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Disambiguation of TDOA Estimation for Multiple
Sources in Reverberant Environments
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Abstract—This paper presents a novel approach to estimate
the time difference of arrival (TDOA) for multiple sources in
reverberant environments. It resolves ambiguities in TDOA esti-
mation caused by multipath propagation and multiple sources.
By exploiting two TDOA constraints, the raster condition and the
zero cyclic sum condition, we are able to identify and reject the
echo path TDOAs and to assign the direct path TDOAs correctly
to different sources. For the latter purpose, an efficient algorithm
for the synthesis of approximately consistent TDOA graphs has
been developed. A real experiment demonstrates the superior
performance of our algorithms.

Index Terms—Disambiguation of TDOA estimation in multi-
path multisource environments (DATEMM), multiple sources,
raster matching, reverberant environments, synthesis of consis-
tent graphs, time difference of arrival (TDOA) ambiguity, TDOA
estimation, zero cyclic sum matching.

I. INTRODUCTION

T
HE ESTIMATION of time difference of arrival (TDOA)

from the signals of a microphone array plays an important

role for many applications like acoustic source localization and

beamforming [1], [2]. Two approaches are well known for this

task: generalized cross-correlation (GCC) and blind estimation

of the room impulse response. In the former case, the TDOA

estimate is the peak position in the cross-correlation between

two microphone signals [3], [4]. In the latter case, the room

impulse responses are estimated by an adaptive eigenvalue

decomposition [5]. Both approaches have been approved in

many single source scenarios. However, the TDOA estimation

remains a difficult problem for multiple sources in reverberant

environments because the multipath propagation, the presence

of multiple sources, and periodic signals make the TDOA

estimation ambiguous.

One idea to combat this problem is to extend the single

source impulse response technique [5] to the multiple source

case by splitting the multi-input multi-output system to several

single-input multi-output systems. Usually, this is achieved

Manuscript received August 06, 2007; revised July 22, 2008. Current version
published October 17, 2008. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Hiroshi Sawada.

J. Scheuing was with the Chair of System Theory and Signal Processing,
University of Stuttgart, 70550 Stuttgart, Germany. He is now with Bosch
Engineering GmbH, 74232 Abstatt, Germany (e-mail: jan.scheuing@LSS.uni-
stuttgart.de).

B. Yang is with the Chair of System Theory and Signal Processing, University
of Stuttgart, 70550 Stuttgart, Germany (e-mail: bin.yang@LSS.uni-stuttgart.
de).

Digital Object Identifier 10.1109/TASL.2008.2004533

either under the ideal assumption that each source is exclusively

active during some time intervals [6]–[8] or by a blind source

separation [9], [10]. Another completely different idea is to

scan the volume of interest for possible sources by maximizing,

e.g., the steered response power (SRP) [11].

In this paper, we present a novel approach for disambiguation

of TDOA estimation in multipath multisource environments

(DATEMM) [12], [13]. It is based on a fairly simple observation

of two TDOA constraints implying information redundancy.

By applying these constraints to TDOA estimates derived

from, e.g., GCC, the ambiguity of TDOA estimation can be

significantly reduced. The first constraint is that the extremum

positions of a cross-correlation between two microphone sig-

nals appear in a well-defined distance which can be predicted

from the extremum positions of the corresponding autocor-

relations of the microphone signals. Under ideal conditions,

combining the cross-correlation with the autocorrelations will

uniquely identify the desired direct path TDOA and reject all

ambiguous cross-correlation extrema caused by echo paths. The

second TDOA constraint is the zero cyclic sum of TDOAs over

any number of microphones as long as the TDOAs originate

from the same sources and the same propagation paths. This

provides an useful mean to assign TDOA estimates to different

sources.

