Karim Armanious

M.Sc.

ehem. Wiss. Mitarbeiter

Telefon              0049 711 685-67337

Raum                2.251

E-Mail                Link

 

Adresse            Universität Stuttgart
                         Pfaffenwaldring 47
                         70550 Stuttgart
                         Deutschland

Fachgebiet

Deep Learning / Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) is a new branch of deep learning which was developed recently in 2015. It is being hailed by many field experts as “the next frontier in deep learning” due to its potential in unsupervised learning (learning without labeled data) and its ability to create a common framework for several applications with no hand-crafted loss functions.

In GANs, two networks are pitted against each other and trained jointly. The generator network
acts as a team of counterfeiters trying to generate fake data that resembles the input data without detection. On the other side, the discriminator network is analogous to the police, trying to detect the counterfeit data. Competition drives both networks to improve their methods and learn more about the features of the input data.

GANs have been recently applied successfully in several applications including unsupervised image translation, domain adaptation, image in-painting and semi-supervised classification.

Emphases are:

  • Development and optimization of new GAN algorithms
  • Application of GAN methods for generation, domain-adaptation, and analysis of medical images including MRI, CT, and PET
  • Application of generative frameworks on autonomous driving and acoustic applications

Publikationen

2021

Armanious, K.; Abdulatif, S.; Shi, W.; Salian, S.; Küstner, T., Weiskopf, D., Hepp, T., Gatidis, S. & Yang, B.
Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation 
IEEE Transactions on Medical Imaging, 2021, doi: 10.1109/TMI.2021.3066857.

 

Armanious, K.; Abdulatif, S.; Shi, W.; Hepp, T.; Gatidis, S. & Yang, B.
Uncertainty-Based Biological Age Estimation of Brain MRI Scans
Accepted in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021 . ArXiv pre-print: 2103.08491.

 

Abdulatif, S.; Armanious, K.; Sajeev, J.; Guirguis, K. & Yang, B.
Investigating Cross-Domain Losses for Speech Enhancement
Proceedings of the IEEE European Signal Processing Conference EUSIPCO, 2021 . ArXiv pre-print: 2010.10468.

 

Eskandar, G.; Braun, A.; Meinke, M.; Armanious, K. & Yang, B.
SLPC: a VRNN-based approach for stochastic lidar prediction and completion in autonomous driving
Proceedings of the IEEE European Signal Processing Conference EUSIPCO, 2021 . ArXiv pre-print: 2102.09883.

 

2020

Armanious, K.; Jiang, C.; Fischer, M.; Küstner, T.; Hepp , T. ; Nikolaou, K.; Gatidis, S. & Yang, B.
MedGAN: Medical image translation using GANs
Computerized Medical Imaging and Graphics, Vol. 79, 2020, doi: 10.1016/j.compmedimag.2019.101684.

 

Armanious, K.; Kumar, V.; Abdulatif, S.; Hepp, T.; Gatidis , S. & Yang, B.
ipA-MedGAN: Inpainting of Arbitrary Regions in Medical Imaging 
IEEE International Conference on Image Processing (ICIP), 2020, doi: 10.1109/ICIP40778.2020.9191207.

 

Armanious, K.; Tanwar, A.; Abdulatif, S.; Küstner, T.; Gatidis , S. & Yang, B.
Unsupervised Adversarial Correction of Rigid MR Motion Artifacts 
IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020 , doi: 10.1109/ISBI45749.2020.9098570.

 

Armanious, K.; Hepp, T.; Küstner, T.; Dittmann, H.; Nikolaou, N.; La Fougère, C.; Yang, B. &Gatidis , S.
Independent attenuation correction of whole body [ 18F]FDG-PET using a deep learning approach with Generative Adversarial Networks
European Journal of Nuclear Medicine and Molecular Imaging (EJNMMI) Research, 2020, doi: 10.1186/s13550-020-00644-y.

 

Abdulatif, S.; Armanious, K.; Guirguis, K.; Sajeev, J. & Yang, B.
AeGAN: Time-frequency speech denoising via generative adversarial networks 
Proceedings of the IEEE European Signal Processing Conference EUSIPCO, 2020 doi: 10.23919/Eusipco47968.2020.9287606.

 

Armanious, K.; Abdulatif, S.; Bhaktharaguttu, A.; Küstner, K.; Hepp, T., Gatidis, S. & Yang, B.
Organ-Based Chronological Age  E  stimation  Based on 3D MRI Scans 
Proceedings of the IEEE European Signal Processing Conference EUSIPCO, 2020 doi: 10.23919/Eusipco47968.2020.9287398.

Armanious, K.; Abdulatif, S.; Kumar, V.; Hepp, T.; Yang, B. & Gatidis, S.
Adversarial Inpainting of Arbitrary shapes in Brain MRI
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 2020 .

Abdulatif, S.; Armanious, K.; Bhaktharaguttu, A.; Küstner, T.; Yang, B. & Gatidis, S.
Organ-based estimation of the chronological age based on 3D MRI scans
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 2020 .

