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Abstract

Bayesian estimation with other loss functions than the standard hit-or-miss loss or the quadratic loss

often yields optimal Bayesian estimators (OBE)s that can only be formulated as optimization problems

and which have to be solved for each new observation. The contribution of this paper is to introduce

a new parametric family of estimators to circumvent this problem. By restricting the estimator to lie

in this family, we split the estimation problem into two parts: In a first step, we have to find the best

estimator with respect to the Bayes risk for a given non-standard loss function, which has to be done only

once. The second step then calculates the estimate for an observation using importance sampling. The

computational complexity of this second step is therefore comparable to that of an MMSE estimator if

the MMSE estimator also uses Monte Carlo integration. We study the proposed parametric family using

two examples and show that the estimator family gives for both a good approximation of the OBE.

Index Terms

Optimal Bayesian estimator, Bayesian estimation, Loss function, Parametric estimator family

I. INTRODUCTION

It is well known that the goal of Bayesian estimation is to findthe estimator that minimizes the Bayes

risk for a given loss function. The loss functionL(θ, θ̂) ≥ 0 assigns a loss to the estimatêθ when the
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correct value isθ and thereby reflects the cost that is connected to a certain estimation error. It plays a

central role in designing the Bayes estimator and should be application-dependent, i.e. should incorporate

the knowledge of the specific problem that one wants to solve [2]–[4]. However, the most often used

loss functions are the hit-or-miss loss and the quadratic loss

LMAP(θ, θ̂) =











1 ‖θ − θ̂‖ > δ

0 ‖θ − θ̂‖ < δ

, δ → 0+ and (1a)

LMMSE(θ, θ̂) = (θ − θ̂)TW(θ − θ̂), W pos. def. (1b)

where it is known that the corresponding optimal Bayesian estimators (OBE)s are the MAP and MMSE

estimators [5]. The reason that they are used so widely is often not their suitability to the problem at

hand but that the corresponding OBEs are well known and, at least for the MAP estimator, are often

computable. They are the maximum and mean of the a posterioridensityp(θ|x). Powerful methods are

available to calculate the estimatêθ from an observationx, ranging from optimization algorithms [5]

and the Expectation-Maximization (EM) algorithm [6] to sampling techniques including Markov chain

Monte Carlo (MCMC) methods [7].

In this paper, we will consider Bayesian estimation with other loss functions than those given in (1).

This problem is very important for practical applications as the following two examples illustrate:

• Consider the problem of constructing a dam [8]. Underestimating the peak water level from older

measurements is clearly more serious than overestimating it and this fact should be reflected in the

choice of the loss functionL(θ, θ̂). This example motivates the use of an asymmetric loss function,

i.e.L(θ, θ̂) 6= L(−θ,−θ̂), and it is obvious that the two loss functions in (1) are not suited for such

an estimation problem.

• Another example that gives rise to other loss functions thanthose given in (1) can be found in

the field of image processing. Traditionally, the mean squared error is used to compare images and

therefore many algorithms are optimized for this loss function [9]. The problem with the MSE is

that it does not well represent human perception. Images which have a small mean squared error

may still look very different and therefore in [9] it is suggested to use other distance measures. One

is the structural similarity (SSIM) index, which was introduced by Wang in [10] and e.g. used in

[11] for the design of linear equalizers. Fig. 1 compares theMSE with the SSIM index and it can

clearly be seen that the SSIM index is a better measure of similarity than the MSE with respect to

human perception.
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(a) Original image (b) MSE = 150, SSIM = 0.83 (c) MSE = 150, SSIM= 0.66

Fig. 1: Comparison of MSE with SSIM for different image operations

((b) = salt and pepper noise, (c) = Gaussian blurring)

A related example that discusses the design of loss functions for the reconstruction of images is

given by Rue in [12]. He shows how information about the imagestructure can be used to find

a suitable loss function and he proposes the use of MCMC and simulated annealing methods to

calculate the Bayesian estimates.

More examples of Bayesian estimation with non-standard loss functions can also be found in cluster

analysis [13]–[15] and mixture modeling [16], [17].

However, calculating the OBE for many non-standard loss functions is not trivial and can often only be

stated in terms of an optimization problem which has to be solved for each new observationx. Therefore,

we propose in this paper a parametric familyF of estimators which are suited for a large variety of loss

functions but still have a computational complexity comparable to the MMSE estimator for the same

problem. Thus, using the best estimator inF that has the smallest Bayes risk for a given loss function

will be a good approximation of the OBE. Our parametric family of estimators can be viewed as a

compromise between the perfect OBE on one side and a (nonlinear) regression approach on the other. It

trades off performance against computational complexity as it will have a larger Bayes risk than the OBE

but will be easier to learn due to the small and fixed number of parameters compared to a regression

approach.

This paper is organized as follows: First, we review in Sec. II the Bayesian estimation problem and

introduce the OBE which minimizes the Bayes risk. As the OBE can often not be computed in closed

form, we propose in Sec. III and IV two new parametric families of estimators. We start in Sec. III

by considering a basic familyFB of estimators, which includes the MMSE and the MAP estimator.

This family, however, has the disadvantage that the underlying loss functions are always symmetric.
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Therefore, we generalize the estimator family in Sec. IV. This generalized familyF also includes the

OBE for the linear-exponential (LinEx) loss [18] and is thusmore versatile. In Sec. V we consider the

general approach how to use the estimator family and discussits computational complexity. We show

that we can use importance sampling to efficiently compute anestimate. Finally, two examples in Sec. VI

demonstrate the usefulness of our parametric family to approximate the OBE. The first example studies

our family of estimators for a bounded LinEx loss problem whereas the second example considers the

task of speech enhancement using a perceptual relevant lossfunction, namely the PESQ measure.

