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Abstract- Blind source separation (BSS) has recently become 
an area of prime interest. Conventional adaptive source 

separation systems use a training sequence to estimate and 
separate sources with the help of predefined optimization criteria. 
In BSS, the key idea is to use the data statistics to get apriori 

knowledge and thus separate the sources blindly. Two important 
approaches to this regime are the maximum likelihood (ML) 
estimation and higher-order statistical (HOS) estimation. This 

paper presents the BSS problem in separating sources for a dual 
antenna communication system using the aforementioned 
algorithms. It has been shown that ML estimation outperforms 

HOS estimation for a wireless medium with noisy data 
transmission.  

I. INTRODUCTION 

In signal processing, communications and controls, blind 

source separation is generally based on a wide class of 

unsupervised learning and filtering algorithms and it founds 

potential applications in many areas of engineering. Typically 

three unsupervised learning algorithms form the basis of BSS 

problem as formulated by Haykin in [1]. One of the most 

commonly used in signal processing area is the instantaneous 

BSS problem also known as independent component analysis 

(ICA). In ICA, a set of n unknown sources, si i Є 1,2,...,n, are 

linearly mixed in an unknown environment to produce an n-by-

1 observation vector x such that 

 

x = As                                          (1) 

where 

s = [ s1,  s2 , . . . , sn]
T
 

x = [ x1, x2 , . . .  , xn]
T 

 

and A is a nonsingular mixing matrix of dimension n-by-n. i.e. 

the number of observed signals is equal to that of number of 

sources. The solution to this problem is feasible, under certain 

conditions, except for an arbitrary scaling and permutation. In 

other words, given observed vector x, it is possible to find a 

demixing matrix W defined ideally as follows: 

 

y = Wx = WAs = DPs           (2) 

 

where y is the output signal vector, D is nonsingular diagonal 

matrix and P is a permutation matrix. An illustration of the 

process can be given in Figure 1.  

 
Fig. 1 Illustration of the basic BSS problem 

 

For the given ICA model to be estimated, there are certain 

restrictions that should be taken into account. i.e., the source 

signal si are assumed statistically independent and they must 

have nongaussian distributions. At most one of the sources can 

be Gaussian. Throughout this paper, we also assume that the 

unknown mixing matrix is square. 

A variety of successful algorithms have been developed for 

above and related source separation applications. An important 

application of BSS is in speech processing, where multiple 

observations from microphones located at different room 

locations have to be separated. This process is blind because 

we have no apriori knowledge about the measured 

observations. Thus using data statistics, people have devised 

algorithms, which separate the sources. Another important 

application is the separation of wireless signals in multiple 

antenna systems, where signals received from each antenna 

have first to be separated for each user. Many algorithms uses 

time domain analysis [2] while some uses the time-frequency 

domain approach to solve this problem [3]. A very popular 

approach for estimating the source components is maximum 

likelihood (ML) approach [4-7]. An interpretation of ML 

estimation is that we take those parameter values as estimates 

that give the highest probability for the observations. Another 

important algorithm is Kurtosis maximization which includes 

higher order statistics of the data [1,4]. Using kurtosis we 

devise practical algorithms by gradient methods. This paper 

basically involves the design of a digital communication 

system with multiple antennas. The goal is to show the 

performance evaluation and superiority of ML estimation over 

kurtosis maximization for a 2x2 multiple-input multiple-output 

(MIMO) system with QPSK modulated data transmitted over 

an AWGN channel. In basic BSS problem, there always arises 

a problem of permutation and scaling [4]. To solve these 

problems, a priori information about first two symbols of 

transmitted data has been taken.  
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The scheme of the paper is as follows. Section II presents an 

overview of algorithms for solving the BSS problem 

particularly for instantaneous mixtures. Section III deals, in 

details, with the simulated system model followed by solution 

of ambiguities. Simulations parameters and results have been 

discussed in Section IV and the paper concludes with certain 

recommendations in Section V. 

 

II. ALGORITHMS FOR ICA 

Two most commonly used algorithms for ICA are the 

kurtosis maximization and maximum likelihood approach for 

estimating components. The following subsections present an 

overview of both of these techniques. 

 

A. Kurtosis Maximization 

Nongaussianity is of paramount importance in ICA 

estimation. According to central limit theorem, sum of two 

independent random variables results in another random 

variable that has distribution closer to the Gaussian 

distribution. Thus, to estimate one of the independent 

components, we can consider a linear combination of the xi's. 

