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ABSTRACT

High-resolution subspace based direction-of-arrival (DOA) estima-

tion requires a number of assumptions about the signal and antenna.

In our application automotive radar, among many practical prob-

lems, signals are often correlated and the antenna is not calibrated.

This difficult combination has been seldom addressed in the liter-

ature. In this paper, we study their simultaneous impact on DOA

estimation, describe a so called “coherent model error interference”

phenomenon, propose a prewhitening scheme for algebraic subspace

based DOA estimation, and show some simulation results.

Index Terms— automotive radar, high-resolution DOA estima-

tion, calibration, model error, decorrelation

1. INTRODUCTION

Automotive radar sensors are used for many driver assistance and

safety systems such as adaptive cruise control (ACC), lane change

monitoring, brake assistant, collision warning and prevention. In

present automotive radar systems, only targets in different distance

and velocity cells can be resolved. The increasing demand on safety

requirements leads to efforts improving the DOA estimation to al-

low resolution of targets even in the same distance-velocity cell. The

DOA resolution using beamformers is poor since automotive radar

have typically a low antenna aperture due to size and cost restric-

tion. A natural solution is thus the use of well known high-resolution

methods for DOA estimation, in particular the family of subspace

based methods [1] because they are relatively easy to implement.

These methods, however, require a number of assumptions about the

signal and antenna which are, unfortunately, not always satisfied in

automotive applications. At least for the radar sensor we currently

develop, we are facing a number of practical problems: a small num-

ber of snapshots, colored radar clutter, sometimes strongly correlated

signals (for standing ego and target vehicle), and model errors.

In this paper, we address a difficult situation, the simultaneous

occurrence of correlated signals and signal model errors. Using cal-

ibration [2, 3, 4], we can correct the model errors, but at the expense

of colored noise. Correlated signals can be dealt with decorrelation

algorithms [1]. They rely on assumptions about the array structure,

e.g. a uniform linear array (ULA). If these are violated, e.g. due to

model errors, the performance degrades. We study this effect. The

colored noise is also transformed by the decorrelation algorithms.

We propose a prewhitening procedure for subspace estimation in

combination with calibration and decorrelation.

The paper is organized as follows. Section 2 briefly reviews

the concept of subspace based high-resolution DOA estimation. In
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section 3, signal model errors and the concept of calibration are in-

troduced. In section 4, we briefly review different decorrelation al-

gorithms. In section 5, we study the effect of residual calibration

errors when using decorrelation algorithms. A prewhitening pro-

cedure is proposed in section 6 to enable even algebraic subspace

based methods for DOA estimation in combination with calibration

and decorrelation. Section 7 shows some simulation results.

2. SUBSPACE BASED DOA ESTIMATION

We assume p far field narrow band source signals s(t) impinging on

a ULA. The received signal x(t) can be modeled as

x(t) = As(t) + n(t) (1)

where A = [a(θ1) . . . a(θp)] is the steering matrix, a(θ) = [1,
ejτ(θ), ..., ej(M−1)τ(θ)]T is the steering vector for the DOA θ, s(t)
denotes the radar signals, and n(t) describes the sensor noise. In

our automotive application, a ULA of M = 8 sensors is used and

only a fairly small number of 12 snapshots is available for DOA

estimation [5].

Let R = E[x(t)xH(t)] be the sensor spatial correlation matrix.

Under ideal assumptions of spatially i.i.d. sensor noise as well as un-

correlated source signals and sensor noise, efficient subspace based

methods can be applied for high-resolution DOA estimation. Using

an eigenvalue decomposition of R, the signal subspace Us and noise

subspace Un can be obtained:

R = ARsA
H + σ2

I = UsΛsUs
H + UnΛnUn

H . (2)

Rs = E[s(t)sH(t)] is the signal correlation matrix, Λs = diag(λ1,

... λp) contains the p dominant signal eigenvalues and Λn = diag(
λp+1, ... λM ) the remaining noise eigenvalues. By exploiting the

signal subspace matrix Us or noise subspace matrix Un with or-

thonormal columns, efficient subspace based DOA estimators like

MUSIC and ESPRIT can be applied. For coherent signals, Rs is

rank deficient and Us has a rank smaller than p. By using decorre-

lation algorithms such as spatial smoothing and forward backward

averaging [1], the original rank can be restored. This will be dis-

cussed in more details in section 4.

3. CALIBRATION

For a real antenna array, the true steering vector å(θ) deviates from
the ideal one a(θ). The array imperfection can be modeled by

å(θ) = Qa(θ) (3)
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where Q is a square calibration matrix. Gain and phase mismatches

between different antenna elements can be modeled by a complex di-

agonal matrix QGP. The mutual coupling between antenna elements

is typically described by a full but diagonally dominant matrix QC.