The following notation is used throughout this paper:x denotes a column vector,X a matrix and in

particularI the identity matrix. The trace operator, determinant, matrix transpose and Euclidean norm are

denoted bytr{.}, det{.}, (.)T and‖.‖, respectively.diag{x} returns a diagonal matrix whose diagonal

elements are given byx. Finally, X ◦ Y denotes the elementwise product, also known as Hadamard

product.

II. REVIEW OF BAYESIAN ESTIMATION

In this section, we will briefly review the basic elements of Bayesian estimation which we will need

throughout this paper. For a more detailed introduction, the interested reader is referred to [2], [19].

Suppose we have an estimatorθ̂(x) that estimates the unknown, random parameterθ ∈ R
M from the

observationx ∈ R
N . To evaluate the quality of the estimator, we assign a lossL(θ, θ̂) ≥ 0 to the error of

estimatingθ̂(x) although the true value isθ. If L(θ, θ̂) exhibits the relationshipL(θ, θ̂) = L(−θ,−θ̂)
then it is called symmetric.1

Averaging the loss with respect to the joint probability density function (PDF)p(θ,x) yields an

important characteristic value for an estimator. It is called the Bayes risk (BR) and given by [19]

BR =

∫∫

L(θ, θ̂(x))p(θ,x)dθdx. (2)

The optimal Bayesian estimator (OBE) is now that estimator that minimizes the Bayes risk, i.e.

θ̂OBE(x) = argmin
θ̂(x)

BR = argmin
θ̂(x)

∫∫

L(θ, θ̂(x))p(θ,x)dθdx

= argmin
θ̂(x)

∫

L(θ, θ̂(x))p(θ|x)dθ (3)

where we used in the last line of (3) the fact thatp(x) ≥ 0 and therefore it is sufficient to minimize the

inner integral for eachx. Hence,argmin
θ̂

BR is equivalent to minimizing the loss averaged over the a

1Besides this property, scale invariance [20], [21] and boundedness [22], [23] are other characteristics of the loss function

that may be desired for practical applications.
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posteriori distribution. Therefore, we immediately see that all information to find the OBE is included in

the a posteriori densityp(θ|x).
Assuming that the loss functionL(θ, θ̂) is differentiable, we can calculate the first-order derivative

with respect to the estimate and equate it to zero to obtain a necessary condition2 to find the OBE, i.e.

∂

∂θ̂

∫

L(θ, θ̂(x))p(θ|x)dθ =

∫

∂L(θ, θ̂)

∂θ̂
p(θ|x)dθ !

= 0. (4)

Solving (4) can often not be done analytically and thereforeBayesian estimation with most loss functions

is difficult. We will thus introduce in the next section a parametric family FB of estimators that will

transform (3) into an optimization problem to find one parameter. This family is then extended in Sec. IV

to asymmetric loss functions.

III. B ASIC FAMILY OF ESTIMATORS

The first set of estimators that we consider are all estimators of the form

θ̂(x;λ) =

∫

θp(θ,x)λdθ
∫

p(θ,x)λdθ
(5)

and which are parameterized byλ. We call this set thebasic family of estimatorsFB. Thinking of

p(θ,x)λ as a new (unnormalized) density, we see that (5) calculates the mean of the conditional density

p(θ,x)λ/
∫

p(θ,x)λdθ and therefore looks similar to the MMSE estimator except forthe modified PDF.

It is reasonable to restrictλ to positive values, i.e.λ ∈ [0,∞). Otherwise we average over a new density

p(θ,x)λ/
∫

p(θ,x)λdθ which is inverted in the sense that it has large values at positions wherep(θ|x) is

small, i.e. it emphasizes points(θ,x) ∈ R
M+N that are not likely to occur and we can expect therefore

a poor performance forλ < 0.3

We will now show thatFB includes three important estimators, namely the uniform a priori MMSE

estimator, the MMSE estimator and the MAP estimator. By uniform a priori MMSE estimator, we refer

to the estimator where we have no observationx aboutθ ∈ Θ ⊂ R
M and the a priori distributionp(θ)

is assumed to be uniform inΘ. The estimator with the minimum MSE is then the “center of gravity” of

Θ, i.e. θ̂ = E[θ] =
∫

θp(θ)dθ =
∫

Θ θdθ/
∫

Θ 1dθ which is well defined ifΘ is bounded. The following

theorem proves that all three estimators are inFB.

2We assume here that the parameter space is open. Otherwise, the OBE could also lie on the boundary of the parameter space

and (4) is not necessary anymore.

3For example the lossL(θ, θ̂) = 1− LMAP(θ, θ̂) results in seeking the minimum ofp(θ|x) which is related (but in general

not identical) toθ̂(x;λ) for λ → −∞.
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Theorem 1. The estimator familyFB defined in(5) includes the following special cases:

(a) If Θ ⊂ R
M is bounded andp(θ,x) 6= 0, then θ̂(x;λ) for λ → 0 exists and is equivalent to the

uniform a priori MMSE estimator.

(b) The caseλ = 1 corresponds to the MMSE estimator.

(c) The caseλ→ ∞ corresponds to the MAP estimator.

Proof:

(a) AssumingΘ to be a bounded set onRM , we immediately see thatlimλ→0 p(θ,x)
λ/
∫

p(θ,x)λdθ =

const., i.e. it converges pointwise to a uniform distribution onΘ. Therefore,θ̂(x; 0) calculates the

center of gravity ofΘ which is equivalent to the a priori MMSE estimator.