In Section II, we formulate the signal model and the TDOA

estimation problem. Then we analyze different TDOA ambi-

guities in Section III and show the basic ideas of DATEMM in

Section IV. In Section V, we present an algorithm exploiting

the information redundancy contained in the autocorrelation of

the microphone signals. By using a so-called raster matching

approach, we show how to identify and reject the echo path

TDOAs. Section VI formulates the problem of combining

TDOA estimates of different microphone pairs in the frame-

work of consistent TDOA graph. Based on the zero cyclic

sum constraint, we search for groups of matching TDOAs by a

synthesis of consistent TDOA graphs. We present an efficient

synthesis algorithm based on consistent triples. Section VII

describes a real experiment to locate multiple sources in re-

verberant environments. It demonstrates the effectiveness and

localization accuracy of our algorithms.

II. SIGNAL MODEL

We assume acoustic sources and microphones. We also

assume a linear channel from source to microphone con-

taining a total number of propagation paths. Neglecting

noise and assuming omnidirectional characteristics of sources

1558-7916/$25.00 © 2008 IEEE
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and microphones, the discrete-time signal of the th microphone

is given by

(1)

is the signal of source . and are the ampli-

tude and (integer) delay of path between source and micro-

phone , respectively. All delays are sorted in ascending

order, i.e., for . The TDOA between path

of microphone and path of microphone for source is

(2)

We assume that the line-of-sight propagation condition is sat-

isfied for all pairs of source and microphone. Hence, all direct

paths exist and are denoted by the path index ; otherwise,

a localization would be hardly possible.

The goal of TDOA estimation is to estimate a source TDOA

vector

(3)

of length for each source subject to four requirements.

• All TDOAs in should originate from direct paths only.

• All TDOAs in should originate from the same source.

• The vector should be as complete as possible (few

missing elements).

• The TDOA estimation should be computationally as effi-

cient as possible.

While the last two requirements represent soft wishes, the first

two requirements are mandatory because otherwise we would

obtain a wrong source position estimation. Unfortunately, a

number of reasons make the TDOA estimation ambiguous and

difficult. Below, three different types of TDOA ambiguity are

analyzed using simple scenarios [12]. For notational conve-

nience, we drop the index or in (1) if we consider only one

source or one path.

III. TDOA AMBIGUITIES

A. Ambiguity Due to Periodic Signals

The first ambiguity is well known. Speech signals contain

voiced segments which show a high periodicity. The same also

happens for many natural and machine sounds. The periodic

extrema in the autocorrelation of the source signals will also

appear in the cross-correlation of the microphone signals, even

for a single source without multipath propagation. GCC [4] have

been proposed to combat this problem.

B. Multipath Ambiguity

The second TDOA ambiguity is caused by the multipath

propagation. For a single source signal propagating

on paths to microphone , we obtain the signal

(4)

Fig. 1. Assuming a direct path (solid) and an echo path (dashed) from the
source to each of the two microphones, four TDOA values corresponding to four
hyperbola (dotted) are possible. Only the hyperbola of the direct path TDOA
� passes the source location.

If is zero mean and white, the cross-correlation

between the two microphone signals

and will show extrema at the TDOA positions

(5)

We are only interested in the direct path TDOA

. All other TDOA values involve at least one echo

path and are called echo path TDOAs. They correspond to wrong

hyperbola of possible source location as shown in Fig. 1. The

problem is how to determine which of the extrema in

the cross-correlation represents the desired direct path

TDOA.

C. Multiple Source Ambiguity

The third TDOA ambiguity is due to multiple sources. As-

suming a direct path propagation of source signals, the th

microphone signal is

(6)

Here, denotes the direct path delay from source to micro-

phone . If all source signals are zero mean, white, and uncor-

related, the cross-correlation will show extrema at the

TDOA positions

(7)

The difficulty is to assign them correctly to the sources such

that TDOAs of the same source are grouped together as in (3).

By considering microphone pairs where each pair

contributes extrema, there are different possibilities to

construct one length- TDOA vector whose each element can

take possible TDOA values. Any erroneous combination of

TDOAs will likely cause a phantom source; see Fig. 2.

