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Topography Mapping of Whole Body Adipose
Tissue Using A Fully Automated and
Standardized Procedure

Christian Würslin, Dipl-Ing,1,2* Jürgen Machann, Dipl-Phys,1 Hansjörg Rempp, MD,1

Claus Claussen, MD,3 Bin Yang, PhD,2 and Fritz Schick, MD, PhD1

Purpose: To obtain quantitative measures of human body
fat compartments from whole body MR datasets for the
risk estimation in subjects prone to metabolic diseases
without the need of any user interaction or expert
knowledge.

Materials and Methods: Sets of axial T1-weighted spin-
echo images of the whole body were acquired. The images
were segmented using a modified fuzzy c-means algo-
rithm. A separation of the body into anatomic regions
along the body axis was performed to define regions with
visceral adipose tissue present, and to standardize the
results. In abdominal image slices, the adipose tissue
compartments were divided into subcutaneous and vis-
ceral compartments using an extended snake algorithm.
The slice-wise areas of different tissues were plotted along
the slice position to obtain topographic fat tissue
distributions.

Results: Results from automatic segmentation were
compared with manual segmentation. Relatively low
mean deviations were obtained for the class of total tis-
sue (4.48%) and visceral adipose tissue (3.26%). The
deviation of total adipose tissue was slightly higher
(8.71%).

Conclusion: The proposed algorithm enables the reliable
and completely automatic creation of adipose tissue dis-
tribution profiles of the whole body from multislice MR
datasets, reducing whole examination and analysis time
to less than half an hour.
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sue; automatic image segmentation; metabolism; whole
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OBESITY AND OVERWEIGHT are the emerging health
problems of the past decades, not only in the Western
world, but on a worldwide scale (1,2). However, not
only the amount of total adipose tissue (TAT), but also
its distribution and composition is of special impor-
tance in the pathogenesis of the concomitant diseases
such as metabolic syndrome, type II diabetes, or coro-
nary heart disease (3–7). Especially the two chemi-
cally almost identical, but morphologically and func-
tionally different types of subcutaneous adipose
tissue (SCAT) and visceral adipose tissue (VAT) have
been reported to be of special interest (8,9). Further-
more, a strong correlation between the amount of adi-
pose tissue (AT) in the neck and insulin resistance
has been shown (10). Thus, methods for fast and
accurate quantification of different AT compartments
are desirable to improve the prediction of the risk for
the occurrence of related diseases or to monitor life-
style interventions.

Common techniques for quantification of body fat
mass as body impedance analysis or underwater
weighing (11) only provide information about the total
amount of AT. Other anthropometric methods for the
quantitative assessment of local fat, such as measure-
ment of skin-fold thickness, waist circumference or
waist-to-hip ratio, provide a simple and useful estima-
tion of the proportion of abdominal fat, but are also
unable to precisely distinguish between VAT and
SCAT (12). MRI enables a reliable quantification of
whole body AT as well as the distinction of different
compartments (13,14).

A standardized whole body AT assessment proce-
dure, which is able to show the distribution of all rele-
vant AT compartments as well as the amount of total
tissue (TT) in the body, has been proposed (15). How-
ever, the manual segmentation of these images is time
consuming and requires the attention of an expert.
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Thus, it is desirable to automate this task. Methods
for automatic quantification of abdominal AT distribu-
tions, distinguishing SCAT and VAT, have been
described (16–18). However, none of these approaches
is suited for evaluation of image slices of the whole
body. A novel procedure, dividing the body into ana-
tomic regions and creating standardized tissue pro-
files in each one of them, is proposed in this study.

MATERIALS AND METHODS

MR Data Acquisition

According to Machann et al (15), the images were
acquired on a clinical 1.5 Tesla (T) whole body scan-
ner (Magnetom Sonata, Siemens Medical Solutions,
Erlangen, Germany). During examination, the volun-
teers were in the prone position with arms extended.
A T1-weighted fast spin echo technique with an echo
train length of 7 was applied, using TE ¼ 12 ms, TR ¼
490 ms, slice thickness 10 mm, 5 slices per sequence,
and 10-mm gap between slices. Field of view was 450
mm to 530 mm, depending on the volunteer’s exten-
sion. Images with a 256 � 178 matrix were recorded,
resulting in a voxel size of approximately 2 mm � 2
mm � 10 mm. Measuring time per sequence was
12 s, allowing breathhold examinations in abdominal
and thorax regions. Data were collected from fingers
to toes using the scanner’s receive/transmit body coil.
The given slice thickness and slice spacing resulted in
100 to 130 axial image slices per subject, depending
on the volunteer’s height. Total examination time was
20 min to 25 min.

