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Abstract—Identification of small electrical appliances via
power consumption requires accurate detection and evaluation
of steady-state sections and transient sections. However, the
steady-state sections and transient sections are extracted from
low frequency sampled (1 Hz) power measurements. We gain
the steady-state sections and transient sections by processing
real and reactive power measurements with a robust bucketing
technique and unsupervised clustering. Macroscopic features for
detected steady-state sections and transient sections are then
extracted. Besides, our method estimates the similarity of steady-
state sections and transient sections and determines recurred
sections accurately. The proposed method is applicable for an
inexpensive, unsupervised learning of small electrical appliances
in real time.

Index Terms—Nonintrusive Appliance Load Monitoring, Fi-
nite State Machine, Bucketing Technique, Unsupervised Clus-
tering, Transient Detection, Adjacency Matrix

I. INTRODUCTION

Efficient energy use becomes more and more important for
industrial environment as well as for private households. In
order to enable energy management systems, two approaches
for monitoring energy are known. Intrusive load monitoring
and nonintrusive load monitoring (NILM). Monitoring energy
consumption in an intrusive way has the disadvantage that
in so called home automation networks a two-way com-
munication is required for each electrical appliance. Hence,
the intrusive load monitoring procedure is costly since only
expensive and/or novel devices like washing machines or
refrigerators are optionally equipped with network interfaces.
Upgrading each old or low cost device with an additional
network interface in a private household is too expensive. In
case of NILM, the individual appliance power consumption
information is disaggregated from a single meter and does not
require any upgrades on existing household appliances which
is the big advantage of NILM. NILM is separated into two
different approaches in terms of the sampling frequency fs.
Power consumption signatures obtained with high sampling
frequency fs ≥ 8 kHz are called microscopic features and
features which are gained by a low sampling frequency
fs ≤ 1 Hz are called macroscopic features [1]. Whereas mi-
croscopic features might help to monitor continuously vari-
able devices via observation of transients, they are far too
expensive for on-off or simple finite state machine (FSM)
devices. Accurate steady-state and transient detection as well
as recognition of recurrent sections are mandatory for the

identification of electrical appliances, especially in terms of
NILM with a low sampling frequency.

In the present contribution we denoise the given signal by
assuming signal dependent and Poisson distributed noise and
estimate the model order M via a robust bucketing technique
in the noiseless PQ-plane. Followed by detection of the
steady-state sections Π and transient sections Ψ via unsuper-
vised clustering with expectation maximization (EM) algo-
rithm and Gaussian mixture model (GMM) of the unfiltered
raw signal. Macroscopic features for detected steady-state
sections Π and transient sections Ψ are computed including
apparent power S, real power P and reactive power Q. Ob-
servations have shown that desired information about charac-
teristic peaks of transients get lost if measurement signals are
low-pass or median filtered. Hence, in our proposed algorithm
no low-pass or median filtering at physical measurements
is applied directly. Besides, our method determines recurred
sections via similarity estimation for detected steady-state
sections Π and transient sections Ψ.

II. RELATED WORK

Current research focuses on different areas for NILM in
industrial buildings or private residences (households). Algo-
rithms with NILM have mostly three limiting assumptions.
Loads are distinguishable, have steady-states and are batch
processed [2]. According to [3], another issue is that most
NILM algorithms process data in batch format using a day
or more which is not even close to real-time requirement.
Reference [4] proposed a method consisting of fuzzy clus-
tering combined with genetic algorithms and a dynamic
programming algorithm. They considered only changes of
real power P and concluded that typical patterns of on-off
appliances or FSMs with less than five different steady-
states were detected without any a priori knowledge. Worth
remarking is that the same author used in Ref. [5] a nonlinear
and dynamically adapted threshold, while in Ref. [4] the
dynamic threshold was replaced by a fixed threshold. Rare
and small events were neglected in this approach. Reference
[6] extended the work of the well known Ref. [7] by applying
a median filter to remove outlier in the signal. Reference [2]
proposed two approaches, a heuristic approach and a Bayesian
approach. The proposed algorithms started with interpolation
and filtering of real power P and reactive power Q before
applying an edge detection. They considered changes in



both real power P and reactive power Q equally. Reference
[8] concluded that steady-states can not serve as a reliable
load discriminator if several devices are active and that only
transients, and slopes are unique features to distinguish loads.
Hence, steady-states were neglected. Reference [6] concluded
that recurrence of transients is poor in energy consumption of
industrial buildings.