In practice, all three types of ambiguity occur simultaneously,

making the TDOA estimation and grouping even more difficult.

Fig. 3 shows the generalized cross-correlation PHAT [4] of two

microphone signals as two speakers talked simultaneously in

a medium-reverberant room; see Section VII for more details

about the experiment. Since the GCC shows many peaks, it is
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Fig. 2. Combination of TDOAs originating from different sources causes a
phantom source.

Fig. 3. Generalized cross-correlation of two microphone signals for two
sources in a reverberant room.

Fig. 4. Relationship between extremum positions in auto- and cross-correla-
tion.

not trivial to estimate the two direct path TDOAs (indicated by

dashed lines) and to assign them correctly to both sources.

IV. PRINCIPLES OF TDOA DISAMBIGUATION

A. Raster Condition

Below, we present a novel approach DATEMM [12] to re-

solve these TDOA ambiguities. It is based on two simple obser-

vations. The first one is the relationship between the extremum

positions in the cross-correlation and autocorrelation of the mi-

crophone signals. For simplicity, we consider the single source

and two path scenario in Fig. 1 again. Fig. 4 shows the four ex-

tremum positions in the cross-correlation . It also shows

the extremum positions of the two autocorrelations

and . Obvi-

ously, the cross-correlation extrema appear in well-defined dis-

tances which can be predicted by the extremum positions in the

autocorrelations.

Let

(8)

be two microphone signals. If is zero mean and white,

the autocorrelations and show, in addition to the

zero-lag extrema and , four other extrema at the po-

sitions , , and

, . They coincide with the differences

of the cross-correlation extremum positions

(9)

for any direct or echo path . This condition is referred to as the

raster condition. Since the direct path always has the shortest

delay, , and in (9) are positive. This implies for the

first sensor that the cross-correlation extremum of the

echo path is always right to the extremum of the di-

rect path 0. In contrast, for the second sensor , the extremum

of the echo path is left to the extremum of the

direct path 0. In Fig. 4, the relationships in (9) are illustrated by

arrows below . The arrows have a length equal to

or . The arrow direction is defined in such a way that the

arrow of the first sensor points from left to right and

the arrow of the second sensor points from right to left,

respectively. Combined with the previous observation of “echo

path extremum is right/left to direct path extremum for senor

,” we conclude that each arrow points from the direct path ex-

tremum to the echo path extremum for the corresponding sensor.

Clearly, the direct path TDOA is that extremum in

which shows only arrow tails and no arrowheads. This raster

matching approach combines the extremum positions of both

auto- and cross-correlations and enables us to identify the de-

sired direct path TDOA even in a reverberant environ-

ment.

B. Zero Cyclic Sum Condition

The second important observation is as follows. For each

subset of microphones and

the same number of corresponding direct or echo paths

, the following zero cyclic sum condition

(10)

always holds for TDOAs originating from the same source

[14]. In (10), each path delay occurs two times with

opposite signs. If the cyclic sum is not zero, either 1) different

paths for the same microphone are used or 2) different sources

are involved. This zero cyclic sum matching allows us to group

TDOA estimates of different microphone pairs according to

their sources and hence to avoid phantom sources like in Fig. 2.

In DATEMM, we use two additional criteria for TDOA dis-

ambiguation.

• The direct path amplitudes in (1) are always positive.

Hence, we only search for the maxima instead of extrema

in the cross-correlation [15].

• Due to the triangular inequality, each direct path TDOA

between two microphones can never exceed in magnitude
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Fig. 5. Number of direct path and echo path hits. The desired direct path TDOA
� has the highest number of direct path hits (arrow tails) 4.

the distance between the two microphones divided by the

speed of sound. Any TDOA estimate beyond this geomet-

rical upper bound is discarded.