Both QGP and QC do not depend on DOA. Angle-dependent model

errors are due to sensor position inaccuracy [6] or a nonideal dielec-

tric lens as in our case [7]. For simplicity, we first consider angle-

independent model errors.

The signal model becomes then

x(t) = QAs(t) + n(t) = Ås(t) + n(t). (4)

The first task is to estimateQ from a number of calibration measure-

ments, which are sensor signals for a single emitter at given calibra-

tion DOAs. After the estimation of the calibration matrix Q̂ [2, 3, 4],

the second task is DOA estimation for new sensor signals based on

Q̂.

There are two different ways to use the estimated calibration

matrix Q̂ [7]. The first approach is to process the received sensor

vector x(t) as usual:

1) estimate the noise subspace matrix Ûn from the correlation ma-

trix of x(t).
2) use Q̂ to correct the array manifold Q̂a(θ).
3) use the corrected array manifold Q̂a(θ) in a DOA spectrum like

MUSIC

m(θ) =
‖Q̂a(θ)‖2

‖ÛH
n Q̂a(θ)‖2

. (5)

This approach is called “manifold-correction”. Its main advantage

is that the noise n(t) remains spatially white. This simplifies the

subspace discrimination and order estimation. The main drawback

is that decorrelation algorithms and algebraic DOA estimators like

rooting methods and ESPRIT cannot be applied since we lose the

ULA property due to Q̂a(θ) even if the ideal array is a ULA.

The second approach is to restore the ideal steering vector by

using the inverse calibration matrix:

1) apply the inverse calibration matrix to the received data vector:

x̃(t) = Q̂
−1

x(t) = Q̂
−1

QAs(t) + Q̂
−1

n(t) (6)

≈ As(t) + ñ(t)

2) apply decorrelation algorithm to (6) if necessary.

3) estimate the signal or noise subspace from the new correlation

matrix

R̃ = E(x̃(t)x̃H(t)) ≈ ARsA
H + R̃n (7)

where ñ(t) is now a colored noise and apply DOA spectrum or

algebraic methods for DOA estimation, see section 5.

This calibration method is referred to as “data-correction”. Its main

advantage is the restored ULA property of A.

4. DECORRELATION

Decorrelation algorithms such as spatial smoothing (SS) and forward

backward averaging (FBA) [1] are used to restore the rank of the

signal correlation matrix Rs when signals are highly correlated or

coherent. They make use of array symmetries such as shifting and

centrosymmetry. For a ULA, both methods are applicable. Without

loss of generality, we study one group of coherent signals below, i.e.

rank(Rs) = 1 regardless of p. The correlation matrix using FBA to

the ideal signal model (2) is

Rfb =
1

2
(R + JR

∗

J) (8)

ULA
=

1

2
A
“

Rs + D
−(M−1)

R
∗

s (D
−(M−1))H

”

A
H + σ2

I

where J is an M -by-M exchange matrix, whose components are

zero except for ones on the anti-diagonal and D = diag(ejτ(θ1),
..., ejτ(θp)). Obviously, the rank of the smoothed signal correlation

matrix can be increased at most by one, allowing a maximum of two

coherent signals to be decorrelated.

Using SS with K overlapping subarrays containing each L =
M − K + 1 sensor elements, the correlation matrix is obtained as

Rss =
1

K

K
X

k=1

Rk (9)

ULA
= AL

 

1

K

K
X

k=1

D
(k−1)

Rs(D
(k−1))H

!

A
H
L + σ2

I

where Rk is the correlation matrix of the k-th subarray and AL

is the steering matrix for a ULA with L elements. With SS, the

rank of the smoothed signal correlation matrix can be increased by

at most K − 1, which is also the size of the dimension reduction of

the smoothed correlation matrix.

Using a combination of both methods, called forward backward

spatial smoothing (FBSS), the correlation matrix is computed as

Rfbss =
1

2K

K
X

k=1

(Rk + JR
∗

kJ) (10)

ULA
= AL

1

2K

K
X

k=1

 

D
(k−1)

Rs(D
(k−1))H+

D
(−M+k)

R
∗

s (D
(−M+k))H

!

A
H
L + σ2

I.

Here, the rank of the smoothed signal correlation matrix can be in-

creased by at most 2K−1. Table 1 summaries the maximum number

of coherent signals that can be decorrelated.

Algorithm Max. no. coherent signals

FBA 2

SS K

FBSS 2K

Table 1. Properties of decorrelation algorithms

5. PREWHITENING FOR DOA ESTIMATION AFTER

DATA-CORRECTION CALIBRATION

One problem after the data-correction calibration in (6) is the colored

noise. The sensor correlation matrix is given in (7) with

R̃n = Q̂
−1 E(n(t)nH(t))Q̂−H = R̃

1/2
n R̃

H/2
n (11)

where R̃
1/2
n is the matrix square root of R̃n. R̃n is given if we know

E(n(t)nH(t)), e.g. if n(t) is spatially white. Below we propose one

prewhitening procedure which enables even the application of alge-

braic subspace DOA estimators after calibration and decorrelation:
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1) estimate the calibration matrix Q̂ from calibration measurements

and apply data-correction calibration as in (6).