(b) Settingλ = 1 in (5), we obtainp(θ,x)/
∫

p(θ,x)dθ = p(θ|x) and thusθ̂(x; 1) =
∫

θp(θ|x)dθ =

E[θ|x], which is the MMSE estimator.

(c) To prove this part, we use a result from Pincus [24]: Givena continuous functionf(θ), which attains

a global maximum at exactly one point inΘ, then Pincus showed

argmax
θ

f(θ) = lim
λ→∞

∫

Θ

θf(θ)λdθ

∫

Θ

f(θ)λdθ
. (6)

Using this theorem, we conclude thatlimλ→∞ θ̂(x;λ) is the MAP estimator.

Although it is interesting to see the relationship of this basic family of estimators to other estimators,

we also see that the loss functions associated withλ ∈ {0, 1,∞} are all symmetric as they are the

hit-or-miss error (1a) and the squared error (1b). In the following, we will prove in Theorem 2 that if

there is a continuously differentiable loss function that results inθ̂(x;λ) for all PDFsp(θ,x), then the

loss function has to be symmetric.4 For the proof of Theorem 2, we need the following Lemma. The

proofs of the Lemma and Theorem 2 can be found in Appendix A.

Lemma. The estimator̂θ(x;λ) for the PDFsp(θ,x) = δ(θ − θ0) and p(θ,x) = Pδ(θ − θ0) + (1 −
P )δ(θ−θ1) is given byθ̂(x;λ) = θ0 and θ̂(x;λ) = (P λθ0+(1−P )λθ1)/(P λ+(1−P )λ), respectively.

Theorem 2. LetL(θ, θ̂) be a continuously differentiable loss function that results in the optimal Bayesian

estimatorθ̂(x;λ) for an arbitrary PDF p(θ,x). ThenL(θ, θ̂) is symmetric, i.e.L(θ, θ̂) = L(−θ,−θ̂).

4Note that it is difficult to prove the existence of such a loss function for an arbitraryλ and corresponding estimator̂θ(x;λ).
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From this Theorem, we see that no estimator resulting from anasymmetric, continuously differentiable

loss function is included inFB. However, we would like to cover such estimation problems due to their

practical relevance and hence we have to extendFB. This is done in the next section.

IV. GENERALIZATION TO ASYMMETRIC LOSSFUNCTIONS

In order to extend the basic family of estimatorsFB given in (5), we will now modify its parametric

form such that the OBE for LinEx loss is also included. By doing this, we obtain a new family of

estimatorsF which can deal with the important case of asymmetric loss functions.

The LinEx loss is frequently used in Bayesian estimation, see e.g. [8], [18]. It rises approximately linear

on one side and exponential on the other. The univariate LinEx loss function is given byLLinEx(θ, θ̂) =

b
(

ea∆ − a∆− 1
)

where∆ = θ̂ − θ, a 6= 0 and b > 0. The multivariate LinEx loss is defined as a

straightforward extension and given by [8]

L(θ, θ̂) =

M
∑

m=1

bm
(

eam∆m − am∆m − 1
)

(7)

where∆m = θ̂m − θm, am 6= 0 and bm > 0. To calculate the OBE, we use (4) with∂L(θ, θ̂)/∂θ̂m =

bmam
(

eam∆m − 1
)

and finally obtain

θ̂m = − 1

am
ln

∫

e−amθmp(θm|x)dθm, m = 1, . . . ,M. (8)

Knowing the OBE for LinEx loss, we can now extend our basic family of estimatorsFB. This will be

done in such a way that the new family of estimatorsF is a kind of “superposition” of bothFB and the

OBE (8). We define this new family of estimators in the following way: LetF be the set of estimators

where each estimator has the form

θ̂(x;P) = f1

(
∫

f2(θ;P2)p(θ,x)
λdθ

∫

p(θ,x)λdθ
;P1

)

(9)

and depends on the2M + 4 parametersP = {λ,P1,P2} with P1 = {ξ1, φ1, . . . , φM} and P2 =

{ξ2, ξ3, ψ1, . . . , ψM}. The functionsf1 and f2 are defined as

f1(z;P1) = ξ1z+ φ ◦ ln|z|, (10a)

f2(z;P2) = ξ2z+ ξ3e
ψ◦z (10b)

with φ =
[

φ1, . . . , φM

]T
andψ =

[

ψ1, . . . , ψM

]T
. Note thatez, ln z and|z| are understood elementwise.

λ is again chosen such thatλ ∈ [0,∞) as discussed in the Sec. III.

First, we would like to note thatFB ⊂ F as all estimatorŝθ(x;λ) from (5) are included in̂θ(x;P)

for ξ1 = ξ2 = 1, ξ3 = 0 andφ1 = · · · = φM = 0. Therefore, we already know from Theorem 1 that the
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uniform a priori MMSE, the MMSE and the MAP estimator are included in this family. Furthermore, it is

straightforward to see thatF also includes the OBE for LinEx loss as plugging in the valuesξ1 = ξ2 = 0,

ξ3 = 1, λ = 1 andψm = 1/φm = −am for m = 1, . . . ,M into (9) results in (8). Thus, we see that

the new estimator familyF is more general thanFB and also includes estimators with asymmetric loss

functions as intended.

V. PRACTICAL CONSIDERATIONS

This section explains the general approach how to obtain theestimator for a given signal model and loss

function and also shows how the estimateθ̂(x;P) can be calculated efficiently for a given observation

x. In the sequel, we will make the following two assumptions:

• The generation of samples(θk,xk) ∼ p(θ,x) is manageable, wherep(θ,x) is the joint PDF ofθ

andx. This is often the case asp(θ,x) can be written asp(θ,x) = p(x|θ)p(θ), wherep(θ) is the

a priori PDF ofθ andp(x|θ) is the likelihood PDF. Very often, both are known:p(θ) from expert

knowledge andp(x|θ) through the signal model.

