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a b s t r a c t

In this paper we propose a new set of harmony features for automatic emotion

recognition from speech signals. They are based on the psychoacoustic harmony

perception known from music theory. Starting from the estimated pitch contour of an

utterance, we calculate the circular autocorrelation of the pitch histogram on the

logarithmic semitone scale. It measures the occurrence of different two-pitch intervals

which cause a consonant or dissonant impression. Experiments of emotion recognition

using these harmony parameters in addition to state of the art features show an

improved recognition performance.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The human speech communication consists of two

channels, the explicit channel carrying the linguistic

content of the conversation (‘‘What was said’’) and the

implicit channel containing the so-called paralinguistic

information about the speaker (‘‘How was it said’’) [1–4].

While enormous efforts have been invested in automatic

speech recognition (ASR) to extract the linguistic informa-

tion from the speech samples, still much research is

needed to reliably decode the implicit channel.

The list of paralinguistic properties is long: gender, age,

emotion, voice quality, stress and nervousness, dialect,

pathological state, alcohol or drug consumption, charisma,

just to mention a few. Among these properties, the

emotion plays a key role in many applications like in call

centers to detect angry customers [5–8], in entertainment

electronics to gather emotional user feedbacks [9], in ASR

to resolve linguistic ambiguities [10–12], and in text-to-

speech systems to synthesize emotionally more natural

speech [13,14].

Generally, the term emotion describes the subjective

feelings in short periods of time which are related to

events, persons, or objects [1,15]. Since the emotional state

of humans is a highly subjective experience, it is hard to

find objective and universal definitions. This is the reason

why there are different approaches to model emotions in

the psychological literature. One approach is the defini-

tion of discrete emotion classes, the so-called basic

emotions. Ekman defined seven basic emotions the

humans are well familiar with: happiness, sadness, anger,

anxiety, boredom, disgust, and neutral [16]. More emo-

tions can be defined by mixtures of the basic emotions.

Another approach is the utilization of continuous emotion

dimensions. Schlosberg proposed a three-dimensional

emotion space: activation (arousal), potency (power),

and valence (pleasure, evaluation) [17]. Simpler two-

dimensional emotion wheels are also known [18,19]. Both

approaches can be combined to locate discrete emotions
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in a continuous emotion space. Fig. 1 shows the locations

of six common basic emotions in the three-dimensional

emotion space.

Emotion recognition is a statistical pattern classifica-

tion problem. It consists of two major steps, feature

extraction and classification. While the theory of classifi-

cation is pretty well developed [20], the extraction of

distinctive features from patterns is a highly empirical

issue and depends strongly on the application and

database at hand.

We focus in this paper on the feature issue. One

observation in emotion recognition is the particular

difficulty to distinguish between, surprisingly to humans,

anger and happiness [14,21–23]. A look at Fig. 1 provides

an explanation: This pair of emotions differ only in the

valence dimension. While it is relatively simple to

discriminate different levels of activation by using so-

called prosodic features (see Section 3), no sufficiently

distinctive acoustic correlates for valence have been found

up to now.

Our idea to combat this problem is simple. In music

theory, different pitch intervals (consonant, dissonant)

and chords are believed to invoke different feelings in

listeners. The question is whether there is a similar

mechanism between the perception of music and the

perception of emotional speech? There are some works

studying the relationship between emotion, voice, and

music [24], but to our knowledge, there has been no

attempt yet to apply the harmony perception known from

music to emotion recognition. In this paper, we make a

first attempt and propose a new set of harmony features

for emotion recognition. We discuss their properties and

demonstrate their potential in emotion recognition.

This paper is organized as follows: First we give a quick

overview about the major steps of emotion recognition in

Section 2 to better understand the overall system. Then

we briefly introduce the state of the art features in Section

3. The new set of harmony features is described in details

in Section 4. Experimental results of emotion recognition

using different feature groups are reported in Section 5.