The application of a standard fast spin echo
sequence on the one hand enables a wide spread use
of the proposed procedure, because this type of
sequence should be available on any MR system. On
the other hand, the SE technique allows compensa-
tion for inhomogeneities in the B0 field without the
need of any field shimming before image acquisition.
Because the amount of TT is also subject to the evalu-
ation procedure, a fat-only excited sequence was not
used.

Fuzzy Clustering

Typical gray value histograms of T1-weighted MR
images show three maxima. These correspond to the
three prevailing classes background (BG) at the lower
end of signal intensity, lean tissue (LT), having inter-
mediate intensities and AT, having high intensity
values (see Fig. 1). The notches in between these max-
ima are not empty, but populated with image ele-
ments with an intermediate intensity. These inten-
sities are on the one hand caused by intensity
nonuniformities (due to spatial coil characteristics
and inhomogeneities of B0 and B1) and on the other
hand by partial volume effects. The effects of an inho-
mogeneous B0 field could be reduced by using a spin
echo sequence, however, partial volume effects are
particularly strong when using a low spatial resolu-
tion as in this case.

The first step in segmenting the acquired images
into the desired compartments is to distinguish
between these three classes by dividing the image his-
togram into three regions (see Fig. 1). It has been
shown, that the so-called fuzzy c-means (FCM) algo-
rithm delivers good results when segmenting MR
images according to brightness (19,20). Considering
an image function I(x, y), assigning a scalar gray value
(brightness) to each image coordinate (x, y)T, the cost
function of the FCM algorithm is given by:

JFCM ¼
X
x

X
y

XC
k¼1

Pm
k ðx ;yÞðIðx ;yÞ � vkÞ2: ½1�

In this context, C is the number of clusters to be
used, Pk(x, y) is the probability of the pixel at position
(x, y)T to belong to cluster k (k [ [1..C]), vk is the cent-
roid of class k and m is the so-called fuzziness and
controls the blending of the membership probabilities.
In this implementation, we chose C ¼ 3 (the three in-
tensity classes mentioned above) and m ¼ 2. The cost
function JFCM is roughly a measure for the amount of
image elements, which are still assigned to the wrong
class. Thus, it is desired to minimize JFCM which is
archived iteratively by recomputing the cluster cent-
roids vk and membership probabilities Pk alternately,
using Eqs. [2] and [3].

Pkðx ;yÞ ¼ jIðx ;yÞ � vk j�2=ðm�1ÞP
C
k¼1jIðx ;yÞ � vk j�2=ðm�1Þ ½2�

vk ¼
P

x

P
y½Pkðx ;yÞ�mIðx ;yÞP

x

P
y½Pkðx ;yÞ�m ½3�

Although this fuzzy approach is widely used in the
segmentation of MR images, the final results of Pk are
usually used to create binary (hard) membership
masks, by assigning each image element completely
to the class k with the highest membership value Pk

(maximum membership hard clustering). These hard
masks will also be needed in some subsequent steps
of the proposed algorithm and are denoted by M1, M2,
and M3. In the given application, however, the resolu-
tion of the axial image slices is relatively coarse and
especially the slice thickness of 10 mm contributes to
a high amount of partial volume effects. This applies
especially to the transitions of AT and LT areas in ab-
dominal areas. The proposed algorithm therefore uses
the fuzzy membership values Pk for the creation of
the final adipose tissue profiles. Thus, the fuzzy mem-
bership values are directly used as estimation for the

Figure 1. Typical histogram of a T1-weighted image and
suggested division into three brightness classes.
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contribution of different tissue types to one image ele-
ment. However, these fuzzy membership values need
to be corrected with respect to two phenomena, which
cause irrational results in the given application, which
will be described in the following.