• The generation of samplesθk ∼ p(θ|x) is manageable. This is not a hard restriction as the MMSE

estimator is often calculated using Markov chain Monte Carlo (MCMC) methods [2], [7]. MCMC

allows the approximate generation of correlated samples from the a posteriori distribution and the

MMSE estimator is then simply the average over all samples. Here, we will use importance sampling

where the conditional distributionp(θ|x) is the importance function.

Given the loss function and the signal model, the use of our estimator family for a general estimation

problem consists of two steps:

Step 1 – Find the optimal estimator inF
In a first step, we have to find the estimatorθ̂(x;P0) ∈ F that has the smallest Bayes risk for the

particular loss function and joint PDFp(θ,x), i.e. we have to solve the optimization problem

P0 = argmin
P

∫∫

L(θ, θ̂(x;P))p(θ,x)dθdx. (11)

This optimization has only to be carried out once to learn theoptimal values of the parametersP. In

the Appendix B, we give the gradient vector of the Bayes risk in (11) with respect to the parameters in

P. The knowledge of the gradient vector allows to use a gradient descent method to find the optimal

parameter values. As the Bayes risk is in general a multimodal function with respect toP, the gradient

descent algorithm should be restarted several times from different initial points.

January 21, 2012 DRAFT



9

The integration with respect toθ andx can be carried out by a plain Monte Carlo (MC) integration

using samples(θk,xk) ∼ p(θ,x). The optimization problem (11) becomes then

P0 = argmin
P

1

K1

K1
∑

k=1

L(θk, θ̂(xk;P)). (12)

If the generation of samples fromp(θ,x) is not directly possible, then importance sampling as discussed

below is another possibility to obtain an accurate approximation of the integral.

Step 2 – Calculate the estimatêθ(x;P0)

In a second step, we calculate the estimate for a given observation x. Therefore, we need an efficient

method to compute both integrals in (9). Note that (9) can be written as

θ̂(x;P) = f1

(∫

f2(θ;P2)
p(θ,x)λ

∫

p(θ,x)λdθ
dθ;P1

)

= f1 (Epλ
[f2(θ;P2)] ;P1) . (13)

We see that we can write the integrals as the expectation off2(θ;P) with respect to a new conditional

densitypλ(θ|x) = p(θ,x)λ/
∫

p(θ,x)λdθ. Assuming that we can generate samples from the a posteriori

distributionθk ∼ p(θ|x) = p(θ,x)/
∫

p(θ,x)dθ, we can use importance sampling [7] for (13).

The importance sampling algorithm is as follows: Suppose wewant to calculateE [h(θ)] =
∫

h(θ)p(θ)dθ.

Then we can use the approximation

E [h(θ)] ≈

K
∑

k=1

wkh(θk)

K
∑

k=1

wk

(14)

whereθk are drawn from a trial distributioñp(θ) and the importance weightswk are defined aswk =

p(θk)/p̃(θk). Note thatwk has only to be known up to a multiplicative constant in (14). Using importance

sampling for our problem, we finally obtain the approximation

θ̂(x;P) ≈ f1











K2
∑

k=1

wk f2(θk;P2)

K2
∑

k=1

wk

;P1











(15)

with p̃(θ) = p(θ,x) and thuswk = p(θk,x)
λ−1. The computational complexity is hence comparable to

that of an MMSE estimation if the MMSE estimator also uses MC integration.
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VI. EXAMPLES

A. Example 1: BLinEx Loss

The first example is as follows: Given the signal modelx = θ + z, we want to estimateθ which is

uniformly distributed in[0, 1] from the observationx where we know that the observation is perturbed

by additive Gaussian noisez ∼ N (0, σ2). Furthermore, we assume thatz and θ are independently

distributed. The considered loss function is the bounded LinEx (BLinEx) loss introduced in [23]. The

univariate BLinEx loss function is given by

LBLinEx(θ, θ̂) =
LLinEx(θ, θ̂)

1 + ρLLinEx(θ, θ̂)
, ρ > 0. (16)

PluggingLLinEx(θ, θ̂) from (7) into (16), we obtain

LBLinEx(θ, θ̂) =
1

ρ

(

1− 1

1 + c(ea(θ̂−θ) − a(θ̂ − θ)− 1)

)

(17)

with c = ρb. It differs from the usually used loss functions (1) in two main properties, namely it is (a)

asymmetric and (b) bounded:

(a) If a > 0 then the positive error̂θ > θ results in a larger loss than the corresponding negative

error of the same magnitude. Ifa < 0 then negative errorŝθ < θ have a larger loss. A case where

such an emphasis of negative errors is useful is the dam construction example given in Sec. I as

underestimating the peak water level is more severe than overestimating it.

(b) LBLinEx(θ, θ̂) is bounded by 0 and1/ρ. Such a requirement for a loss function may occur naturally

out of the considered problem or may be introduced artificially to improve the robustness of the

estimator in the case of outliers.

In our example, we chooseρ = 0.5, a = 10 and b = 1.5 Fig. 2 shows the graph of the BLinEx loss

function for this choice of parameters. Furthermore, the noise variance isσ2 = 0.25.

We compare the following five estimators with respect to the squared error loss (1b) and the BLinEx

loss (17):

• MAP estimator: The MAP estimator is in general given bŷθ = argmaxθ p(θ|x) with p(θ|x) ∼
e−(x−θ)2/(2σ2)u[0,1](θ) andu[0,1](θ) is the a priori PDF ofθ which is uniformly distributed in[0, 1].