The main difference to other methods is the procedure to
detect transients in given signals. Common are edge detection
algorithms. Edge detection algorithms with pre-filtering have
the disadvantage to provide just a single point of occurrence
in time and not the complete transient sections Ψ with all
characteristic spikes. In contrast we use each raw unfiltered
sample to retrieve as much information as possible and assume
that only one device at a time is active in order to detect
steady-states and transients properly. Furthermore, we weight
measured real power P and reactive power Q values in our
algorithm differently and show that recurrent steady-states and
transients are detectable in case of small appliances.

III. FSM MODEL AND TEST SEQUENCE

Figure 1 shows a general FSM model. The FSM model
defines the steady-states from ηO, ηA, . . . to η. . . as well as
the transients ξOA, ξAA, . . . to ξ.... Please note, we introduce
additional transitions during the steady-states. The reason for
this will become clear in Section IV. In this FSM model,
a simple on-off device consists of two steady-states ηO and
ηA and three transients ξOA, ξAA and ξAO where ηO is an
inactive device state. A FSM device with four modes of
operation consists of four steady-states ηO, ηA, ηB and ηC
and fifteen transients (solid and dashed lines) where again ηO
is an inactive device state.
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Fig. 1. A general FSM model for devices with several modes of operation.

Figure 2 shows the test sequence of power consumption
measurements used in this paper. The sequence starts with
an active standing fan (SF) and inactive compact fluorescent
lamp (CFL) and continues with CFL as active and SF as
inactive. Therefore, only one device at a time is active. The
SF has in this case four modes of operation and the CFL has
two. The inactive device states are replaced with one off-state.
The given sequence is actually a concatenation of two single
physical measurements. The challenge is to detect all single
and recurrent sections.
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Fig. 2. Apparent power S with real power P and reactive power Q of a SF
with four modes of operation and the same measurement of a CFL with two
modes of operation afterwards. The SF is active from t = 16 s to t = 201 s
and shows three different active states. The CFL is active from t = 214 s to
t = 294 s and is switched on-off four times.

IV. UNSUPERVISED CLUSTERING

To be able to monitor electrical appliances nonintrusively,
unsupervised clustering in the PQ-plane is desired. Let M
be the true number of clusters and M̃ be the estimated
one. If M̃ < M , two ore more steady-state clusters will be
detected as one and we will miss the transients between
steady-state sections. If M̃ > M , one or more steady-state
clusters are divided into several clusters and transients be-
tween such divided steady-state clusters occur additionally.
Since we tolerate additional transients during steady-states
(see Fig. 1), the overestimated case is more acceptable than
the underestimated case which has to be avoided. Therefore
the estimation of model order M is mandatory before applying
a clustering method to the data. For simplification, we make
the following assumptions. A steady-state must be active for
a minimum time of ťΠ = 3 s. The transient duration tΨ is not
limited. We also assume that the steady-states represented as
clusters in PQ-plane are Gaussian distributed and state de-
pendent. Additionally, all other occurring values outside of the
clusters in the PQ-plane are assumed to be Poisson distributed
noise which is signal dependent. Due to the assumption of
Gaussian distributed clusters in the raw PQ-plane, we apply
the EM algorithm to estimate the underlying GMM from the
real power P and reactive power Q measurements. Before
doing that, we first apply the bucketing technique to estimate
model order M , the number of clusters for steady-states.