2. Emotion recognition

Different emotional states experienced by a speaker

are reflected in specific patterns of acoustic features in the

speech. This means, information containing the emotional

state of a speaker is encoded in the acoustic signal and

decoded later by the receiving listeners. For automatic

emotion recognition, the first step is to find the manner

how speakers encode their emotional state in the speech.

This is the task of extracting distinctive features from the

speech samples. After that, a classification problem to

decode the emotional state from the extracted features

has to be solved.

2.1. Feature extraction

Assume we have a total number of Np patterns

(utterances of a few seconds in our case). Each of them

has to be assigned to one of the Nc emotion classes

o1; . . . ;oNc
. For each pattern, we generate a fixed number

of Nf scalar real valued features. The result of the feature

extraction process is a Nf � Np feature matrix X whose

ði; jÞ- th element xij denotes the feature i for pattern j. Each

column of X is the feature vector x for one pattern. In

general, the more distinctive the features are with respect

to the classes to be distinguished, the better the

classification performance will be.

Unfortunately, there are no general rules on how to

extract good features from raw signals. This is, to a great

extent, an empirical step. In emotion recognition, the

encoding of the emotional state in speech is highly

complex and only partially understood. This motivates

our work in this paper to look for novel distinctive

features.

2.2. Classification

Emotion recognition is a supervised learning problem.

This means, each pattern used for the training of the

classifier carries the correct emotion class label. There is a

large number of classifiers for supervised learning. The

most popular approaches are Bayesian learning, the linear

discriminant analysis (LDA), the support vector machine

(SVM) as an extension of LDA with a high-dimensional

feature space, the multi-layer neural network (NN), and

the hidden Markov model (HMM) to capture temporal

state transitions [20,25–29].

In this paper, we use the Bayesian learning framework.

Based on a model for the class-conditional likelihood

pðxjocÞ of the random feature vector x for a given classoc ,

the Bayesian decision theory is used to derive the

optimum decision boundary to minimize the overall risk

[20,30]. Frequently, pðxjocÞ is modeled by a Gaussian or a

Gaussian mixture model (GMM). The parameters of

GMM, i.e. the means, covariance matrices, and mixing

proportions of the Gaussians, are estimated from the

feature vectors of the training patterns by the iterative
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Fig. 1. Three-dimensional emotion space and six basic emotions.
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expectation-maximization (EM) algorithm. The GMM

model order, i.e. the number of Gaussians in pðxjocÞ, can

be estimated by information theoretic criterion like the

Akaike information criterion (AIC) [31].

Unfortunately, there is no general statement about

which classifier is the best one for all applications, see the

‘‘No free lunch theorem’’ in [20]. Currently, we observe at

least two trends in emotion recognition: (a) use a very

high dimensional feature space in combination with a

complex classifier like SVM [25] (b) use a suitable

(hierarchical, serial, parallel) combination of pretty simple

classifiers like Bayesian–GMM and a moderate number of

meaningful features [21,32–34].

One important issue in many applications like call

centers is a speaker independent emotion classification.

The speakers of the utterances to be classified are not

included in the training patterns. They are unknown for

the classifier and the deduced learning rules in the

training phase. This means, we need one set of training

patterns to train the classifier and one set of test patterns

from unknown speakers to test the generalization cap-

ability of the classifier. An overfitting of the classifier is

bad since a too complex classifier and a too complex

decision boundary may allow perfect classification of the

training patterns, but unlikely perform well on new test

patterns [35].

2.3. Feature selection

Beside the previous two major steps of emotion

recognition, sometimes we need an additional step called

feature selection. It aims at the reduction of the feature

vector length Nf . This is necessary to reduce the

computational complexity in real-time applications or if

we do not have sufficient training patterns. Normally, one

would expect an increase in classification performance

when more features are used. Nevertheless, the perfor-

mance can decrease for an increasing Nf if the number of

training patterns is too small. This phenomenon is known

as the curse of dimensionality [20] and is one of the

reasons for overfitting.