Assuming that an FCM algorithm with C ¼ 3 con-
verges, yielding cluster centroids v1 ¼ 0.1, v2 ¼ 0.5
and v3 ¼ 0.8 (brightness values normalized to funda-

mental range [0..1]), then Figure 2a shows the corre-
sponding plots of the three membership probability
functions P1, P2, and P3 versus intensity. Due to the
normalization term in the denominator of Eq. [2], the
membership probabilities sum up to 1 for all intensity
values. However, this causes, for example, the mem-
bership probability P3 (AT class) of a very bright pixel
(I(x, y) > v3) to decrease again. The value of P3 even
decreases more, the higher the intensity I(x, y) gets
(see right end of the dashed-dotted line in Fig. 2a).
This behavior is undesired in the given application,
which is why all these irrational segments of P1, P2,
and P3 are corrected, resulting in the membership
probabilities, shown in Figure 2b.

The second phenomenon is the direct transition
from AT to BG areas. Image elements with partial vol-
ume effects are classified as LT by a standard FCM
algorithm due to their intermediate brightness. These
transitions are mostly found at the body contour,
where SCAT areas and the surrounding air converge.
Thus, the proposed algorithm corrects the regions
near the body surface by setting P2 ¼ 0 before nor-
malization of the probabilities. The result of this modi-
fied FCM clustering, applied to the image in Figure 3a
can be seen in Figure 3b.

Body Division

To standardize the fat tissue profiles along the body
axis, it is essential to accurately divide the body into

Figure 3. Demonstration of algo-
rithm steps on abdominal image
slice: original image (a), result
of modified FCM algorithm (AT
red, LT green, BG black; b), initial
contour of snake algorithm and
balloon forces (c), external energy
field for snake algorithm (polar
edge map; d), process of snake
evolution from outer (red) to
inner SCAT border (yellow; e),
and final segmentation result
(VAT yellow; f).

Figure 2. Class membership versus intensity after normal
FCM algorithm (a) and after correction (b).
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anatomic regions. These regions are the lower extrem-
ities, trunk, and upper extremities (including the
head). The boundaries of these regions are the
shoulder and hip joints. Furthermore, for the stand-
ardization, the lower and upper borders of the body
profiles are cropped to heels and wrists. The following
sections explain how the whole MR dataset is divided
into these anatomic regions and how the area, con-
taining VAT was defined.

Detection of Wrist and Heel

To detect wrist and heel, a preliminary TT profile is
used. This profile is obtained by plotting the slice-
wise sum of P2 and P3 against the slice index z. The
first local maximum as seen from the lower end of
this TT profile is considered the image slice containing
the heel. Similarly, the first local minimum as seen
from the upper end is considered the wrist slice. An
exemplary profile and the mentioned points are shown
in Figure 4.

Detection of Head End

The end of the head is detected to get a good estimate
of the volunteer’s height. This estimation would be
inaccurate if just detecting the wrist and heel, due to
a varying bending of the elbow. The head end slice
was defined as the first slice in the upper body half,
no longer containing three but only two objects. The
number of objects is obtained by considering all
unconnected, black areas in M1 as independent
objects. Furthermore, all objects counting less than
200 pixels are disregarded. This step helps to find
good estimates for the position of hip and shoulders,
thus speeding up the subsequent step.

Detecting Hip and Shoulders

The hip- and shoulder-joints can be detected by pars-
ing the images for the characteristic pattern, created

by the heads of femur and humerus in axial images.
In T1-weighted MR images, because of the high per-
centage of AT in the long bones of adults, they appear
as two circular areas of a certain size and distance
(see Fig. 5). Axial radii of caput humeri and caput
femori and their distances were manually measured
in 10 randomly chosen datasets (5 female, 5 male) to
receive a valid target area. Mean values and standard
deviation of these measures were calculated to r ¼
20.8 6 2.2 mm for the radii, dCF ¼ 188.7 6 8.3 mm
for the distance between the caput femori and dCH ¼
295.8 6 15.8 mm for the distance between the caput
humeri.

Because of the assumption made above, the hard
AT mask M3 is parsed for circular areas. The circular-
ity r of an object is calculated by considering the dis-
tance d of the object’s border pixels to its centroid as
a random variable and dividing the variable’s mean
value md by its standard deviation sd:

r ¼ md

sd
½4�

For this application, a circularity threshold of 6.7
was empirically chosen to separate irregular from cir-
cular objects. Hip and shoulder slices are supposed to
be detected, when two such circular objects are found
with values for radii and distances not more than
three times the standard deviation from the mean of
the corresponding empirically determined values
given above.

In cases where such circular objects are found in
two adjacent slices (e.g., a joint has been cut twice)
the slice with the greater radii is chosen to get the z-
position nearest to the center of the joint. Due to the
slice spacing of 10 mm and slice thickness of 10 mm,
in a worst case scenario, the hip and shoulder joints
will be found 10 mm away from their actual center.