Figure 3 illustrates the complex power PQ-plane for the
measurement in Fig. 2. We see clearly five clusters represented
by the red samples and five detected steady-state clusters.
Additional noise is present as well as values which represent
transients.
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Fig. 3. Complex power plane PQ for the measurement in Fig. 2 and five
detected steady-state clusters.

A. Model Order Estimation

As a first step, we apply a bucketing technique which is
known from image processing. Each sample of real power P
and reactive power Q is binned into a container with bin size
of 0.1 in each dimension in the PQ-Plane. Each incoming
sample in a container is considered as an increasing intensity
level of a pixel in an image Ia. The intensity level per
pixel is represented in the following with occurence value κ.
The bucketing technique simply creates a two-dimensional
histogram with a constant bin size.

Figure 4(a) illustrates the created two-dimensional his-
togram of a PQ-plane section as an image Ia. We use
the Moore-Neighbor tracing algorithm with Jacob’s stopping
criterion to obtain single pixels and objects out of image Ia.

Figure 4(b) with image Ib contains the separated objects
and image Ic in Fig. 4(c) the extracted single pixels. The
single pixels in image Ic are thresholded in the next step. Due
to the assumption of Poisson distributed noise we can filter the
single pixels in image Ic via consideration of its respective
occurrence value κ and separate them into sample of a cluster
or sample of a transient. Therefore we seek a threshold τ for
the case that more than κ samples fall into one container with
the probability p ≤ 0.1%. In order to be able to compute the
threshold τ we collect all pixels with occurrence κ = 0 in
image Ia and all single pixels with occurrence κ > 0 in Ic
into one single pixel vector f . Then we estimate with single
pixel vector f the sample mean

λ̂ =
1

Nf

Nf∑
n=1

f(n) (1)

with the number of elements Nf in f and compute the
threshold τ via

τ∑
k=0

[
P (k = τ) =

λ̂ke−λ̂

k!

]
> 0.999. (2)

Single pixels in image Ic with occurrence κ ≤ τ are neglected
and only single pixels with occurrence κ > τ are transferred
together with the objects from image Ib into image Id in
Fig. 4(d) for further processing.

Since we assume that the pixels in image Id represent
samples of clusters only and that occurring clusters in PQ-
plane are also signal dependent, the idea is now to model the
uncertainty for each given pixel in image Id. The image Id is
converted into a binary image Ie illustrated in Fig. 4(e). Now
we introduce measurement error factors eP and eQ which
depend on the accuracy of the used measurement device. The
first variable ellipse radius

ra = eQQ(n) (3)

is depending on reactive power Q and the respective measure-
ment error factor eQ. The second variable ellipse radius

rb = ePP (n) (4)

is related to real power P and the respective measurement
error factor eP . Both constant error factors eP = 0.011
and eQ = 0.015 were adjusted empirically and work with
container bin size of 0.1. The idea is to “stamp” a filled ellipse

(P − P (n))2/r2
a + (Q−Q(n))2/r2

b = 1 (5)

of variable size depending on each pixel in the binary image
Ie where P (n) and Q(n) are the ellipse center. The result
in Fig. 4(f) is achieved via binary cross correlation including
binary image Ie and each variable ellipse. The final objects
in image If are again obtained via Moore-Neighbor trac-
ing algorithm. The number of objects and single pixels in
image If equals the estimated model order M̃ . Important to
note is that we increment the estimated model order M̃ + 1
in the case that single pixels with occurrence κ below the
threshold τ were neglected. This step is applied because of
the fact that the bucketing method estimates the model order
in an almost completely noise free image If . In order to
apply the estimated model order M̃ correctly on a noisy raw
PQ-plane the incrementation step is necessary to have an
additional cluster index for classification of noise only.