Let  

y = b
T
x = b

T
As = q

T
s                                 (3) 

 
where vector b has to be determined. If b were one of the rows 

of the inverse of A, this linear combination b
T
A would actually 

equal one of the independent components. The question is 

now: How could we use the central limit theorem to determine 

b so that it would equal one of the rows of the inverse of A? In 

practice, we cannot determine such a b exactly, because we 

have no knowledge of matrix A, but we can find an estimator 

that gives a good approximation [4].  

Let us vary the coefficients in q, and see how the distribution 

of y= q
T
s changes. The fundamental idea here is that since a 

sum of even two independent random variables is more 

Gaussian than the original variables, y is usually more 

Gaussian than any of the si and becomes least Gaussian when it 

in fact equals one of the si. In this case, obviously only one of 

the elements qi of q is nonzero. 

Typically nongaussianity is measured by the absolute value 

of kurtosis. Kurtosis can be estimated by fourth order moment 

of the sample data. The kurtosis of y, denoted by kurt(y), for a 

zero mean variable is defined by 

{ } ( )2
4 2

( ) 3 { }kurt y E y E y= −                              (4) 

Absolute or mean values of kurtosis are zero for a Gaussian 

variable, and greater than zero for most nongaussian random 

variables. To maximize the absolute value of kurtosis, we 

would start from some vector w which is the optimized vector 

for reconstruction filter, compute the direction in which the 

absolute value of the kurtosis of y = w
T
z is growing most 

strongly, based on the available sample z, where z is the 

whitened data obtained from x, and then move the vector w in 

that direction. 

   Thus denoting y = w
T
z, the gradient of the absolute value of 

kurtosis of w
T
z can be simply computed as: 
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                 (5) 

For whitened w, ||w||
2
=1, thus the numerical optimization 

problem reduces to the following update equation for kurtosis 

maximization 

 

                                                 (6) 

                 (7)

  

B. Maximum Likelihood Estimation 

Another very popular approach for estimating the 

independent components is the maximum likelihood (ML) 

approach. For the ICA problem, ML estimation corresponds to 

minimizing the Kullback Leibler (KL) divergence between the 

distribution of As and the density of s by adjusting the matrix 

A. The KL divergence is a natural measure of the deviation for 

two pdfs and it gives how far away two densities are in terms 

of Euclidean distance. In order to obtain a good estimate y=Wx 

of the source signals s, we introduce an objective function or a 

contrast function l(y,W) in terms of the estimated y and W. Its 

expectation with respect to y is 

 

  L(W) = E{l{y,W}}                     (8) 

 

 and it should be a function of W that represents the 

performance demixing by W. In other words L(W) should be 

minimized when the components of y are as independent as 

possible, that is, W is a rescaled permutation of A
-1

. We use 

Kullback-Leibler divergence for this purpose. Let fy(y;W) be 

the pdf of y=Wx=Was and  let q(y) denotes another pdf of y, 

from which all yi are statistically independent. In this case q(y) 

can be decomposed into a product form as: 
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The independent distribution is a reference function. We use 

KL divergence between the distribution fy(y;W) of y obtained 

by W and the reference distribution q(y), 
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The KL divergence is a natural measure of the deviation for 

two pdfs. Hence Dfq(W) shows how far the distribution 

fy(y;W) is from the reference distribution. Thus after applying 



fq T
D

η= −
∂

∆W W W
W

[ ][ ]ML Dφ = x As

[ ] [ ][ ]ML Dφ =y y s

stochastic gradient approach, the update rule for the demixing 

matrix can be formulated as 

 

              (11) 

 

where η is the learning parameter. In summary, the ML 

contrast function is the Kullback mismatch: 

 

              (12) 

Considering output y, the ML principle is seen to correspond to 

minimize the KL mismatch  

       

                              (13)  

between the distribution of y and the distribution of a 

hypothetical source vector s. 

 

III. SIMULATION LAYOUT 

After having gone through the techniques for signal separation, 

this section presents the layout in which simulations are being 

carried. It describes the block diagram of simulated system 

followed by the removal of ambiguities and finally design of 

algorithms for source separation problem. 