Defining VAT Area

It is essential for the algorithm to know about the
body regions in which inner AT compartments have to
be separated and counted as VAT. Anatomically, this
region was defined as the area reaching from the hip
to the lower end of the heart. The lower end of this
region is already well defined by the hip slice,
obtained in the previous step. Due to the large
amount of motion artifacts in the heart area, an auto-
matic detection of the lower heart end was omitted.
Instead, this upper margin of the VAT area is calcu-
lated, using an empirically determined index. This

Figure 4. Preliminary total tissue (TT) profile and determina-
tion of wrist and heel positions.

Figure 5. Image slices showing
heads of femurs (a) and heads of
humeri (b). The white lines indi-
cate circular objects found by the
algorithm.
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index expresses the upper end of the VAT area as a
fraction of the distance between the femoral head and
the head of the humerus. This fraction was empiri-
cally determined to 0.66 from a cohort of 22 datasets
(s ¼ 0.04).

Body Mask Creation

The purpose of this step is to separate the back-
ground from objects belonging to the body. As there
are also signal-free areas inside the body (e.g., lungs),
simply using the inverse of mask M1 is not sufficient.
However, M1 is used as starting point for the creation
of the body mask.

M1 contains all pixels, with brightness close to zero,
thus representing signal-free areas. To exclude signal-
free areas inside the body from the body mask all,
unconnected areas in M1 which are not connected to
the upper left corner of the image are deleted. The
inversion of this mask contains all body objects and
is referred to as the body mask in the following.

However, special care has to be taken in the thorax
area, where images were usually corrupted by a con-
siderable amount of motion artifacts, caused by the
beating heart. To eliminate these small objects outside
of the body, all objects with an area less than 400 pix-
els (�16 cm2) are deleted from the body mask. The sit-
uation is more complicated, if the misclassified arti-
facts are connected to the main body object. To get rid
of these undesired extensions, a morphologic opening
with a circular kernel with a radius of 20 pixels is
applied to the body mask.

Dividing SCAT and VAT

To obtain the desired tissue profiles, the AT compart-
ments found in the abdominal area have to be divided
into the classes SCAT and VAT. Procedures to auto-
matically separate these compartments have been
proposed (16–18). In Liou et al (17), the separation is
implemented using an elliptical fit of the inner SCAT
contour and morphologic operations, while consider-
ing the anatomic properties of the different SCAT sec-
tions to get an accurate division of SCAT and VAT. In
Kullberg et al (18), a gradient magnitude map is used
in combination with an orthogonal convex hull tool
and morphologic operations. The most versatile
approach is presented in Positano et al (16), using so-
called snakes, active contours which are able to lock
onto image features such as edges, while obeying ad-
justable constraints to the contour shape. In the fol-
lowing, a two-staged version of this approach is pre-
sented, speeding up the separation procedure. It uses
an extended snake algorithm with balloon forces (21),
which is explained in the following.

Snake Algorithm

Snakes have first been introduced by Kaas et al (22),
providing a tool to trace object contours even if sub-
jective or discontinuous. These snakes, which can be
considered a two-dimensional (2D) function v(s) ¼
(x(s), y(s))T over a curve index s (or vi ¼ (xi, yi)

T, i ¼

[1. . .N] for the discrete case), iteratively adapt to image
features by seeking a local minimum of the energy
function:

Esnake ¼
Z1
0

EintðvðsÞÞ þ EextðvðsÞÞ ds: ½5�

Here, Eext is an external energy which can be
derived from any image feature, such as edges or
lines. The internal energy Eint provides smoothness
constraints to the snakes by defining:

Eint ¼ 1

2
a
dvðsÞ
ds

����
����þ b

d2vðsÞ
ds2

����
����
2

 !
: ½6�

The first term, weighted with parameter a makes
the snake behave like a membrane, the second term,
weighted with parameter b causes the snake to
behave like a thin plate. By adjusting parameters a
and b, the snake algorithm can be adapted to the
given application.