B. Gaussian Mixture Model Estimation via Expectation-
Maximization

Since the initial parameters for the estimation are set
randomly we apply the EM algorithm ten times on the raw
PQ-plane. The final GMM is the estimated one with the
lowest negative log likelihood value for the corresponding
parameters. We obtain as a result with the final GMM the
cluster index vector v ∈ NN which contains cluster indices
c ∈ {1, . . . , M̃} where N is the number of samples per phys-
ical measurement. We used the EM algorithm which is imple-
mented in the MATLAB function gmdistribution.fit.
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Fig. 4. Algorithm procedure for applied bucketing technique on (a) segment
out of PQ-plane as an image Ia and definition of objects and single
pixels; (b) extraction of objects onto image Ib; (c) extraction of single pixels
onto image Ic and further observation on selected single pixels to detect
representations of clusters; (d) combination of already selected objects and
outcome of single pixel observation as additional objects onto image Id; (e)
followed by conversion to a binary image Ie; (f) outcome of binary cross
correlation with each variable ellipse depending on measurement errors eP
and eQ.

V. STATE DETECTION

The cluster index c for each detected cluster in the cluster
index vector v(n) changes mostly since the initial parameters
in EM algorithm are generated randomly. Hence we consider
the absolute second order difference vector w(n) = |v(n)′′|
of v. The the absolute second order difference vector w(n) is
used to suppress detection of maxima or minima points. In
general, a single zero in w(n) represents only a turning point
in the cluster index vector v. The binary state vector

m(n) =

{
1, w(n) = 0, 1 ≤ n ≤ N
0, w(n) > 0

(6)

indicates steady-state sections Π where m(n) = 1 and tran-
sient sections Ψ where m(n) = 0. The binary state vector m
consists of N elements which is the number of samples in
one measurement. In order to suppress detection of turning
points as steady-state sections and to ensure our constraint
of minimum steady-state duration of ťΠ = 3 s, we simply
remove such single ones in m(n) without loss of information:
(. . . , 0, 1, 0, . . .) 7→ (. . . , 0, 0, 0, . . .).

In the final binary state vector m, each consecutive se-
quence of ones represents a steady-state section Πi with

1 ≤ i ≤ nΠ where nΠ is the number of detected steady-
state sections. Each consecutive sequence of zeros represents a
transient section Ψj with 1 ≤ j ≤ nΨ where nΨ is the number
of detected transient sections. The sections are extracted out of
the given power measurement with the binary state vector m
as a mask.

Figure 5 illustrates the obtained steady-state sections Π and
transient sections Ψ for our given test sequence of apparent
power measurement. This result is achieved via our model
order estimation method, followed by EM algorithm with
GMM and our state detection. Steady-state sections Π are
plotted in red and labelled from section Π1 to Π15. Transient
sections Ψ are plotted in blue and labelled from section Ψ1

to Ψ14. Clearly visible are the well preserved characteristic
spikes in the transient sections and the accurately detected
steady-state sections.

VI. MACROSCOPIC FEATURES

After accurate and robust detection of steady-state and
transient sections, respective feature computation is neces-
sary to be able to classify each detected section properly.
In the following we make the assumption that steady-state
sections Π are characterized by linear and transient sections Ψ
by nonlinear behaviour. The feature computation is done for
each section separately with its respective apparent power S,
real power P and reactive power Q measurements where nΠ

is the number of detected steady-state sections Π and nΨ is
the number of detected transient sections Ψ. For simplicity
we use the notation X ∈ {S, P,Q} in the following to denote
apparent, real and reactive power measurements.

A. Steady-State Section Features

The features for each steady-state section Πi with
1 ≤ i ≤ nΠ are computed as follows. The mean value

Π̄
X
i =

1

NΠ
i

NΠ
i −1∑
n=0

ΠX
i (n) (7)

is used to compute the down shifted steady-state section

Π̌
X

i (n) = ΠX
i (n)− Π̄

X
i 0 ≤ n ≤ NΠ

i − 1 (8)

where NΠ
i is the number of samples per steady-state section

Πi. The down shifted steady-state section Π̌
X

i is then esti-
mated by a first order robust regression

Π̌
X

i (n) ≈ αXi n+ βXi 0 ≤ n ≤ NΠ
i − 1 (9)

using bisquare weights and its respective first coefficient αXi
and second coefficient βXi . The usage of robust fit algorithm is
more solid against single outliers and provides more constant
estimates compared to a least square method which is sensitive
to outliers.