In feature selection, a subset of ~Nf features are selected

from the original Nf features in x without modifications.

This is a combinatoric problem. It is quite similar to the

situation when a rich man plans to form a new football

team by buying top football players together. The strategy

to buy the worldwide best 11 players does not guarantee a

successful football team. It is rather important whether

the players understand and complete each other well. The

same argument applies to the feature selection. The safest

strategy to get the best feature set is an exhaustive search

which is, however, computationally impractical.

Among different suboptimum approaches for feature

selection, we found the sequential floating forward

selection (SFFS) algorithm promising. It is an iterative

method to find a subset of features that is near the

optimal one [36]. At each iteration, a new feature is added

to the previous feature subset (forward step). Afterwards,

the least significant features are excluded as long as the

resulting subset is better in terms of the recognition rate

than the previous subset with the same number of

features (backward step). This conditional exclusion step

is motivated by the fact that a new included feature may

carry information that was already present in other

features of the previous subset. Thus, the old features

can be removed without losing too much discrimination

performance. This process is repeated until the desired

feature vector length is reached.

3. State of the art features

In speech recognition, the mel frequency ceptral

coefficients (MFCC) are the state of the art feature set.

They are segmental features since they are generated for

each short speech frame to decode the phonemes.

According to [21,37], however, MFCC features are less

successful for emotion recognition since now we are

looking for paralinguistic than linguistic information. In

addition, the emotional state of the speaker is unlikely to

change as fast as phonemes. Typically, we assign one

emotion to one short utterance of a few seconds. Hence

we need suprasegmental features with one feature value

per utterance.

Fig. 2 shows all feature groups used in this paper and

the corresponding number of features in each group. The

five feature groups energy, pitch statistics, duration,

formant, and zero-crossing rate (ZCR) are most common

in emotion recognition. We call them the standard

features in this paper. Recently, the group of voice

quality (VQ) parameters was extensively studied in our

works [21,38,39] and shows a superior performance. All

these feature groups are briefly described below. The new

set of harmony features will be presented in details in

Section 4.

3.1. Standard features

In our implementation, each utterance is divided into

25ms speech frames with an overlap of 15ms between

successive frames. Each frame is classified to one of three

possible voicing types: voiced, unvoiced, and pause. For

each voiced frame, we use the RAPT algorithm from [40]

to estimate the pitch f0, the fundamental frequency of the

periodic glottal excitation. The temporal evolution of the

pitch inside one utterance is called the pitch contour.

Fig. 3 shows a speech signal and its corresponding pitch

contour. From that, we calculate 55 pitch features by
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measuring different statistical values like mean, median,

minimum, maximum, range, variance, interquartile range

over both the whole contour and segments of the contour

containing only raising slopes, plateaus, and falling slopes.

They describe both the mean behavior and the variability

of the pitch over time and characterize the intonation

(speech melody) of the utterance.

In a similar way, we calculate the other four standard

feature groups from corresponding contours. The energy

contour is derived from frame-based energy estimates and

describes the intensity of the uttered words. Duration

counts the number of uninterrupted speech frames of the

same voicing type. The articulation of an utterance is

measured by frequency and bandwidth of the formants of

the vocal tract by a linear prediction analysis. The zero-

crossing rate (ZCR) contour counts the number of zero

crossings of the speech signal within each frame. More

details about these feature groups can be found in

[33,37,41,42].

3.2. Voice quality parameters

Beside the standard features described above, we also

include voice quality (VQ) features that characterize the

phonation process. In the theory of the source filter model

of speech production [43], the speech signal is assumed to

be the result of a filtering of the glottal excitation by the

vocal tract. The process at the glottis is called phonation. It

characterizes mainly the speaker specific properties, i.e.

the paralinguistic information.

We calculate the VQ features by first inverse filtering

the speech signal. The influence of the vocal tract is

compensated to a great extent and we obtain an estimate

of the glottal excitation signal. Then we extend an idea

from [44] and calculate various spectral gradients of the

glottal signal in the frequency domain. More details about

the calculation of these VQ features can be found in [21,29].