V. RASTER MATCHING

In the following, we assume that a set of TDOA estimates

has been computed for each microphone pair by GCC.

In the ideal case, contains all direct path TDOAs of

sources and no echo path TDOAs. In reality, estimation errors

will cause both false detection (echo path TDOA accepted) and

miss detection (direct path TDOA rejected). While a false de-

tection is typically caused by echo paths, a miss detection of a

source is usually due to the weak amplitude of that source signal.

In general, a miss detection is more critical than a false detec-

tion in our application. While a rejected direct path TDOA is

lost for ever, echo path TDOAs in can still be identified by

DATEMM. Hence, we strongly recommend an overestimation

for the initial TDOA estimation.

In addition, we also compute the autocorrelations of all mi-

crophone signals. The positive positions of the strongest auto-

correlation extrema of the microphone signal are col-

lected in the set . They are used to identify the echo path

TDOAs in . In a first attempt, the raster condition in (9) mo-

tivates a search for all pairs of TDOAs whose differ-

ence matches an autocorrelation extremum position

with (11)

If such a pair has been found, that TDOA assigned to an arrow-

head can be rejected immediately as Fig. 4 illustrates. Unfor-

tunately, this hard decision would not work in practice due to

several reasons.

First, the raster condition (9) is necessary but not sufficient.

It is theoretically possible that two TDOA estimates from

caused by different paths or different sources match one of the

autocorrelation extremum positions. If we erroneously reject a

direct path TDOA too early based on the matching of only one

pair of TDOAs, this direct path TDOA is lost in all future steps.

In order to prevent this from happening, we propose to count

all direct path hits (arrow tails) and echo path hits (arrowheads).

Fig. 5 shows the number of direct path and echo path hits in a

scenario with one direct and two echo paths between one source

and each of the two microphones , . In this case, the desired

direct path TDOA is that cross-correlation maximum po-

sition with the highest direct path hits 4.

Second, the raster condition (9) is not satisfied exactly due to

estimation errors and quantized time delays. Instead of a perfect

raster match, we tolerate an approximate raster match

(12)

where the so called tolerance width of raster match (TWRM)

is typically in the order of a few samples. In addition,

we introduce a quality value for each TDOA estimate

. In the case of GCC for TDOA estimation, it is defined

by

(13)

with . For each TDOA estimate , its initial

quality value is the positive cross-correlation amplitude .

It is then increased or decreased during the subsequent raster

matching. The sets

contain those autocorrelation extremum positions from and

which match a pair of cross-correlation TDOA estimates

in the sense of (12). is a nonnegative sym-

metric function with the width . It is called the tolerance

function of raster match (TFRM) and assigns a high/low score

to a good/bad raster match. One simple example is the triangular

function

if

if
(14)

The sign function in (13) adds/subtracts a weighted

magnitude of the involved autocorrelation extremum or

to/from the quality value if is likely a direct/

echo path TDOA. This can be easily seen from Fig. 4 whether

corresponds to an arrow tail ( for or

for ) or an arrowhead.

The final decision about the TDOA estimate is based on

the final quality value of

is viewed as
a direct path TDOA, if

an echo path TDOA, otherwise
(15)

All direct path TDOA estimates are collected in a reduced set

. We used the threshold in (15).

This choice is intentionally conservative in order to ensure that

no direct path TDOAs are rejected at this early step. Echo path

TDOAs which are still contained in can be detected by using

the zero cyclic sum condition in the next section.

VI. CONSISTENT TDOA GRAPHS

Starting from the sets of direct path TDOA estimates de-

termined in the previous section, we now apply the zero cyclic
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Fig. 6. Fully connected consistent TDOA graph with seven nodes and the re-
lated source TDOA vector � .

sum condition (10) to examine which of the TDOA estimates of

different microphone pairs belong together to the same source.

We study this combination problem in the framework of consis-

tent graphs.