The resulting temporary feature vector

xXi =
(
αXi , β

X
i , Π̄

X
i , Π̃

X

i , [(Π̄
X
i < 2)?], σXi

)
1×6

(10)

consists additional of the logic value [(Π̄
X
i < 2)?], median

value Π̃
X

i of the down shifted steady-state section Π̌
X

i and the
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Fig. 5. The apparent power measurement is masked and labelled by our state detection algorithm. Clearly visible are the well preserved characteristic spikes
in the transient sections Ψ and the accurately detected steady-state sections Π.

respective variance σXi . The logic value [(Π̄
X
i < 2)?] is used

to identify if a steady-state section Πi represents an inactive
steady-state or an active steady-state. All temporary feature
vectors xXi are then concatenated to form the final steady-
state feature vector gΠ

i = (xSi x
P
i x

Q
i ). Overall, each steady-

state feature vector gΠ
i ∈ RdΠ has dΠ = 18 dimensions.

B. Transient Section Features

The features for each transient section Ψj with 1 ≤ j ≤ nΨ

are computed as follows. The minimum value

Ψ̌
X

j = min
n

[
ΨX
j (n)

]
0 ≤ n ≤ NΨ

j − 1 (11)

is used to compute down shifted transient section

Ψ̊
X

j (n) = ΨX
j (n)− Ψ̌

X

j 0 ≤ n ≤ NΨ
j − 1. (12)

The down shifted transient section Ψ̊
X

j is then estimated by
a sixth order least squares fit

Ψ̊
X

j (n) ≈ αXj n6 + βXj n
5 + γXj n

4 + δXj n
3

+ εXj n
2 + εXj n+ ζXj 0 ≤ n ≤ NΨ

j − 1 (13)

with its respective first coefficient αXj up to seventh coefficient
ζXj . The sixth order least squares fit is necessary to retrieve ac-
curate estimations of occurring turn-on and turn-off transient
with all characteristic positive and negative spikes. Gradients
of transient sections Ψ are also very characteristic. Therefore
the maximum gradient value max

n
[(Ψ̊

X

j )′] and the minimum

gradient value min
n

[(Ψ̊
X

j )′] of the approximated slope (Ψ̊
X

j )′

are also used as features. Further feature is the delta value

∆Ψ̊
X

j = Ψ̊
X

j (NΨ
j − 1)− Ψ̊

X

j (0). (14)

The resulting temporary feature vector

xXj =

(
αXj , β

X
j , γ

X
j , δ

X
j , ε

X
j , ε

X
j , ζ

X
j ,max

n

[(
Ψ̊
X

j

)′]
,

min
n

[(
Ψ̊
X

j

)′]
,∆Ψ̊

X

j , t̂
X
j , ť

X
j , t̊

X
j

)
1×13

(15)

consists additional of discrete rise time t̂Xj where the approx-

imated slope (Ψ̊
X

j )′ is positive, discrete fall time ťXj where

the approximated slope (Ψ̊
X

j )′ is negative and the discrete

constant time t̊Xj where the approximated slope (Ψ̊
X

j )′ is zero.
The time values are given in seconds. All temporary feature
vectors xXj are then concatenated to form the final transient
feature vector gΨ

j = (xSj x
P
j x

Q
j ). Overall, each transient

feature vector gΨ
j ∈ RdΨ has dΨ = 39 dimensions.

VII. SIMILARITY ESTIMATION

So far, steady-state sections Π and transient sections Ψ
are detected and respective feature vectors gΠ and gΨ are
computed. The challenge is now to detect recurrences of
steady-state and transient sections to allow collecting more
information about repeated steady-states or transients in the
measurement. For simplicity, we use the generic notation
X ∈ {Π,Ψ} in the following to denote a steady or transient
state. Please note, the norm of each feature vector gX is
normalized to one.