2) apply decorrelation to (6) as described in section 4. The new

sensor correlation matrix has the same structure as in (7) with

modified A, Rs, and R̃n, see section 4. The new R̃n after decor-

relation can be computed by inserting (11) into the first line of

(8), (9) or (10). Let R̃
1/2
n be the matrix square root of this new

noise correlation matrix after calibration and decorrelation.

3) perform a prewhitening with W = R̃
−1/2
n on (7):

WR̃W
H ≈ WARsA

H
W

H + WR̃nW
H

(12)

= WARsA
H
W

H + I

4) compute the signal subspace Ũs of WR̃WH which spans the

same column space as WA.

5) computeUs = W−1Ũs = R̃
1/2
n Ũs to restore the ULA structure

of A.

6) apply a DOA estimator (e.g. ESPRIT) toUs for DOA estimation.

6. COHERENTMODEL ERROR INTERFERENCE

We now study the simultaneous occurence of model errors and cor-

related signals. Since the estimated calibration matrix is not perfect,

we can write

Q̂
−1

QA = A + E (13)

where E accounts for the residual errors after calibration. As the

steering vectors of a ULA are linearly independent for d ≤ λ/2,
it is always possible to rewrite each of the p columns of the error

matrixE as a linear combination of the sameM linearly independent

steering vectors a(θE,ν) at some fictitious DOAs θE,ν (1 ≤ ν ≤
M ),

E =

"

M
X

ν=1

α1,νa(θE,ν), ...,
M
X

ν=1

αp,νa(θE,ν)

#

. (14)

The choice of θE,ν is arbitrary. Therefore, we can rewrite (6) as

x̃(t) = (A + E)s(t) + Q̂
−1

n(t) (15)

=

p
X

k=1

 

a(θk) +

M
X

ν=1

αk,νa(θE,ν)

!

sk(t) + Q̂
−1

n(t).

Obviously, the residual calibration error can be interpreted as ad-

ditional coherent signals because the steering vectors a(θE,ν) and

a(θk) in (15) share the same random signal sk(t). Without decor-

relation, the residual calibration error just represents a small addi-

tional error leading to a subspace estimate with small errors. With

decorrelation, however, the residual calibration error is equivalent to

additional coherent interferences. As the number of coherent inter-

ferences is now as high as the number of sensor elements (assuming

αk,ν �= 0), we get the maximum possible number of decorrelated

signals according to Table 1. Of course, the strength and the “di-

rection” of these artificial interferences depend on the residual cal-

ibration error E which itself is a function of the steering matrix A.

This phenomenon is called coherent model error interference. It only

happens if we apply decorrelation algorithms and the signal model

suffers from model or, after calibration, residual calibration errors.

It will limit the performance of DOA estimation depending on the

magnitude of E.

To illustrate this effect, the eigenvalues of a simulated correla-

tion matrix are depicted in Fig. 1. There is only one strong signal

with a signal to noise ratio (SNR) of 40dB in Fig. 1(a) and 90dB in

Fig. 1(b). There is also a small model error E with 20 log10 ‖E‖ /
‖A‖ = −18.2dB. We used 12 snapshots to estimate the correlation

matrix. The eigenvalues are shown in logarithmic scale for the orig-

inal correlation matrix R and for the FBSS correlation matrix Rfbss

using two subarrays (K = 2). For 40dB SNR, the sensor noise is

stronger than the coherent model error interferences and there is only

one large signal eigenvalue in both R and Rfbss. If SNR = 90dB, R
shows only one dominant eigenvalue, while Rfbss shows four eigen-

values considerably larger than the sensor noise level, which is the

maximum number of coherent signals that can be decorrelated ac-

cording to Table 1. These “new” signal eigenvalues (no. 2 to 4 in
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Fig. 1. Eigenvalues for a single target plus residual calibration errors

with and without FBSS decorrelation (K = 2).

Fig. 1(b)) are called “artificial model error eigenvalues”. They are

the result of applying decorrelation algorithms to the model errors.

If one of the two factors, decorrelation due to correlated signals and

calibration due to array imperfection, is missing, there will be no

artificial model error eigenvalues. If those artificial eigenvalues are

higher than the sensor noise level, they will degrade the subspace

discrimination and DOA estimation. In particular, we can roughly

estimate the maximum SNR difference of the wanted signals that

still can be resolved. In Fig. 1(b), for example, the artificial model

error eigenvalues are about −40dB below the strongest signal eigen-

value. If the DOA estimator is capable to resolve two signals when

both of them have a SNR of at least 15dB, then the maximum SNR

difference between both signals is 25dB, no matter how high the ab-

solute SNR of both signals is with respect to sensor noise. Therefore,

the system performance regarding SNR difference and the DOA res-

olution capability are greatly limited by model errors or residual cal-

ibration errors. Note that angle-dependent model errors can also be

modeled as residual calibration error like in (13).