To solve the minimization problem of Esnake, an iter-
ative ‘‘evolution’’ of the snake is proposed by Kass et
al. (22) by using the following equations:1

xtþ1 ¼ ðAþ gIÞ�1ðgxt þ f x ðxt ; ytÞÞ
ytþ1 ¼ ðAþ gIÞ�1ðgyt þ f yðxt ; ytÞÞ

½7�

Here, vectors x and y (with iteration index t and t þ
1, respectively) contain the x- and y- components of
the i-th sampling point of a discrete snake contour vi.
A is a pentadiagonal matrix containing functions of
the internal energy parameters a and b, thus repre-
senting the snake’s internal energy (see (22) for
details) and I is the identity matrix. Parameter g is a
step size parameter. Vectors fx and fy contain the x-
and y- components of the external energy for each
snake point and are calculated as fx(i) ¼ qEext/qxi and
fy(i) ¼ qEext/qyi.

One major drawback of this method is that, unless
the initial snake contour is chosen close to the desired
contour (local minimum), the algorithm will either not
find the desired contour or need a large number of
iterations to find it. This is mostly due to the fact,
that places far from the desired image features are
likely to be force-free (fx, fy � 0).

To overcome this problem one could use a
smoothed version of the energy field Eext, by applying
a Gaussian lowpass. This, however, brings along the
disadvantage of losing precise spatial information. A
so-called Gradient Vector Flow (GVF) is introduced by
Xu (23), which extends the snake’s capture range sig-
nificantly. However, the computation of the GVF is a
minimization problem itself and computationally very
expensive.

1The sign of fx and fy is negative in the original formulation in Kaas et al
(22). The positive formulation in this study was chosen with respect to
the usual representation of image edge maps, in which edges are repre-
sented by high (bright) values and snake points are supposed to be
attracted by them.
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If it can be granted that the snake is initialized on
the outside of the desired contour, parameter a can
be increased, which gives the snake the tendency of
closing in even in areas free of external forces. How-
ever, increasing a also reduces the snake’s ability of
growing into concave structures, which can be seen in
Figure 6a.

The idea of balloon snakes is the application of an
additional force, pointing inward the closed contour
for each contour point. This force is directed orthogo-
nal to the contour’s tangent vector at position i, in
which the tangent vector ti is approximated by the dif-
ference of the adjacent snake points ti ¼ viþ1-vi-1. So
the normalized orthogonal force at position i can be
expressed by:

ni ¼ 1

jti j
0 1
�1 0

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

R

ti ; ½8�

where R is a matrix, rotating ti by 90� and the factor
1/|ti| normalizes the force vector. The calculation of
vector ni is visualized in Figure 7. Finally, this force
vector is considered when evolving the snake, by mul-

tiplying it with a weighting parameter n and adding it
to Eq. [7], resulting in

xtþ1 ¼ ðAþ gIÞ�1ðgxt þ f x ðxt ; ytÞ þ vnx Þ
ytþ1 ¼ ðAþ gIÞ�1ðgyt þ f yðxt ; ytÞ þ vnyÞ:

½9�

Here, nx and ny contain the x- and y- components
of n for each snake point. Due to the additive nature
and the easy calculation of n, computation time is not
significantly increased compared with the original
snake approach. A comparison in the evolution of a
conventional and a balloon snake algorithm is shown
in Figure 6.

VAT Separation

As mentioned above, the balloon snake algorithm
needs to be initialized outside the desired contour.
This can be guaranteed by using the border of the
body mask, obtained earlier. The first stage in
the snake evolution is designed to quickly step over
the bright SCAT ring and coarsely trace its the inner
contour. It uses the balloon snake algorithm and rela-
tively large values for the smoothness constraints a
and b. The AT probability mask P3 is used as external
energy field Eext. This causes homogeneous areas,
such as the SCAT ring to be predominantly force-free.
On the inner edge of the SCAT area, the transition
from bright to dark intensity creates force vectors fx
and fy, pointing opposed to the orthonormal vectors
nx and ny, thus bringing the snake evolution to an
end.

In the second step, an ordinary snake algorithm (n
¼ 0) is used, this time with relatively small values of a
and b, enabling the snake to accurately lock on to the
edge, separating SCAT and inner tissues. Special care
has been taken in choosing an external force for this
evolution step. This time, the exact edge positions
shall be found. To solve this problem, the image is
usually filtered with an edge enhancement filter, such
as a Laplacian filter, resulting in high intensity values
at image edges and values close to zero in homogene-
ous areas. In this application, the desired edge is a
bright-to-dark transition from the outside to the cen-
ter of the image. Thus, it is desirable to only lock onto
edges in this direction. A so-called polar edge map is
used, containing only these edges, while canceling out

Figure 6. Comparison of evolution of a normal snake (a) and
evolution of balloon snake (b).