Hepp, T.; Armanious, K.; Tanwar, A.; Abdulatif, S.; Küstner, T.; Yang, B. & Gatidis, S.
MoCo Cycle-MedGAN: Unsupervised correction of rigid MR motion artifacts
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 2020 .

 

2019

Armanious, K.; Küstner, T.; Reimold, M.; Nikolaou, K.; La, C. F.; Yang, B. & Gatidis, S.
Independent brain 18F-FDG PET attenuation correction using a deep learning approach with Generative Adversarial Networks.
Hellenic journal of nuclear medicine, 2019

 

Armanious, K.; Küstner, T.; Yang, B. & Gatidis, S.
Adversarial inpainting of MR images using deep adversarial networks
Proceedings of the European Society for Magnetic Resonance in Medicine (ESMRMB), 2019

 

Küstner, T.; Mo, K.; Yang, B.; Schick, F.; Gatidis, S. & Armanious, K.
Retrospective deep learning based motion correction from complex-valued imaging data
Proceedings of the European Society for Magnetic Resonance in Medicine (ESMRMB), 2019
Certificate of Merit Award

 

Armanious, K.; Jiang, C.; Abdulatif, S.; Küstner, T.; Gatidis, S. & Yang, B.
Unsupervised Medical Image Translation Using Cycle-MedGAN
Proceedings of the IEEE European Signal Processing Conference EUSIPCO 2019, A Coruna, Spain, September 2019

 

Liebgott, A.; Hinderer, D.; Armanious, A.; Bartler, A.; Nikolaou, K.; Gatidis, S.; and Yang, B.
Prediction of FDG uptake in Lung Tumors from CT Images Using Generative Adversarial Networks
Proceedings of the IEEE European Signal Processing Conference EUSIPCO 2019, A Coruna, Spain, September 2019
 
Armanious, K.; Abdulatif, S.; Aziz, F.; Schneider, U. & Yang, B.
An Adversarial Super-Resolution Remedy for Radar Design Trade-offs
Proceedings of the IEEE European Signal Processing Conference EUSIPCO 2019, A Coruna, Spain, September 2019

 

Fallah, F; Armanious, K; Yang, B.; Bamberg F.
Spatial and Hierarchical Riemannian Dimensionality Reduction and Dictionary Learning for Segmenting Multichannel Images
Proceedings of the IEEE European Signal Processing Conference EUSIPCO 2019, A Coruna, Spain, September 2019

 

Fallah, F; Armanious, K; Yang, B.; Bamberg F.
Volumetric Surface-guided Graph-based Segmentation of Cardiac Adipose Tissues on Fat-Water MR Images
Proceedings of the IEEE European Signal Processing Conference EUSIPCO 2019, A Coruna, Spain, September 2019

 

Armanious, K.; Gatidis, S.; Nikolaou, K.; Yang, B. & Küstner, T.
Retrospective correction of Rigid and Non-Rigid MR motion artifacts using GANs
Proceedings of the IEEE International Symposium on Biomedical Imaging ISBI 2019, Venice, Italy, 2019
 
Hakobyan, G.; Armanious, K.; Yang, B. 
Interference-Aware Cognitive Radar: A Remedy to the Automotive Interference Problem
IEEE Transactions on Aerospace and Electronic Systems, 2019
 
Armanious, K.; Mecky, Y.; Gatidis, Y.; Yang, B. 
Adversarial Inpainting of Medical Image Modalities
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, England, 2019
 
Abdulatif, S.; Aziz, F.; Armanious, K.; Kleiner, K.; Yang, B.; Schneider, U. 
Person Identification and Body Mass Index: A Deep Learning-Based Study on Micro-Dopplers
Proceedings of the IEEE Radar Conference (RadarConf), Boston, USA, 2019
 
Küstner, T., Yang, B., Schick, F., Gatidis, S. & Armanious, K.
Retrospective motion correction using deep learning.
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), May, Montreal, Canada, 2019.
Magna Cum Laude Paper Award
 
Armanious, K.; Döbler, M.; Yang, B.; Gatidis, S. 
Generation of globally consistent non-confidential MRI data using deep generative adversarial networks
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), May, Montreal, Canada, 2019.
 
Küstner, T.; Armanious, K.; Yang, J.; Yang, B.; Schick, F. & Gatidis, S.
Retrospective correction of motion-affected MR images using deep learning frameworks
Magnetic Resonance in Medicine, 2019

 

Abdulatif, S.; Armanious, K.; Aziz, F.; Schneider, U. & Yang, B.
Towards Adversarial Denoising of Radar Micro-Doppler Signatures
Proceedings of the IEEE International Radar Conference Radar 2019, Toulon, France, 2019

 

2018

 

Armanious, K.; Küstner, T.; Yang, B.; Gatidis, S. 
Restoration of motion-corrupted MR images using Deep Adversarial Networks
Proceedings of the Annual Meeting RSNA, November 2018, Chicago, USA.

 

Armanious, K.; Fischer, K.; Yang, B.; Gatidis, S. 
Independent PET Attenuation Correction using Conditional Generative Adversarial Networks
Proceedings of the Annual Meeting RSNA, November 2018, Chicago, USA.
Zum Seitenanfang