7. SIMULATIONS AND RESULTS

We use MATLAB to simulate calibration measurements, calibration,

and DOA estimation under typical automotive radar conditions. The

antenna is an eight element ULA with element spacing d = λ for a

DOA range of interest [−8◦, 8◦] (long range radar). The array im-

perfection is described by the calibration matrix Q = QGPQC. QGP

is a diagonal matrix modeling the gain and phase mismatch. While

the gain mismatch is modeled by a lognormal distribution with zero

mean and standard deviation 1dB, the phase mismatch is uniformly

distributed over [0, 2π]. The coupling matrix QC contains ones on

the main diagonal. All other elements are lognormally distributed

in amplitude and uniformly distributed over [0, 2π] in phase. The

mean of lognormal distribution is −10dB for coupling between di-

rect neighbours and −15dB for the rest. The standard deviation is
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Fig. 2. Decorrelation treats residual calibration errors as coherent

signals and degrades the DOA estimation

2dB in both cases. We use 12 snapshots in both calibration mea-

surements and DOA estimation. The simulated calibration measure-

ments are taken in the DOA range [−20◦, 20◦] with the DOA step

1◦. The calibration algorithm by Kortke [4], which outperforms the

calibration algorithm by Pierre and Kaveh [2] as well as by See [3],

is used to estimate the calibration matrix Q [7]. We perform two

experiments for DOA estimation. In each experiment, we calculate

the root mean squared error (RMSE) from all DOA estimates of 250

trials. Table 2 summaries the signal conditions and algorithm details.

Experiment 1 Experiment 2

no. of signals 2 2

DOA θ1 = −8◦, −7◦, ...,
8◦, θ2 = θ1 + 3◦

θ1 = −8◦, −7◦, ...,
8◦, θ2 = θ1 + 3◦

SNR 60dB, 20dB equal, x-axis

correlation uncorrelated coherent

sensor noise spatially white spatially white

calibration SNR x-axis 50dB
calibration data-correction data-correction

decorrelation no / FBSS (K = 2) FBSS (K = 2)
prewhitening yes no/yes

DOA estimator TLS-ESPRIT TLS-ESPRIT

Table 2. Signal conditions and algorithm details

In the first experiment, we study the performance degradation

of artificial model error interference on DOA estimation (Fig. 2). As

the SNR in calibration measurements varies, the accuracy of the esti-

mation calibration matrix Q̂ and hence the residual calibration error

changes. Without decorrelation, there is no problem in subspace dis-

crimination and DOA estimation of two uncorrelated signals. If we,

however, apply decorrelation to the same uncorrelated signals, the

decorrelation treats the residual calibration errors as coherent signals

and raises some noise eigenvalues to artificial model error eigenval-

ues, making the DOA estimation of the weak signal (20dB) difficult.
The conclusions from this experiment are: 1) For strongly correlated

or coherent signals, we of course have to apply decorrelation. But in

the presence of model errors or residual calibration errors, the decor-

relation will introduce disturbing model error eigenvalues and limit

the performance of DOA estimation. Hence no decorrelation should

be applied if the signals are uncorrelated. 2) If both correlated sig-

nals with different SNR and model errors occur simultaneously, we

have to either enhance the calibration accuracy or switch to more

complex DOA estimators like maximum-likelihood (ML) methods,

which are better capable of dealing with correlated signals. How-

ever, the model errors will also limit the performance of ML meth-

ods.

In the second experiment, we study the effect of prewhitening
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Fig. 3. Prewhitening after data-correction calibration

on DOA estimation (Fig. 3). Data-correction and FBSS decorrela-

tion are applied to the array output of two coherent signals. This

changes the spatially white sensor noise to a colored one. Without

the prewhitening as described in section 5, the DOA estimation be-

comes worse for low SNR. With the prewhitening, the threshold re-

gion of SNR is shifted to the left considerably. For a RMSE of 0.4◦

as required in our automotive radar, there is a SNR improvement of

1.7dB. The improvement is even larger for larger model errors as

shown in other simulations which we can not include due to limited

space.

8. CONCLUSIONS

In this paper, we studied subspace based DOA estimation in the

presence of both correlated signals and model errors. We described

the phenomenon of coherent model error interferences. Decorrela-

tion algorithms interprete model errors or residual calibration errors

as coherent signals and degrade the DOA estimation if the signals

have different power. We also proposed one prewhitening procedure

which enables subspace based DOA estimation even in combination

with data-correction calibration and decorrelation.
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