4. New harmony features

4.1. Motivation from music theory

The term harmony in music describes the simulta-

neous use of different pitches. Examples are two-pitch

intervals and chords involving more than two pitches.

According to music theory, the relative position of these

pitches to each other, i.e. the harmony structure of an

interval or chord, is mainly responsible for producing a

positive or negative impression on the listener [45–48].

In the standard equal temperament of Western music,

one octave (frequency ratio 2) is divided into 12 log-

arithmically equal intervals called semitones. This means,

an interval of i semitones corresponds to a frequency pair

ðf0; fiÞ with fi ¼ f02
i=12. Table 1 presents the name, the

frequency ratio fi=f0 and its rational approximation N:D of

these 12 intervals. The rational approximation is done by

the MATLAB command rat with the tolerance value 0.02.

An interval is considered to be consonant if N:D is a ratio

of small integer numbers. This is due to a greater

coincidence of harmonics [45]. After only D and N

wavelengthes, two sinusoidal signals with the frequency

f0 and fi are in phase again. Hence perfect fourth (i ¼ 5),

perfect fifth (i ¼ 7), and octave (i ¼ 12) are perfect

consonances, while minor/major thirds and minor/major

sixths are called imperfect consonances. The remaining 5

intervals with large values for N and D are said to be

dissonant.

Our postulate is that similar mechanisms could also

affect the production and perception of emotional speech.

It might be that certain frequency pairs cause a more

pleasant impression on the listener than others. Our idea

is to take a more careful look at the pitch contour of an

utterance. In Section 3.1, we only calculated some

statistical values from the pitch contour without a

psychoacoustic motivation. We called them the statistical

features of the pitch group in Fig. 2. Below we want to

derive additional harmony features from the same pitch

contour to characterize the relationship between different

pitches.

Note that, in contrast to intervals and chords in music,

different pitches of speech are not produced at the same

time. But due to the human memory, they can be treated

in the same way as simultaneous pitches as long as they

occur in a short time period like in a short utterance.

4.2. Interval features

First we study features describing pitch intervals. They

form a subset of harmony features. We call them the

interval (INT) features. Let f denote the pitch estimates

ARTICLE IN PRESS

Table 1

12 intervals ðf0 ; fiÞ of one octave in Western music.

i Name fi=f0 N:D

1 Minor second 1.0595 18:17

2 Major second 1.1225 9:8

3 Minor third 1.1892 6:5

4 Major third 1.2599 5:4

5 Perfect fourth 1.3348 4:3

6 Tritone 1.4142 7:5

7 Perfect fifth 1.4983 3:2

8 Minor sixth 1.5874 8:5

9 Major sixth 1.6818 5:3

10 Minor seventh 1.7818 9:5

11 Major seventh 1.8877 17:9

12 Octave 2.0000 2:1
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Fig. 3. An utterance and its pitch contour.
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from the voiced speech frames. We transform them from

the linear scale to the logarithmic semitone scale

sðf Þ ¼ Llog2ðf=fref Þ þ sref : ð1Þ

L ¼ 12 semitones per octave are used in Western music.

The MIDI standard proposes fref ¼ 440Hz for the standard

pitch A4 and sref ¼ sðfref Þ ¼ 69 to count pitches. In our

case, the choice of fref and sref is arbitrary because we are

interested in the relative position of the frequencies rather

than their absolute values.

Let S be a random variable whose realization is s. We

denote its probability density function (PDF) by pðsÞ. We

propose to use the second-order autocorrelation of pðsÞ to

describe the occurrence of pitch pairs with a given

logarithmic distance s:

rðsÞ ¼

Z 1

�1

pðsþ lÞpðlÞdl: ð2Þ

The following properties of rðsÞ hold:

P1 rðsÞ can be interpreted as the PDF of the difference

I ¼ S1 � S2 of two independent random variables S1
and S2 with the same PDF pðsÞ. This implies
R1

�1
rðsÞds ¼ 1.