Figure 7. Computation of the additional balloon force in
then balloon snake algorithm.
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transitions in the opposite direction. This radial edge
map can be computed, using:

Eextðx ;yÞ ¼ 1

2
ðjrsðx ;yÞj þ pðx ;yÞ � rsðx ;yÞÞ ½10�

where p(x, y) is a vector, pointing away from the image
center at all positions (x, y)T and |p(x, y)| ¼ 1. Edges,
orthogonal to vector p(x, y) are still considered, but
only have half the magnitude of radial bright-to-dark
transitions, while image edges opposed to p(x, y) are
canceled out.

The number of snake points used is determined by
a desired minimum inter-point distance of the snake
points. Whenever the distance between two adjacent
snake points gets below this value (due to snake evo-
lution) one of the points is removed. This value was
chosen to one pixel (approximately 2 mm for the given
field of view and image resolution), resulting in inter-
point distances between 1 and 2 pixels. The complete
list of values of the snake evolution parameters for
both steps can be found in Table 1.

Quantifying SCAT of the Neck

Recently, a high correlation between the amount of
SCAT in the neck and insulin sensitivity has been
shown (10). As an estimation for the total amount of
this AT compartment, the posterior SCAT in the
shoulder slice, deliminated by the heads of the left
and right humerus can be used. To divide SCAT from
inner AT components, the same procedure as used to
separate SCAT and VAT in the abdomen is used. The
heads of the left and right humerus are detected in
the body division step.

Bone Marrow

Bone marrow (BM) is not especially regarded in the
proposed algorithm and included in the amount of
total AT and VAT. In some applications this might not
be desirable, because BM is functionally different
from most other AT compartments. However, using
the proposed algorithm, the class of VAT is usually
not affected by BM because the BM in the trunk is
quite dark and not detected as AT by the FCM algo-
rithm. In the extremities, the bright BM is detected as
AT and contributes to the amount of total AT. How-
ever, this behavior was not considered significant,
because the amount of BM in the extremities is very
similar for different volunteers and only scales slightly
with the volunteer’s height.

Profile Creation and Standardization

To obtain the desired tissue profiles, in each image
slice the probabilities P1, P2 and P3 are accumulated
across all image coordinates (x, y)T, multiplied by
the in-plane pixel dimension and plotted against the
slice index z. To standardize these profiles, they are
piecewise linear interpolated in the three sections
lower extremities (70 sampling points), trunk (50 sam-
pling points), and upper extremities (40 sampling
points).

Evaluation Procedure

For quantitative analysis of the suggested algorithm,
the automatically obtained tissue profiles of 20 volun-
teers with body mass index (BMI) range 18.5 to 40.4
(m ¼ 28.4 6 7.1 kg/m2) were compared with manually
obtained profiles. The manual profiles were obtained
using a semiautomatic procedure consisting of
thresholding the images at two different intensity lev-
els (to separate BG, LT, and AT) and drawing regions
of interest to separate SCAT and VAT in abdominal
areas.

To evaluate the algorithm’s repetition accuracy,
three volunteers (23.1 < BMI < 32.8) were measured
twice, the second time after repositioning and new
adjustment of the scanner. The algorithm was per-
formed on both datasets of the corresponding volun-
teers and the resulting standardized profiles
compared.

For each dataset and tissue class, two figures were
extracted. The first one is the mean over all image sli-
ces of the slice-wise absolute tissue area difference,
expressed as percentage of the amount of manually
obtained area of total tissue in that slice:

jDAj ¼ 1

N

XN
z¼1

jAaðzÞ � AmðzÞj
ATT;mðzÞ ; ½11�

where z is the slice index and N the number of image
slices in one dataset (subscript index ‘‘TT’’ refers to
tissue class, indices ‘‘m’’ and ‘‘a’’ to manual and auto-
matic). This value can be considered a measure of the
algorithm’s absolute accuracy. The second figure is
calculated in the same way as the first, except, that it
uses simple differences rather than absolute ones.
Thus it is calculated by:

DA ¼ 1

N

XN
z¼1

AaðzÞ � AmðzÞ
ATT;mðzÞ : ½12�

This value does not represent the algorithms accu-
racy because positive and negative values might can-
cel out each other. However, it is a good estimator of
whether the algorithm tends to overestimate (positive
values) or underestimate (negative values) a certain
tissue class. In the repetition accuracy study, only the
first one of these values was calculated because there
was no gold standard.