We compare three commonly used distance metrics for esti-
mating similarity of feature vectors: the well known Euclidean
distance matrix

EX(i, j) = ‖gXi − gXj ‖ 1 ≤ i, j ≤ nX , (16)

the city block distance matrix

BX(i, j) =

dX∑
n=1

|gXi (n)− gXj (n)| (17)

and the correlation distance matrix

CX(i, j) = 1− (gXi − gXi )(gXj − gXj )T/zXi,j (18)

with mean gXi = 1/dX
∑dX
n=1 g

X
i (n), gXj =

1/dX
∑dX
n=1 g

X
j (n) and zXi,j = ‖gXi − gXi ‖‖gXj − gXj )‖.

Figure 6(a) shows the different distance metrics for steady-
state section Π6 with the feature vector gΠ

6 as reference. It
is known that both steady-state sections Π3 and Π6 represent
the same steady-state. The city block metric has the advantage
that the distance values are bigger compared to the correlation
and Euclidean metric at distances to feature vectors gΠ

2 , gΠ
4

and gΠ
5 . Additionally the distance to the feature vectors gΠ

8 ,
gΠ

10, gΠ
12, and gΠ

14 is largest. Figure 6(b) plots the different
distance metrics for transient section Π7 with the feature



vector gΠ
7 as reference. In this case, it is known that transient

sections Ψ7, Ψ9, Ψ11, and Ψ13 represent the same transient.
Here, the correlation metric is preferred because the feature
vectors gΨ

7 , gΨ
9 , gΨ

11, and gΨ
13 lie closer together compared to

city block and Euclidean distance. Furthermore the feature
vector gΨ

1 is also still separable from feature vector gΨ
7 .
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Fig. 6. (a) Distance of the steady-state feature vector gΠ
6 to all other steady-

state feature vectors. Both steady-state feature vectors gΠ
3 and gΠ

6 represent
the same steady-state. (b) Distance of the transient feature vector gΨ

7 to all
other transient feature vector. The transient feature vectors gΨ

7 , gΨ
9 , gΨ

11, and
gΨ
13 represent the same transient.

Therefore, in order to determine recurrences we propose
the symmetric adjacency matrix

AΠ(i, j) =

{
1, BΠ(i, j) ≤ τΠ

d , 1 ≤ i, j ≤ nΠ

0, otherwise
(19)

for steady-state sections with the distance threshold τΠ
d . For

transient sections, the symmetric adjacency matrix

AΨ(i, j) =

{
1, CΨ(i, j) ≤ τΨ

d , 1 ≤ i, j ≤ nΨ

0, otherwise
(20)

is obtained by comparing the correlation distance matrix
CΨ to the distance threshold τΨ

d . In this paper, the distance
thresholds are τΠ

d = 0.06 and τΨ
d = 0.07.

Figure 7(a) illustrates the detected recurrences of steady-
state sections from the adjacency matrix AΠ. All single and
recurrent steady-states are detected correctly. Figure 7(b)
shows the detected recurrences of transient sections from the
adjacency matrix AΨ. All single and recurrent transients are
detected correctly as well.
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Fig. 7. (a),(b) Resulting graphs in adjacency matrix AΠ and AΨ. Each
connected graph indicates the detected recurrences of steady-state or transient
sections. A single node represents an one-time only section. Here, all
recurrence detections are correct for the test sequence.

VIII. CONCLUSION

We developed an unsupervised, fast, robust and inexpensive
algorithm to disaggregate steady-state and transient sections
accurately from low sampling frequency power measurements.
The algorithm was tested on a power measurement sequence
consisting of a standing fan (SF) and a compact fluorescent
lamp (CFL). All different steady-state and transient sections
of both devices are detected correctly. In addition, we can also
correctly detect the recurrence of the same device states and
transients.
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