P2 If the pitch contour contains several discrete pitches si
with the probability Pi, i.e. pðsÞ ¼

P

iPidðs� siÞwith dðsÞ

being the Dirac function, then

rðsÞ ¼
X

i

P2
i

 !

dðsÞ þ
X

iaj

PiPj½dðs� sijÞ þ dðs� sjiÞ�;

with sij ¼ si � sj. The first term with dðsÞ describes the

correlation of each pitch with itself (interval prime)

and is irrelevant for the harmony study. The remaining

mixture terms reflect pitch distances at sij and sji.

The above introduced measures pðsÞ and rðsÞ have two

drawbacks: First they treat harmonics of a fundamental

frequency as independent pitches. This does not coincide

with the observation in music that the perception of a

pitch interval is largely invariant with respect to mod-

ifications of pitch frequencies by powers of 2 (octaves).

Second, pðsÞ is defined for s 2 R and we do not have

enough pitch samples from a short utterance to estimate

pðsÞ reliably.

Therefore, we introduce below a circular pitch on the

semitone scale

s
3
¼ modLðsÞ; 0rs

3
oL: ð3Þ

modLðsÞ is the modulo of the division s=L. It maps all

octaves into a single one. In music information retrieval,

similar concepts as pitch class profiles (PCP) [49] and

chroma vectors [50] are known for chord estimation. But

these concepts use directly the short-time spectrum of

music signals with a modulo logarithmic frequency scale

as features, while we perform an explicit pitch estimation

and consider the correlation of the pitch PDF.

Let p
3
ðsÞ be the PDF of the random variable S

3
whose

realization is s
3
. Its relationship to the PDF of the

non-circular pitch S is

p
3
ðsÞ ¼

X

1

k¼�1

pðsþ kLÞ; 0rsoL;

0 otherwise:

8

>

<

>

:

ð4Þ

As a measure for the occurrence of pitch pairs without

taking the height of their octaves into account, we

introduce the circular correlation of p
3
ðsÞ

r
3
ðsÞ ¼

Z L

0

p
3
ðmodLðsþ lÞÞp

3
ðlÞdl ð5Þ

for 0rsoL. We can show (without proof):

P3 r
3
ðsÞ ¼

P1
k¼�1 rðsþ kLÞ for 0rsoL.

P4 r
3
ðsÞ also has the interpretation of the PDF of a random

variable. Let S
3;i ¼ modLðSiÞ ði ¼ 1;2Þ be two indepen-

dent random variables with the same PDF p
3
ðsÞ. Then

r
3
ðsÞ is the PDF of the circular pitch distance

I
3
¼ modLðS3;1 � S

3;2Þ ¼ modLðS1 � S2Þ.

P5 r
3
ðsÞ ¼ r

3
ðL� sÞ. This symmetry property illustrates

why two complementary intervals with a sum equal

to one octave (e.g. perfect fourth and perfect fifth)

provide the same consonant or dissonant impression,

see Table 1.

In addition to r
3
ðsÞ, we introduce a single dissonance

parameter DIS to summarize the consonance and dis-

sonance effects of all occurring pitch intervals. Let dðsÞ be

a suitable dissonance function for the logarithmic pitch

distance s or equivalently the frequency ratio 2s=L. dðsÞ is

large if this pitch interval sounds dissonant and dðsÞ is

small if it sounds consonant. The mean dissonance DIS

is defined by

DIS ¼

Z L

0

dðsÞr
3
ðsÞds: ð6Þ

It is the expectation of the random variable dðI
3
Þ where

I
3
¼ modLðS1 � S2Þ is the circular pitch distance with the

PDF r
3
ðsÞ.