Table 1

Parameters of the Two-Stage Snake Algorithm

a b g n

1st step 0.25 0.5 0.7 0.2

2nd step 0.07 0.05 1 0
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RESULTS

The automatic segmentation algorithm was imple-
mented on a standard mobile computer (Core 2 Duo,
2 GHz, 2 GB RAM) using MATLAB (The MathWorks,
Inc). Total segmentation time was 76.1 6 6.6 s per
dataset (105 6 5.5 image slices per dataset).

Structures, delimiting the anatomic regions accord-
ing to section Body Division (heels, hip, shoulders,
and wrists) were reliably detected in all volunteers,
even if the subject was located slightly tilted in the
scanner.

In 9 of 373 abdominal slices (2.41%), in which the
VAT area was determined, the snake algorithm partly
failed to detect the desired border. This occurred
exclusively in very skinny volunteers, where the SCAT
ring was very thin.

A plot, comparing the automatically and manually
obtained tissue profiles of one volunteer is shown in
Figure 8. The dashed lines correspond to the man-
ually obtained profiles, solid lines to the automatically
obtained profiles. In Figure 9, the differences between
two corresponding lines (e.g., the difference between
manually and automatically obtained profiles for each
tissue class) are plotted for the same dataset.

In Figure 10a, the mean absolute difference values
of all tissue classes and all 20 volunteers (calculated
using equation 11) are shown are plotted against BMI.
These values vary in between 2.62% and 9.41% for

TT, 4.64% and 14.20% for total AT (TAT) and 1.18%
and 7.13% for VAT. In Table 2, the average of these
values are given for four different BMI classes (nor-
mal, overweight, obese I, and obese II/III).

Figure 10b, shows a plot very similar to Figure 10a.
However, this time the mean difference values (calcu-
lated using equation 12) are shown. These values vary
in between �1.12% and 8.77% for TT, 3.90% and
14.20% for TAT, and 1.13% and 7.13% for VAT. Table
3 shows the average of these values, again for four
different BMI classes.

A comparison of the automatically and manually
obtained areas of AT in the neck (shoulder slice)
showed a good correlation, with a mean absolute dif-
ference of 4.20%, expressed as percentage of the man-
ually obtained area.

By measuring three volunteers twice, a very good
repetition accuracy could be proved. Especially the
class of VAT showed a very low mean absolute devia-
tion value between measurements of only 1.13%. The
class of TT showed a mean absolute deviation of
3.08% and the class of TAT a mean absolute deviation
of 1.48%. The deviation values for all three volunteers
can be found in Table 4. An inspection of the tissue
profiles of this repetition study showed, that the high
deviation value of the TT class was mainly caused by
the strong motion artifacts in the thorax area.

Figure 8. Comparison of manually (dashed lines) and auto-
matically (solid lines) obtained tissue profiles. TT, total tis-
sue; TAT, total adipose tissue; VAT, visceral adipose tissue.

Figure 9. Difference between automatically and manually
obtained tissue profiles in Figure 8 for classes total tissue
(TT), total adipose tissue (TAT) and visceral adipose tissue
(VAT).

Figure 10. Values of mean absolute difference (a) and mean difference (b) of in-slice tissue area for classes total tissue (TT),
total adipose tissue (TAT), and visceral adipose tissue (VAT) for all 20 datasets plotted versus BMI.
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DISCUSSION

Due to the increasing world-wide occurrence of obe-
sity and of the resulting complications, such as type II
diabetes or coronary complications (1,2), methods for
monitoring AT in the body are of increasing impor-
tance. In this, the total amount of AT without consid-
ering the location in the body seems to be less prom-
ising in the prediction of metabolic complications,
than the precise distinction of specific compartments,
such as SCAT, VAT, and AT in the neck and its spatial
distribution (3–10). By using MRI, these compart-
ments can be assessed and used to create standar-
dized tissue profiles of the whole body, while avoiding
the use of ionizing radiation (13–15). To reduce the
time and personnel needed for the segmentation of
appropriate MR datasets, this study proposes an inte-
grated method for standardized and region-depended
assessment of AT volumes.