5We choose these parameter values in order to achieve the following two effects: First, we want to study an asymmetric loss

function and thereforea has to be large. Second, we want a loss function which is bounded and therefore different from the

LinEx loss. To see this effect, we chooseρ = 0.5.
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Fig. 2: LinEx and BLinEx loss (ρ = 0.5, a = 10 andb = 1)

This yields

θ̂MAP =



























0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

(18)

• MMSE estimator: The MMSE estimator is given bŷθMMSE = E[θ|x]. For our signal model, the

conditional mean can be calculated analytically and one obtains

θ̂MMSE = x+

√

2

π
σ

e−
x2

2σ2 − e−
(x−1)2

2σ2

erf
(

x√
2σ

)

− erf
(

x−1√
2σ

) (19)

• OBE for LinEx loss: The OBE for LinEx loss is given by (8) which can be calculatedanalytically.

It is given by

θ̂OBE,LinEx = x− aσ2

2
− 1

a
log





erf
(

1+aσ2−x√
2σ

)

− erf
(

aσ2−x√
2σ

)

erf
(

x√
2σ

)

− erf
(

x−1√
2σ

)



 (20)

• OBE for BLinEx loss: The optimization problem (3) for this example can not be carried out

analytically and thus (3) has to be solved for each new observation x individually, either by

Monte Carlo integration or numerical quadrature. For our simulations, we used the Matlab functions

fminunc andquad to solve (3).
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Estimator Mean Squared error loss Mean BLinEx loss

MAP estimator 1.21×10−1 1.02×100

MMSE estimator 6.28×10−2 9.03×10−1

OBE for LinEx loss 1.23×10−1 8.70×10−1

Optimal estimator∈ F 8.16×10−2 8.21×10−1

OBE for BLinEx loss 8.70×10−2 8.12×10−1

TABLE I: Comparison of the Bayes risks

• Estimator family(9) with optimal parameters: The optimal parameters are found via the Matlab

functionfmincon using 50 random start points for the gradient descent. The found parameters are

ξ1 ≈ 6.77× 10−1, ξ2 ≈ 4.03× 10−1, ξ3 = 1.33× 10−1, λ ≈ 8.31, φ ≈ 4.02× 10−3 andψ ≈ 1.91.

K1 = 5000 samples are used for the Monte Carlo approximation in (12) and K2 = 5000 samples

are drawn from the a posteriori densityp(θ|x) for (15) using the sampling method proposed in [25].

The values forK1 andK2 were found by simulations to ensure statistical stable results of the MC

integral approximations.

Table I shows the results averaged over10 000 trials. Clearly, the MMSE estimator is optimal in terms

of the squared error loss as expected. Similarly, the OBE forthe BLinEx loss gives the smallest Bayes

risk if the BLinEx loss function is used. The optimal estimator θ̂(x;P0) from the setF is a good

approximation of the OBE for the BLinEx loss as it has a similar Bayes risk. Thus, although the OBE

for the BLinEx loss itself is not an element ofF , there is an estimator̂θ(x;P0) in F which gives nearly

the same performance.

In order to study the influence of the noise variance on the simulation results, we rerun the first

experiment with varyingσ2 values. Fig. 3 shows the simulation results and it can be concluded that the

relative performance of̂θ(x;P0) with respect to the OBE for BLinEx loss is almost constant.

Finally, the run times to compute the estimates on a standarddesktop computer are given in Table II

in order to compare the computational costs of the differentapproaches. It can be observed that the run

time of the OBE for BLinEx loss is roughly ten times larger as for our estimator family which justifies

to use the approximation given by (15) rather than the OBE itself. Note that the computation of the

estimator family according to (15) consists of two steps: First, we have to sample from the a posteriori

distribution which in our case is a truncated Gaussian density. We used the sampling algorithm proposed

by Robert in [25] for this step. Second, we have to use importance sampling as shown in (15) to find the
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Fig. 3: Squared error and BLinEx loss for a varying noise varianceσ2

Estimator Run time

MAP estimator < 1×10−3 sec.

MMSE estimator < 1×10−1 sec.

OBE for LinEx loss < 1×10−1 sec.

Optimal estimator∈ F 2.3×101 sec.

OBE for BLinEx loss 3.2×102 sec.

TABLE II: Comparison of the run times for10 000 trials

estimate. The run time for the first step is21 seconds and for the second step2 seconds which results

in the 23 seconds that are given in Table II. These numbers show that most of the run time is spent on

computing samples from the a posteriori density.

B. Example 2: Speech Enhancement

The second example which we consider is the enhancement of a distorted speech signal. The goal is

to suppress an unwanted noise signal while leaving the speech as undistorted as possible, see e.g. [26],

[27].

In the time domain, the speech enhancement problem can be written as

x(n) = s(n) + z(n), (21)

January 21, 2012 DRAFT



14

wheres(n) is the original (clean) speech signal at time instancen which is distorted by noisez(n) to

result in the observed signalx(n). One solution for this problem is the traditional approach of short-time

spectral attenuation(STSA) which was introduced by [28], [29] and extended in later work [30]–[32].

While [28] is based on the method ofspectral subtraction, the other papers use a more statistically

motivated approach by introducing a suitable loss functionand signal model for each frequency bin. The

corresponding OBE is then used to perform the STSA operation.

In the following, we will state the speech enhancement problem in the frequency domain where we

assume a Gaussian signal model. All necessary elements to use our family of estimators from (9) are

derived and this estimator is then compared to the OBE.