4.3. Practical implementation

For the practical implementation, we approximate the

PDF by a histogram and the expectation by a sample

average. Plot (a) in Fig. 4 shows the histogram hSðkÞ of the

pitch S using a histogram bin width of 1
2 semitone. We

used the pitch contour from Fig. 3 and chose fref ¼ 440Hz

and sref ¼ 69 in (1). Plots (b) and (c) show the histogram

hS
3

ðkÞ of the circular pitch S
3
and the histogram hI

3

ðkÞ of the

circular pitch distance I
3
. In both cases, each semitone is

divided into q ¼ 5 equal steps resulting in a total number

of Lq ¼ 60 histogram bins. The histograms differ from the

PDFs pðsÞ; p
3
ðsÞ; r

3
ðsÞ in scaling. This, however, does not

matter since the Bayesian–GMM classifier we used is

invariant with respect to a scaling of the features. Similar

to property P5 in the previous subsection, the histogram

hI
3

ðkÞ (0rkoLq) is symmetric in the sense of

hI
3

ðkÞ ¼ hI
3

ðLq� kÞ. Hence we only use Lq=2 ¼ 30 values

hI
3

ðkÞ ð1rkrLq=2Þ as our new interval features for

emotion recognition. The value hI
3

ð0Þ counts only the
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correlation of each pitch with itself (interval prime) and is

irrelevant for our purpose, see property P2.

The expectation in (6) is approximated by

DIS ¼
X

Lq=2

k¼1

dðskÞhI3 ðkÞ: ð7Þ

sk ¼ ðkþ 0:5Þ=q is the center of the k-th histogram bin. The

dissonance function dðsÞ is implemented as the geometric

mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðsÞDðsÞ
p

where NðsÞ=DðsÞ is the rational approx-

imation of the frequency ratio 2s=L with a tolerance value

of 0.02. Using DIS and 30 histogram values of hI
3

ðkÞ, we

have a total number of 31 interval (INT) features.

4.4. Triad features

In addition to the previous interval features, the group

of harmony features can also contain measures for chords.

In contrast to intervals, the perception of three-pitch

triads like major, minor, diminished, and augmented is not

completely understood yet [51]. Nevertheless, our concept

of autocorrelation of pitch PDF in Section 4.2 can be easily

extended to triads. In this case, we use the third-order

circular autocorrelation of p
3
ðsÞ

r
3
ðs1; s2Þ ¼

Z L

0
p

3
ðmodLðs1 þ lÞÞp

3
ðmodLðs2 þ lÞÞp

3
ðlÞdl: ð8Þ

It has the interpretation of the bivariate PDF of two

modulo pitch differences I
3;i ¼ modLðSi � S3Þ ði ¼ 1;2Þ of a

triad ðS1; S2; S3Þ where Si are three independent random

variables with the same PDF pðsÞ. This third-order

correlation will be implemented in the future.

5. Experiments

5.1. Emotion database

In emotion recognition, the used database containing

the training and test patterns plays a crucial role. A

list of the most important databases is given in [52].

One distinguishes between acted and natural speech

databases. Clearly, emotion recognition from natural

speech, which is the goal in practice, is much more

difficult than emotion recognition from acted speech due

to the much larger variation of emotional expressions in

natural conversation. Unfortunately, natural speech data-

bases for emotion recognition (e.g. from call centers) are

seldom public available due to the privacy of speakers. In

addition, the acquisition and labeling of a large size

database is very expensive.

For these reasons, we use the public Berlin emotion

database of acted speech [53] in this paper to classify six

basic emotions: happiness, sadness, anger, anxiety,

boredom, and neutral. It is a pretty small database

containing 694 utterances for these six emotions. Ten

actors have been invited to speak short utterances

between two and five seconds in German. The signals

are sampled at 16 kHz.