The primary goal of the proposed algorithm is to
work completely without any user interaction, creat-
ing the need of a robust routine. The most challenging
step is the division of the body into anatomic regions,
which succeeded for all volunteers in the study. Also,
the separation of SCAT and VAT, using a modified
snake algorithm achieved the desired results in
97.59% of all cases, which is also an indicator for the
robustness of the method.

The automatically obtained TT profiles showed good
correlation with those, obtained manually (overall
mean absolute difference 4.48%). The TT profiles
showed the strongest deviation in the thorax area,
where images were heavily corrupted by motion arti-
facts caused by the heart. The mean absolute differ-
ences was significantly above average for the BMI
class of normal weight persons (5.63%) and below av-
erage for the three remaining classes. The correlation
between BMI and mean absolute differences was cal-
culated to r ¼ �0.49, indicating a tendency to higher
deviation values for lower BMI values. The overall
mean difference value of 2.07% shows that the algo-

rithm tends to slightly overestimate the amount of TT.
Again, this behavior was stronger for the class of nor-
mal weight volunteers, whereas for the two classes of
obese volunteers, a tendency was hardly recognizable.

The TAT profiles showed a higher overall mean
absolute difference of 8.7%. Here, the automatically
obtained amount of TAT was usually higher in the
extremities and significantly higher in feet and hands,
as bone marrow was mainly considered as AT by the
algorithm. However, due to the cropping to the area in
between heels and wrists, feet and hands do not con-
tribute to final, standardized profiles. The amount of
TAT was usually obtained accurately in abdominal sli-
ces. However, motion artifacts in the thorax area
made an accurate tissue profiling difficult. The corre-
lation between BMI and mean absolute differences, as
well as mean differences was very low, indicating a
similar behavior for all BMI classes. Generally, the
mean difference values were very close to those of the
mean absolute differences, indicating the algorithm’s
tendency to overestimate the amount of TAT com-
pared with manual segmentation for all BMI classes.

The VAT profiles showed a lower overall mean abso-
lute difference than TAT (3.28%). Just like for TT, this
value was above average for the class of normal
weight volunteers (4.52%) and below average for all
other classes. The values of the mean differences
again show that the algorithm tends to overestimate
the amount of VAT in a vast majority of cases (overall
3.21% overestimation).

A visual inspection of the segmented images showed
that the overestimation of VAT in the class of normal
weight volunteers was mainly caused by the lack of a
significant amount of AT in the abdominal area. This
causes the FCM-algorithm to detect the bone marrow
of pelvis and spine (which is slightly brighter than
surrounding LT, but usually detected as LT in obese
volunteers) to be detected as VAT. In very lean sub-
jects (BMI < 20), even parts of the liver were detected
as VAT due to the lack of AT present.

The amount of AT in the neck, which has been
shown to be an important and reliable indicator for

Table 3

Mean Values of In-slice Differences Between Manually and

Automatically Obtained Tissue Areas for Different BMI Classes

BMI group [kg/m2] DATT [%] DATAT [%] DAVAT [%]

18–24.9 3.94 8.71 4.61

25–29.9 1.75 8.34 1.82

30–34.9 0.05 7.13 2.46

35–40.5 0.54 7.64 2.54

Overall 2.07 8.13 3.21

Table 4

Comparison of Automatically Obtained, Standardized In-slice Tissue Areas After Repositioning

Volunteer BMI DATTj j [%] DATATj j [%] DAVATj j [%]

1 23.1 2.51% 1.31% 1.35%

2 27.8 4.08% 1.70% 0.75%

3 32.8 2.66% 1.44% 1.29%

Overall 3.08% 1.48% 1.13%

Table 2

Mean Values of In-slice Absolute Differences Between Manually

and Automatically Obtained Tissue Areas for Different BMI Classes

BMI group [kg/m2] DATTj j [%] DATATj j [%] DAVATj j [%]

18–24.9 5.63 9.12 4.61

25–29.9 3.90 8.73 2.10

30–34.9 3.16 7.97 2.53

35–40.5 3.91 8.50 2.70

Overall 4.48 8.71 3.26
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the prediction of insulin resistance was quantified
with a high accuracy.

In conclusion, this study proposes a robust, auto-
matic segmentation method with a high repetition ac-
curacy, supplying standardized whole body AT pro-
files and additional, meaningful measures for
metabolism risk indication and intervention monitor-
ing. The proposed algorithm is capable of reducing
the total examination time to less than 30 min.
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