1) Problem Formulation and Solution Approach:Using the short-time Fourier transform of (21), the

signal model can be written in the frequency domain as

Xk,i = Sk,i + Zk,i, (22)

whereXk,i = Xk,ie
jθk,i , Sk,i = Sk,ie

jφk,i andZk,i are thekth spectral component of the noisy signal

x(n), clean speechs(n) and noisez(n) in the ith frame. The frequency indexk ranges from0 to K − 1

whereK is the FFT length. In STSA, the speech enhancement problem issolved by using

Ŝk,i = Ŝk,ie
jθk,i , (23)

i.e. the amplitudeXk,i of the noisy spectral componentXk,i is replaced by the estimatêSk,i = Ŝk,i(Xk,i).

For convenience, we will drop the dependence of the spectralcomponents on the frame indexi in the

following.

Using the Gaussian modelSk = Ske
jφk ∼ CN (0, σ2s (k)), i.e. Sk is complex Gaussian, we know that

the PDF ofSk andφk is given by

p(Sk, φk) =















1
2π

Sk

σ2
s(k)/2

e
− S

2
k

σ2
s(k) Sk ≥ 0, 0 ≤ φk < 2π

0 otherwise

, (24)

i.e. Sk follows a Rayleighdistribution,φk is uniformly distributed on[0, 2π) and they are independent

of each other. Assuming furthermoreZk ∼ CN (0, σ2z (k)) andZk is independent ofSk, the a posteriori
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densityp(Sk|Xk) for Sk ≥ 0 is given by

p(Sk|Xk) =
1

p(Xk)

2π
∫

0

p(Xk|Sk, φk)p(Sk, φk)dφk

=
Sk(σ

2
z(k) + σ2s(k))

πσ2z(k)σ
2
s (k)

exp

{

−σ
2
z(k) + σ2s(k)

σ2z(k)σ
2
s (k)

S2
k − σ2s(k)

σ2z(k)(σ
2
z (k) + σ2s(k))

X 2
k

}

×
2π
∫

0

exp

{

2SkXk

σ2z(k)
cos (φk − θk)

}

dφk. (25)

Introducing themodified Bessel function of the first kind andnth order In(z) which has the integral

representation [33]

In(z) =
1

2π

2π
∫

0

cos(βn) exp {z cos(β)} dβ, (26)

and using the shorthand notationsvk = σ2
s(k)

σ2
z(k)(σ

2
z(k)+σ2

s(k))
X 2
k andλ−1

k = σ2
z(k)+σ2

s(k)
σ2
z(k)σ

2
s(k)

, we can finally write

the a posteriori densityp(Sk|Xk) as

p(Sk|Xk) = 2
Sk

λk
exp

{

−S2
k

λk
− vk

}

I0

(

2Sk

√

vkλ
−1
k

)

. (27)

This density is well known in the literature and shows thatSk given the observationXk follows a Rice

distribution [34]. It is interesting to note thatp(Sk|Xk) only depends onXk and therefore,̂Sk = Ŝk(Xk).

To derive the OBE in the next Section, we will need to calculate the momentsE [Sm
k |Xk]. Interestingly,

they can be given analytically using theKummer functionM(a, b, z) as shown in [30] and they are

E [Sm
k |Xk] = λ

m/2
k Γ

(m

2
+ 1
)

M
(

−m
2
, 1,−vk

)

(28)

for all m > −2 whereΓ(x) =
∫∞
0 tx−1e−tdt is theGamma function. Eq. (28) results from the identities

[33, 11.4.28] and [33, 13.1.27].

2) Loss Function and Corresponding OBE:In the literature, many different loss functions were

proposed to perform STSA speech enhancement. The first approach in [29] was to use the squared loss

functionL(Sk, Ŝk) = (Sk −Ŝk)
2 which results in theMMSE-STSAalgorithm. Later, other loss functions

were proposed in [30]–[32] which show a better performance with respect to perceptual motivated quality

measures, e.g. theperceptual evaluation of speech quality(PESQ) measure [35]. In [36], these loss

functions were combined into a family of loss functions of the form

L(Sk, Ŝk) =

(

Sβ
k − Ŝβ

k

Sα
k

)2

. (29)
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This loss function was later generalized in [37] to include even more proposed loss functions. The

corresponding OBE for (29) can easily be found by using (4) together with∂L/∂Ŝk = −2βŜβ−1
k (Sβ

k −
Ŝβ
k )/S2α

k and is given by

Ŝk =









∞
∫

0

Sβ−2α
k p(Sk|Xk)dSk

∞
∫

0

S−2α
k p(Sk|Xk)dSk









1

β

=





E
[

Sβ−2α
k |Xk

]

E
[

S−2α
k |Xk

]





1

β

. (30)

3) Simulation Results:In the following, we will compare the OBE for the loss function (29) with the

best estimator from the generalized family (9). Two experiments are conducted: In the first experiment,

we find the best estimator inF with respect to the loss function (29) forα = 0.5 and β = 1. This

parameter setup was shown in [36] to result in an STSA algorithm with the best PESQ value, which is

called Weighted Euclidean STSA (WE-STSA). In contrast, the second experiment optimizes directly on

the PESQ measure.

Experiment 1: Fitting of the estimator family to WE-STSA

The following three estimators are considered:

• Minimum Mean-Squared Error STSA (MMSE-STSA): The MMSE-STSA estimator results from the

special choiceα = 0 andβ = 1 in (29). The corresponding OBE is given by [29]

Ŝk = E [Sk|Xk] =

√
πλk
2

e−
vk

2

[

(1 + vk)I0

(vk
2

)

+ vkI1

(vk
2

)]

(31)

where we used the identities [33, 13.1.27] and [33, 13.3.6] in (28) form = 1.