 

A. System Model 

 For demonstrating the BSS algorithm for instantaneous 

mixtures applicable to a communication system, a 2x2 multiple 

input multiple output (MIMO) system has been simulated with 

different parameters. An i.i.d. bipolar source of data with 

uniform distribution generates binary bits. After serial to 

parallel conversion, a QPSK mapper maps the bit sequences 

into symbols according to QPSK constellation diagram. The 

symbols are then transmitted over the channel with a linear 

mixing matrix generated randomly. The linearly mixed 

symbols are then received by the receiving antenna and are 

then processed by the demixing matrix W to yield the outputs 

y1 and y2. The block diagram of the process is shown in Figure 

2.  

 

 

 

 

 

 

 

 
Fig. 2 Block diagram of the MIMO system with mixing channel 

 

B. Permutation and scaling Ambiguities 

It is well known that ICA/BSS algorithms can separate the 

source signals mixed linearly by a mixing matrix upto an 

unknown scaling and permutation. The same case was visible 

here. For that purpose, we took the first two symbols to get 

apriori knowledge about the phase and the permutation 

ambiguity. Here is how it works. 

   The problem arises because the mixing and demixing causes 

scaling and phase ambiguity in a sense that if e.g. a symbol 

with amplitude 1 and phase π/4 is transmitted, it could happen 

that after demixing it is received with a phase of  π /4 + π /2, 

thus with an additional phase shift of π /2. The solution to this 

problem is simple: rotate the whole constellation of received 

symbols by an angle of π /2 radians. This is how the phase 

ambiguity in the received symbols can be avoided. The 

situation is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Illustration of the scaling problem 

 

For the permutation problem, since it is a 2 x 2 MIMO 

system, so this may be probable that the output y2 is actually 

the reconstructed version of source s1 and vice versa. To solve 

this problem of permutation, the knowledge from the first two 

symbols is sufficient. i.e., if we know that the phase difference 

between first two symbols of the first stream (first source) are 

π apart and the symbols of the other stream are π /2 apart, then 

using this apriori knowledge we can handle the permutation 

problem. The situation is clear in Figure 4. 

 

 

 

 

 

 

 

 

      

 

 

 

         

 

 

 
Fig. 4 Illustration of the permutation problem 

 

C. Simulating the Algorithms 

Simulating the ICA kurtosis maximization algorithm is 

straight forward.  Taking gradients at each point, according to 

equations (6,7), gives the solution. The major problem arises in 

simulating ML receiver because it contains a term involving 

source densities, which is quite difficult to estimate. But in 

QPSK the information is encoded in terms of unit power and 



orthogonal phase rotation between every two bits. The phase 

can thus take any value, and since the amplitude remains 

constant, the baseband signal distribution is a circle on the 

complex plane. A smooth cumulative density function (cdf) F 

of such a circular distribution at unit circle is given as 

 

( )tanh (| | 1)F w y= −                        (14) 

 

The differentiation of above cdf gives the probability density 

function (pdf) as 

( )( )2( ) 1 tanh (| | 1)f y w w y= − −                  (15) 

 

where y =a + ib is a complex valued variable, and the 

parameter and w controls the steepness of the slope of the tanh 

function. When the steepness w approaches infinity, the 

densities approach the ideal density of a QPSK source, i.e., a 

unit circle at each symbol location j on QPSK constellation 

map. Of particular interest is the fact that in communications 

the signals are artificial, as the case here, thus the properties 

are known exactly as shown above. Now using the ML update 

rule from section II, we get 

 

 

 

              (16) 

 

 

 

where y=Wx are the sources separated from mixtures x,  

fj(yj,wj) is the pdf of source j parameterized by w and H is the 

hermitian operator. Now we can use the circular pdfs from 

equation (15) and inserting the result in equation (16), the final 

update rule is given by 

 

 

              (17) 

 

 

As the pdf's are predetermined in this special case and they 

need not to be estimated, so they can be exploited in BSS with 

faster convergence and more accurate results. 

 

IV. SIMULATION RESULTS 

Different scenarios have been simulated using the two main 

BSS algorithms for instantaneous mixtures, i.e. the kurtosis 

maximization and the maximum likelihood. The analysis 

shows the bit error rate (BER) with respect to signal to noise 

ratio (SNR) for stationary as well as non-stationary channel. 

For stationary channel, the mixing matrix remains the same 

throughout the simulation period for different SNRs. The cases 

are  discussed here separately. 