A. TDOA Graph

As shown in Fig. 6, the content of a source TDOA vector

defined in (3) can be visualized by a weighted directed graph.

It is called a TDOA graph. Each node represents a microphone

and each directed edge between two nodes has a weight corre-

sponding to the TDOA value between these two microphones.

The edge direction is given by the order of microphones in the

cross-correlation. A change of the edge direction has the effect

of a sign change of its weight. For simplicity, we use integer

TDOA values for illustration. However, the concept of TDOA

graphs applies to real-valued weights as well.

A fully connected TDOA graph corresponds to a source

TDOA vector of length . For incomplete graphs, some

vector elements are missing. The aim of this section is to

compose TDOA graphs with the highest number of nodes and

the maximum degree of connections from the sets of TDOA

estimates .

A TDOA graph consisting of exact TDOA values is always

consistent in the sense that the sum of all edge weights along any

closed path is zero according to the zero cyclic sum condition

(10). This is very similar to Kirchhoff’s second law for electrical

circuits (voltage graphs). The difference is that we are interested

in the synthesis instead of analysis of consistent graphs. In the

graph theory, a closed path with a zero sum of weights is some-

times called a zero-cost cycle. Thus, a consistent graph only con-

tains zero-cost cycles. Unfortunately, the problem of synthesis

of consistent graphs has never been addressed in the literature

to our knowledge. This is the reason why we have to develop

efficient synthesis algorithms by ourselves.

B. Consistency Check of a TDOA Graph

Below, we first analyze the complexity of different strategies

to check the consistency of a given TDOA graph. We assume a

fully connected graph with nodes and edges. For sim-

plicity, we count each addition or comparison as one operation.

In analogy to electrical voltage and potential, we can define

a time potential at each node as its TDOA value with respect to

Fig. 7. Six independent triples sharing a common reference node �.

Fig. 8. Six independent triples without a common reference node.

any reference node. Let the time potential of the reference node

be zero. The time potentials of the remaining nodes are

then determined by their TDOAs relative to the reference node.

In order to check the consistency of the graph, we only need

to compare the remaining edge weights between these

nodes with the corresponding potential differences. This

leads to

(16)

operations. It can be shown that this is also the minimum com-

plexity of consistency check.

Alternatively, we can check the consistency of inde-

pendent triples; see Fig. 7. A triple is a three-node subgraph.

Since the consistency check of a triple requires two operations,

the total complexity is .

The advantage of this approach over the time potential one is

that there is no need to define a reference node. Instead of the

six independent triples in Fig. 7 sharing a common reference

node, we can also check the six independent triples in Fig. 8

without a reference node. It can be shown that the remaining

dependent triples need not to be studied

further since their consistency follows immediately from that of

the independent triples.

C. Strategies of Graph Synthesis

Given the sets of direct path TDOA estimates for the mi-

crophone pair , there exist different strategies to synthesize

a TDOA graph. The brute force approach tries all possible com-

binations of TDOA values for edges. Since a TDOA graph

can be incomplete, we consider possibilities for the

edge different edge weights and the case of a missing

edge. The total number of possible TDOA graphs is the product

of for all edges with

(17)

For microphones and TDOA estimates

for each microphone pair, the number of TDOA graphs to be

checked for consistency is

. This is unacceptable for real-time applications.

One possibility to reduce the complexity is the use of the time

potential approach introduced in the previous subsection. This

requires the choice of a common reference node for all sources.

Obviously, a reference node should be connected to all other
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Fig. 9. Incomplete TDOA graphs make a choice of a common reference node
for all sources difficult.

nodes in order to determine their time potential. This is, how-

ever, difficult in practice since TDOA graphs are often incom-

plete. Due to miss detection of TDOA, different edges in TDOA

graphs of different sources are missing as illustrated in Fig. 9 for

source and . For source , node 1 is a good reference node

since it is connected to all other nodes. The complete TDOA

graph as shown can thus be synthesized. In contrast, node 1

is a bad reference node for source since it is only connected

to three nodes. Hence, only the bold subgraph containing four

nodes can be synthesized; the other TDOA estimates are wasted.

