero otherwise as we do

not have any other information about θ except for θ ∈ Θ. This is a natural choice as it does not

prefer particular values of θ. As we use rejection sampling to incorporate the a priori information,

the RMMSE estimator has the advantage compared to RCML and RAMX that it can handle quite

complicated constraints.

In summary, all three approaches (RCML, RAMX and RMMSE with a uniform prior) can be viewed as

different methods to model the a priori information θ ∈ Θ of the frequentist problem (9). Especially the

RAMX and RMMSE estimator allow to efficiently incorporate the a priori information into the estimation

problem.

Note that the RAMX and the RMMSE estimator will in general not ensure θ̂ ∈ Θ. The a priori

knowledge is only exploited to achieve a smaller mean squared error of θ̂. Interestingly, the RMMSE

estimator satisfies the constraint θ̂ ∈ Θ automatically if Θ is a convex set [18].

IV. EXAMPLE

The following example compares the introduced estimators in terms of the mean squared error. We

consider the estimation of θ(n) ∈ Θ ⊂ R
2, i.e. M = 2, under the ellipsoidal constraint Θ = {θ : θTAθ ≤

1}. Fig. 1 shows the trajectory of θ(n) (solid line) consisting of N = 45 discrete-time points and the
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Fig. 1: True trajectory of θ(n)

boundary of Θ (dotted line). The signal model is given by x(n) = θ(n)+ z(n), with z(n) ∼ N (0, 0.1I).

This means H(n) = I.

We use the following five instantaneous estimators to estimate θ(n) given only x(n):

• Least squares (LS): The LS estimator is given by θ̂(n) =
(

H(n)TH(n)
)

−1
H(n)Tx(n) = x(n). This

means, LS accepts each observation x(n) as a new estimate and does not take the old observations

x(n− 1), . . . , x(0) into account.

• Constrained maximum likelihood (CML): The CML estimate can be found by solving a quadratically

constrained quadratic program (QCQP). Using the method of Lagrange multipliers, a simple recursive

rule can be derived which yields the CML solution.

• Affine minimax (AMX): Similar to LS, this estimator only uses the actual observation x(n). As the

model matrix H(n) and the covariance matrix C(n) of the noise are time-invariant in our example,

we have M(n) = M and u(n) = u for our affine estimator. Furthermore, as the center of the

ellipsoid Θ is the origin, we have u = 0. The optimization problem (20) for the special case of an

ellipsoidal constraint θTAθ ≤ 1 was considered in [28] and a SDP formulation was given there.

• Projected AMX: This estimator is identical to the AMX but conditionally does a projection onto

the boundary if θ̂AMX(n) /∈ Θ. The projection is done with an algorithm taken from [29].

• MMSE: The MMSE solution is calculated by means of Monte Carlo integration as described in

Sec. III-C using I = 200 samples for approximating the integral.
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Furthermore, we use the following five time-recursive estimators to estimate θ(n) given x(0), . . . , x(n):

• Recursive weighted least squares (RWLS): We solve the weighted least squares problem (9) where

old observations are weighted with a forgetting factor β. The RWLS does not care about the constraint

θ(n) ∈ Θ.

• Recursive constrained ML (RCML): Similar to the CML, we have to solve a QCQP where θ̂WLS is

now replaced by θ̂WLS(n).

• Recursive affine minimax (RAMX): As we have seen in Sec. III-B, RAMX is given by a matrix

multiplication of the RWLS solution with I + M(n) plus an addition of u(n). Thus, we have to

solve the minimax optimization problem (20) repeatedly at each time step from Rn. Similar to the

AMX estimator, we use the SDP formulation from [28].

• Projected RAMX: Similar to the projected AMX, this estimator does a conditional projection if the

RAMX estimate is not in Θ.

• Recursive MMSE (RMMSE): The RMMSE estimator combines RWLS and MMSE as described in

Sec. III-C. We use again Monte Carlo integration with I = 200 samples.

Fig. 2 shows the averaged mean squared error 1
N

∑N
n=1‖θ̂(n)− θ(n)‖2 averaged over 1 500 trials of this

experiment for all estimators as a function of the forgetting factor β. Note that the five instantaneous

estimators do not depend on β. The RMMSE estimator and the projected RAMX have the smallest mean

squared error for all values of β among the recursive estimators. They also outperform the instantaneous

estimators for 0 < β < 0.75. The optimal forgetting factor for this time-variant problem is βopt ≈ 0.5.

If the forgetting factor is smaller, the effective number 1
1−β of observations (degrees of freedom) is too

small for a reliable estimation of θ(n). If, however, the forgetting factor is too large, the estimator is not

able to track the time-varying parameter θ(n).

The choice of the number of samples I in the Monte Carlo integration also plays an important role

in the design of the estimator. To analyze the influence of I , we varied its value. Fig. 3 shows the

mean squared error of the RMMSE for different values of I and the noise variance σ2. We see that it is

sufficient to use I ≥ 100 samples. To be on the safe side, we choose I = 200.

Finally, we compare the RAMX and its steady-state version. Instead of calculating M(n) at each

time step, we calculate a fixed M from the steady-state correlation matrix R∞ given in (24). Fig. 4

shows the ratio of the mean squared errors of both estimators as a function of the time index n, i.e. γ =

MSE(RAMX)/MSE(steady-state RAMX). Clearly, the MSE values of the steady-state approximation are

larger than the corresponding values of the RAMX. The difference between both estimators vanishes for
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increasing time indices n.

V. CONCLUSIONS

We considered three recursive estimators – the recursive constrained ML, the recursive affine minimax

and the recursive MMSE – for the adaptive estimation of a time-varying parameter vector θ(n) in a linear

Gaussian signal model with the a priori knowledge θ(n) ∈ Θ. All three estimators use the RWLS algorithm

in a preprocessing step to transform a dimensionally growing estimation problem to a fixed-dimension

task. As the estimators take care of the history of measurements and the a priori knowledge θ(n) ∈ Θ, they

outperform the instantaneous estimators (least squares, constrained ML, affine minimax, MMSE) as well
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as the unconstrained recursive estimator RWLS. Especially the derived RMMSE estimator is interesting

as the proposed rejection sampling allows a simple handling of general constraints. Furthermore, the

computational complexity is moderate as we only have to generate samples from a truncated Gaussian

density.
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