5.2. Procedure

We perform a speaker independent emotion recogni-

tion by using the ‘‘leaving-one-speaker-out’’ cross vali-

dation. This means, 10 speakers are partitioned into one

group of nine speakers for training and one last speaker

for testing. We use the Bayesian classifier with a

Gaussian class-conditional likelihood. Experiments with

a GMM class-conditional likelihood and order estimation

by AIC have not shown remarkable performance im-

provements for this database. The reason is the small

diversity of the acted emotions in the Berlin database. For

each utterance, we calculate a total number of 306

features, see Fig. 2. In order to evaluate the benefit of new

feature sets, we study the recognition rate using an

increasing number of feature groups [54]. The baseline is

to select the best ~Nf features by the SFFS algorithm from

the 192 standard features (energy, pitch statistics,

duration, formant, ZCR). Then we repeat the same

experiment by selecting the best features from 275

standard-plus-VQ features and from 306 standard-plus-

VQ-plus-INT features. The recognition rate shown in the

plots below is averaged over all 10 speaker partitions and

all emotions to be distinguished.

5.3. Two-class results

First we investigate for which of the three emotion

dimensions in Fig. 1 the new interval features are

distinctive. For this purpose, we compare all five pairs

of emotions where both emotions in each pair differ

only in one dimension. Fig. 5 shows the recognition

rates for an increasing number ~Nf of selected features.

As known from literature, the recognition rate is not

monotonically increasing in ~Nf due to the curse of

dimensionality and the suboptimality of the feature

selection algorithm SFFS.

In plot (a), we compare anger vs. happiness which

differ only in the valence dimension. The use of the voice

quality (VQ) features in addition to the standard features

improves the recognition rate by roughly 4%. The new
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group of interval (INT) features further improves the

classification by 2%. In plot (b) and (c), we compare

sadness vs. anxiety and boredom vs. anger. The discri-

minative dimension in this case is activation. In the

former case, INT features improve the discrimination

while VQ features do not. In the latter case, only a few

standard features are sufficient to distinguish between

boredom and anger. In plot (d) and (e), we study the

potency dimension which distinguishes anxiety from

anger and sadness from boredom. Along this dimension,

neither the VQ nor the INT features contribute remark-

ably to the classification for a large number ~Nf of selected

features.

The conclusion from these experiments is clear: The

new set of harmony features is useful for emotion

recognition, but not equal for all emotion dimensions. It

seems to be distinctive for the valence (plot a) and, in part,

for the activation (plot b) dimension. But the deep

relationship between pitch intervals and emotion percep-

tion is still an open question.

5.4. Six-class results

Fig. 6 shows the result when we classify all six basic

emotions happiness, sadness, anger, anxiety, boredom,

and neutral by a single stage (flat) Bayesian–GMM
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classifier. Again, we observe a considerable improvement

of the recognition rate by roughly 4% and 2%, respectively,

when we use the VQ and INT features in addition to the

standard ones.

Tables 2 and 3 present the confusion matrices when a

total number of ~Nf ¼ 50 features were selected from the

StandardþVQ feature groups (Table 2) and from the

Standardþ VQ þ INT feature groups (Table 3). The first

column indicates the given emotion. The numbers in each

row represent the percentage of patterns classified to

different emotions. Clearly, the use of harmony features

significantly improves the classification of anger, in parti-

cular against happiness. Also the recognition of boredom

is improved. As a price, the state neutral becomes more

confused with other emotions. The average recognition

rate over all emotions is improved by 2%.

6. Conclusion

The contributions of this paper are twofold. First we

gave a quick review of automatic emotion recognition

from speech signals. Then we presented a novel set of so-

called harmony features based on the psychoacoustic

perception of pitch intervals and chords from music

theory. We discussed their properties. First experiments

have shown that these new features are correlated to the

valence and activation dimension of emotion and are

able, if used in addition to the state of the art features, to

improve the recognition performance. Future works

include experiments with the triad features in (8), an

optimization of the dissonance function dðsÞ in (6), a

study of these harmony features in other classifiers or

combinations of classifiers, and an evaluation of these

harmony features with more realistic non-acted emo-

tional speech.
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