The situation becomes even worse if we choose any other ref-

erence node than node 1. For this reason, we do not follow the

time potential approach. Instead, we propose a synthesis algo-

rithm based on consistent triples.

D. Consistent Triples

A TDOA triple involves three nodes and three edges. It is

consistent if its cyclic sum of edge weights is zero. Note that

besides the desired direct path TDOA triples, other combina-

tions of TDOAs can also form a consistent triple. There are

two reasons for this phenomenon of false consistency. First, the

zero cyclic sum condition (10) is necessary but not sufficient for

TDOAs originating from a common source. Theoretically, sce-

narios are possible where TDOAs of different sources , , and

satisfy

(18)

Of course, the probability of this occurrence is small for ran-

domly placed sources.

The second, more critical situation is the mirrored micro-

phone as shown in Fig. 10. The microphone is close to a wall.

When we model sound propagation and reflection by acoustic

rays like the image source method [16], a reflecting wall has

the same effect on a microphone signal as a corresponding mir-

rored microphone . Clearly, both the direct path graph b) and

the graph c) in Fig. 10 containing two echo path TDOAs

and are consistent because of

for any (19)

This false consistency cannot be identified at this stage. We will

see in Section VII that the residual error in the source position

estimation will help us to resolve this ambiguity.

Another problem is that a TDOA triple is never exactly con-

sistent in practice because TDOA estimates are quantized and

noisy. As a consequence, we look for approximately consistent

Fig. 10. Both the microphone � and the mirrored microphone �� cause a consis-
tent TDOA graph in b) and c).

TABLE I
PROCEDURE OF THE SYNTHESIS ALGORITHM

TDOA triples and graphs whose cyclic sum of TDOAs is ap-

proximately zero. In analogy to the tolerance function of raster

match in Section V, we also introduce a nonnega-

tive, symmetric, and smoothly decreasing tolerance function of

triple match (TFTM) to take the approximate con-

sistency into account. The width of is character-

ized by the parameter tolerance width of triple match (TWTM)

. As for in (14), the choice of is

up to the user.

E. Efficient Synthesis Algorithm

Below, we present an efficient algorithm for the synthesis

of approximately consistent TDOA graphs based on consistent

triples. The starting point is the sets of TDOA estimates for

all microphone pairs . We assume that each TDOA esti-

mate has a corresponding quality value .

Table I illustrates the basic procedure of our synthesis algo-

rithm. In the first step S1, we search for all approximately con-

sistent TDOA triples. For each microphone triple , let

denote the set of approximately consistent TDOA triples

with

(20)

The total number of TDOA triples to be checked is

(21)

This number can be further reduced if the TDOA sets are stored

as sorted lists. Since the number of consistent TDOA triples is

much smaller than the total number of possible TDOA triples

(22)

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 10:54 from IEEE Xplore.  Restrictions apply.



SCHEUING AND YANG: DISAMBIGUATION OF TDOA ESTIMATION FOR MULTIPLE SOURCES 1485

Fig. 11. Three consistent triples with pairwise common edge weights are com-
bined to a consistent quadruple.

the complexity of our synthesis algorithm is significantly re-

duced.

In step S2, we compute a quality value

(23)

for each consistent TDOA triple from . It takes both the

preciseness of the zero cyclic sum match and the quality values

of the TDOA estimates into account. The larger the value is, the

higher the quality of the TDOA triple

Then we choose that TDOA triple

with the highest triple quality as the initial triple for our syn-

thesis algorithm at step S3. For each of the remaining “fourth”

microphones , we try to extend

the initial TDOA triple to a consistent TDOA quadruple in-

volving the four microphones at step S4. We search

for at least two other TDOA triples in the new sets ,

, and with pairwise common edge weights. If, for

example, the triples and

have common edge weights

we build a fully connected consistent TDOA quadruple by com-

bining these three triples; see Fig. 11.