• Weighted Euclidean (WE-STSA): The WE-STSA estimator is the OBE that corresponds to the choice

α = 0.5 andβ = 1. It is given by [31]

Ŝk =
(

E
[

S−1
k |Xk

])−1
=

√

λk
π

evk/2

I0
(

vk
2

) (32)

where we used the identityM(12 , 1, z) = ez/2I0
(

z
2

)

in (28).

• Estimator Family: To learn the optimal parametersP0, K1 = 5000 samples from the joint PDF

p(Sk,Xk) andK2 = 5000 samples from the a posteriori PDFp(Sk|Xk) are drawn using a uniform

(hyper-)prior distribution forσ2z(k) andσ2s(k). They were chosen to be uniformly distributed with

σ2z(k) ∼ U(10−2, 100) andσ2s(k) ∼ U(10−12, 103).

We used ten female and ten male speakers from the TIMIT database which resulted in a total of144

utterances. The noise was assumed to be white Gaussian with aSNR of 10dB. The short-time Fourier

transform was computed using a Hamming window of length32ms and an overlap of50% as in [36].

The noise varianceσ2z(k) was estimated from noise-only segments where those segments were found by
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a voice activity detector (VAD).σ2s(k) is estimated from the decision-directed approach as proposed in

[29].

The results are shown in Table III. Beside the MMSE loss and the WE loss, we also give the results

with respect to the PESQ measure. It can take on values between “1” (bad) and “4.5” (excellent) and

was shown to be a good objective quality measure for speech enhancement [38]. From the results we

see that WE-STSA gives the best results with respect to the PESQ measure which was already observed

in [36]. Furthermore, we also see that the best estimator from F is a good approximation of the OBE

for WE loss. It gives a better PESQ measure than the MMSE-STSAand therefore we could adapt the

parametric family to the WE loss function. It is interestingto note that the best estimator fromF has a

smaller WE loss than the OBE for this loss function. This stems from the fact that estimates ofσ2z(k)

andσ2s(k) were used during the speech enhancement which influences theperformance of the estimators.

Experiment 2: Fitting of the estimator family to PESQ

Instead of using the WE loss as for Experiment 1, we also studied the performance of the estimator

family F if the PESQ measure is directly used as loss function, i.e. wererun the first experiment with

the same setup but this time we search the best estimator inF that yields the maximum PESQ value. We

splitted the144 files into two sets, a training set consisting of one male and one female speaker, and a

disjoint test set which contains the remaining142 files. The optimization problem (12) was solved using

Matlab’s fminsearch procedure from 50 different randomly chosen starting points.

Table IV shows the results for this new setup. It can be seen that the estimator which is adapted to

the PESQ loss has an improved mean PESQ value of2.87 compared to the estimator we found in the

first experiment which had a PESQ loss of2.80. A difference of0.07 in the PESQ measure corresponds

roughly to a1dB difference in SNR and hence, we can conclude that the foundestimator is capable of

fitting to the PESQ loss function. Furthermore, it performs also slightly better than WE-STSA on the

142 utterances of the test set.

VII. C ONCLUSIONS

In this paper a family of estimators was proposed for the Bayesian estimation with non-standard loss

functions. This family has the advantage that it is parameterized by a small number of variables which can

be determined offline for a particular loss function. We proved that the family includes many important

estimators known from the literature, namely MMSE, MAP, andOBE for the LinEx loss which shows

that it is quite versatile. The computational complexity ofour approach is comparable to that of an

MMSE estimation for the same signal model if we assume that Monte Carlo integration is used for the
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MMSE loss WE loss PESQ

(α = 0, β = 1) (α = 0.5, β = 1)

Noisy speech signal 4.13×10−2 8.34×100 2.26

OBE for α = 0, β = 1
1.47×10−2 1.02×100 2.65

(MMSE-STSA)

OBE for α = 0.5, β = 1
2.02×10−2 2.01×10−1 2.86

(WE-STSA)

Optimal estimator inF
2.10×10−2 1.53×10−1 2.80

(WE Loss)

TABLE III: Experiment 1: Performance of the STSA estimators

MMSE loss WE loss PESQ

(α = 0, β = 1) (α = 0.5, β = 1)

Noisy speech signal 4.15×10−2 8.28×100 2.26

OBE for α = 0, β = 1
1.48×10−2 1.01×100 2.65

(MMSE-STSA)

OBE for α = 0.5, β = 1
2.04×10−2 1.99×10−1 2.85

(WE-STSA)

Optimal estimator inF
2.09×10−2 1.52×10−1 2.80

(for WE Loss)

Optimal estimator inF
1.57×10−1 1.36×10−1 2.87

(for PESQ)

TABLE IV: Experiment 2: Performance of the STSA estimators on the test set

calculation of the MMSE estimator. Please note that a Matlab/MEX implementation of the estimator

family is available online [39].
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APPENDIX A

PROOFS

Proof of the Lemma:First of all, we would like to point out that the delta function can be expressed

as a limit of the normal distribution, i.e.

g(θ; a2) =
1

aMπM/2
e−‖θ‖2/a2 a→0−−−→ δ(θ).

They are equivalent in the sense thatf(0) =
∫

f(θ)δ(θ)dθ = lima→0

∫

f(θ)g(θ; a2)dθ. Using this

relationship, we can now prove the lemma.