A. Comparison of ML-ICA with theoretical bound of QPSK 

In this scenario, maximum likelihood method estimation for 

ICA is simulated as discussed in section III-C. For comparison, 

the theoretical bound of BER for QPSK is taken into account. 

   Now it can be seen clearly from Figure 5 that the mixing 

curve with ML-ICA deviates from the theoretical bound  curve 

at low SNR, but the deviation becomes smaller and smaller as 

the SNR increases and after 5dB the two curves i.e. theoretical 

bound and the ML-ICA are just 1dB adjacent to each other. 

Thus it is clear that in presence of noise and instantaneous 

mixing/demixing effect, the ML-ICA algorithm works with a 

considerably high performance specially at high SNRs. This is 

due to the perfect knowledge of pdf of sources which helps in 

estimating the separation solution. More precise is the 

knowledge of pdf and its parameters, more close we are to the 

QPSK theoretical bound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Comparison of QPSK transmission and ICA QPSK transmission 

B. Comparison of ML ICA for nonstationary channel 

In this case, the maximum likelihood method is simulated 

with nonstationary mixing matrix. The mixing matrix remains 

the same throughout the simulation period with varying SNRs 

and the matrix is varied for each iteration. So five such curves 

are shown in Figure 6 with different mixing matrices. The 

number of QPSK symbols transmitted are same for each 

channel iteration. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Comparison of performance for different mixing matrices 

 

It is observed that though there is not much difference or 

divergence between the curves for varying channels, however, 
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there is also not a unanimous or unique curve each time. So 

this shows that the algorithm is sensitive to the channel mixing 

matrix. For a good conditioned matrix, with smaller condition 

number, the separation performance is better as compared to 

the one with an ill-conditioned matrix. Applying truncated 

singular value decomposition (SVD) to the channel demixing 

matrix and ignoring the smallest singular value can enhance 

the performance of overall system specially in the presence of 

noise. 

C. Comparison of ML-ICA and HOS-ICA 

The main crust of the paper is to determine the performance 

analysis of ML-ICA with HOS-ICA i.e. high order statistics 

ICA using kurtosis maximization algorithm. The channel 

matrix remains the same for both algorithms. The results over  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Performance comparison of ML and Kurtosis maximization 

 

different SNRs for ML-ICA and Kurtosis Maximization are 

shown in Figure 7. We can see that the two curves are far apart 

and it clearly shows that ML algorithm works much better as 

compared to the Kurtosis maximization algorithm for noisy 

channel. There are two main observations for this scenario. 

One of the main reasons is the Gaussianity of noise sources. 

Since in Kurtosis maximization, we are actually moving away 

from Gaussianity, or in other words toward maximum non-

Gaussianity, but here we are adding AWGN i.e. Gaussian noise 

sources to the transmitted data. Since from ICA restrictions we 

know that at most one source could be Gaussian [4], so this 

restriction seems to be violated here which affects the 

performance of HOS estimation. Another important reason is 

that HOS estimation requires a large amount of data to reliably 

compute the statistical parameters. As shown in Figure 8, 

different block of data have been transmitted to estimate 

components using kurtosis maximization algorithm and it can 

be seen that larger the amount of data transmitted, better is the 

performance because large amount of data estimates HOS 

more efficiently. The result is clear from Figure 8 that the 

algorithm performs well for larger block size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Effect of block size on HOS estimation 

 

V. CONCLUSIONS AND RECOMMENDATIONS 

After an insight into different simulation scenarios, it can 

been seen that ML algorithm for ICA works best if we know 

the pdf and other important parameters [6,7] of source signals. 

Kurtosis maximization algorithm works best for a noise free 

case and the performance is badly affected with the addition of 

noise. But there are certain open issues that need to be solved 

or looked upon for the general BSS problems in wireless 

communications. e.g. for QPSK transmission, the amplitude 

always remains constant and there is only an ambiguity of 

phase other than permutation. So important areas to be 

investigated is to use 16QAM or higher order constellations 

and observe the results with both magnitude and phase 

ambiguities. Another important issue is to find some 

quantitative or analytical expression for relating BER with 

condition number of the matrix, if the relationship exists. 

Moreover the simulated 2x2 MIMO system should be 

generalized to any n x n system and the performance be 

observed. 
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