(a) p(θ,x) = δ(θ − θ0):

θ̂(x;λ) = lim
a→0

∫

θg(θ − θ0; a2)λdθ
∫

g(θ − θ0; a2)λdθ
= lim

a→0

∫

θg(θ − θ0; a
2

λ )dθ
∫

g(θ − θ0; a2

λ )dθ

= lim
a→0

∫

θg(θ − θ0;
a2

λ
)dθ = θ0

(b) p(θ,x) = Pδ(θ − θ0) + (1− P )δ(θ − θ1):

θ̂(x;λ) = lim
a→0

∫

θ[Pg(θ − θ0; a2) + (1− P )g(θ − θ1, a2)]λdθ
∫

[Pg(θ − θ0; a2) + (1− P )g(θ − θ1; a2)]λdθ

= lim
a→0

P λ

P λ + (1− P )λ

∫

θg(θ − θ0;
a2

λ
)dθ

+ lim
a→0

(1− P )λ

P λ + (1− P )λ

∫

θg(θ − θ1;
a2

λ
)dθ

=
P λθ0 + (1− P )λθ1
P λ + (1− P )λ

where we used the fact that[Pg(θ − θ0; a2) + (1− P )g(θ − θ1; a2)]λ → P λg(θ − θ0; a2)λ + (1−
P )λg(θ − θ1; a2)λ for θ0 6= θ1 anda→ 0.

Proof of Theorem 2: We will prove this theorem by contradiction. Supposeθ̂(x;λ) has a corre-

sponding loss functionL(θ, θ̂) which is continuously differentiable but not symmetric. Then at least one

of the following two cases has to be true:

(a) There is aθ0 such that
∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=θ0

θ̂=θ0

6=
∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=−θ0

θ̂=−θ0

. (⋆)

Consider the special PDFp(θ,x) = δ(θ − θ0). As θ̂(x;λ) from (5) holds for all densities, we can

directly use the result of the Lemma and obtainθ̂(x;λ) = θ0. A necessary condition that̂θ(x;λ)
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is the OBE for the loss functionL(θ, θ̂) is (4)

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=θ0

θ̂=θ0

= 0.

Furthermore, consider the special PDFp(θ,x) = δ(θ + θ0) which has the OBÊθ(x;λ) = −θ0.
Using again (4), we obtain the necessary condition

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=−θ0

θ̂=−θ0

= 0

which can not be true as we assumed (⋆).

(b) There is aθ0 andθ1 such that
∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=θ0

θ̂=θ1

6=
∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=−θ0

θ̂=−θ1

. (⋆⋆)

Consider the special PDFp(θ,x) = Pδ(θ− θ0)+ (1−P )δ(θ− θ1) which, according to the above

Lemma, has the OBEu = θ̂(x;λ) = (P λθ0+(1−P )λθ1)/(P λ+(1−P )λ). A necessary condition

that has to be fulfilled is (4) which yields

P
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=θ0

θ̂=u

+(1− P )
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=θ1

θ̂=u

= 0.

Furthermore, the PDFp(θ,x) = Pδ(θ + θ0) + (1 − P )δ(θ + θ1) results in the OBE−u and the

necessary condition (4) is

P
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=−θ0

θ̂=−u

+(1− P )
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=−θ1

θ̂=−u

= 0.

Without loss of generality, we can assume
∣

∣

∣

∂L(θ,θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣θ=θ1

θ̂=θ1

=
∣

∣

∣

∂L(θ,θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣θ=−θ1

θ̂=−θ1

as we can otherwise use

(a) and show that the loss is asymmetric. Taking the limitP → 0 (P > 0), we see that both necessary

conditions contradict the assumption (⋆⋆) asu → θ1 and (⋆⋆) is also true in a neighbourhood of

(θ0,θ1) as the loss is continuously differentiable.

APPENDIX B

GRADIENT OF THE BAYES RISK

In this section, we derive the gradient of the Bayes risk withrespect to an elementγ ∈ P. Using

the gradient is advantageous to solve the optimization problem (11) as gradient descent methods can be
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used. Taking the derivative of BR in (11) with respect toγ, we obtain for the first-order derivative

∂BR
∂γ

=

∫∫

(

∂L(θ,u)

∂u

∣

∣

∣

∣

u=θ̂(x;P)

)T
∂θ̂(x;P)

∂γ
p(θ,x)dθdx.

Using the shorthand notationspλ(θ|x) = p(θ,x)λ/
∫

p(θ,x)λdθ andD = ∂f1
∂z = ξ1I+diag{φ1/z1, . . . , φM/zM}

evaluated atz =
∫

f2(θ,P2)pλ(θ|x)dθ, we obtain

∂θ̂(x;P)

∂ξ1
=

∫

f2(θ,P2)pλ(θ|x)dθ

∂θ̂(x;P)

∂ξ2
= D

∫

θpλ(θ|x)dθ

∂θ̂(x;P)

∂ξ3
= D

∫

eψ◦θpλ(θ|x)dθ

∂θ̂(x;P)

∂λ
= D

(∫

f2(θ;P2) ln (p(θ,x)) pλ(θ|x)dθ

−
∫

f2(θ;P2)pλ(θ|x)dθ
∫

ln (p(θ,x)) pλ(θ|x)dθ
)

∂θ̂(x;P)

∂φ
= diag

{

ln

∣

∣

∣

∣

∫

f2(θ;P2)pλ(θ|x)dθ
∣

∣

∣

∣

}

∂θ̂(x;P)

∂ψ
= ξ3Ddiag

{
∫

θ ◦ eψ◦θpλ(θ|x)dθ
}

Note that all integrals can again be calculated using Monte Carlo integration, especially importance

sampling as was shown in Sec. V.
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