We repeat the synthesis of quadruples for all fourth

nodes. Those fourth nodes for which a complete con-

sistent quadruple has been successfully composed are collected

in a new set with . The consistent quadruples

with the common initial triple form a consistent but not

fully connected star graph at step S5. Fig. 12 shows such a star

graph for on the left-hand side. The missing edges

among the fourth nodes can be completed by triples at step

S6 which have two edges in common with the star graph. One

such completing triple from is shown in Fig. 12. Clearly,

any other matching triple from or can also be used

for this purpose.

Remember that, due to consistent echo path TDOA triples

like in Fig. 10(c), different star graphs for the same initial triple

are possible. Fig. 13 illustrates this phenomenon for

nodes. Starting with the boldface initial triple, four quadruples

have been synthesized for the remaining three nodes .

While the nodes and each produce only one quadruple, the

first two quadruples caused by the fourth node may originate

from the true microphone and its mirror. At this position, we are

not able to decide which one is the correct one. Hence, we ac-

cept all four quadruples and combine them to two star graphs as

shown in Fig. 13. Then we complete these star graphs by looking

Fig. 12. Combining quadruples with a common initial triple (bold line) results
in a star graph. Then the star graph is completed by matching triples (dotted
line).

Fig. 13. When combining quadruples to a star graph, echo path triples result
in different star graphs.

for triples which connect the nodes . Each processed star

graph returns a final TDOA graph which hopefully combines all

direct path TDOAs from the same source. All triples used in a

synthesized TDOA graph are summarized in a set with

.

One important feature of our synthesis algorithm is that no

further consistency check is necessary during the synthesis

process. Starting from (approximately) consistent triples, our

synthesis algorithm guarantees by construction that each closed

path and each subgraph of the resulting TDOA graph are

(approximately) consistent.

F. Multiple Sources

After the synthesis of one or several TDOA graphs, we have

to initialize the search for a new graph. In order to avoid the

synthesis of identical graphs, those TDOA triples which have

already been used in existing TDOA graphs are not considered

as initial triples. Among the remaining consistent TDOA triples,

we again select that with the highest quality as the initial triple

and precede as before. The complete synthesis algorithm is ter-

minated, if each triple has been used in a TDOA graph or if the

remaining triples cannot be combined even to quadruples. These

isolated triples are rejected since a three-dimensional source lo-

calization requires at least four microphones.

In practice, the number of TDOA graphs returned by the

above described synthesis algorithm is larger than the true

number of sources, mainly due to echo path triples. Typically,

TDOA graphs corresponding to true source positions are highly

connected while erroneous graphs caused by echo path triples
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Fig. 14. Position of microphones ��� and sources ��� in the lab.

Fig. 15. Room impulse response measured in the lab.

have a small number of nodes and edges. This motivates the

introduction of the connectivity for each synthesized graph.

It measures the degree of connection of the graph and how good

the zero cyclic sum condition is satisfied for each valid triple

(24)

The maximum value of is . The larger

is, the higher the connectivity of the graph. Our experiments

show a significant gap in between correct and erroneous

TDOA graphs in most cases. Hence, the number of high-con-

nectivity graphs can be used to estimate the number of sources

if it is unknown.

VII. EXPERIMENTAL RESULTS

A. Localization System

We evaluated our proposed algorithms for TDOA estimation

in a real-time demonstration system for multiple speaker local-

ization. Our small rectangular acoustic lab is shown in Fig. 14. It

has the size m m m. The floor and the wooden walls are

covered by a thin carpet. The ceiling is an acrylic glass. Fig. 15

shows a measured room impulse response. The reverberation

time is ms. speech signals are played back

from two loudspeakers at the position

(25)

in meters. Due to fans and illumination, there is a weak back-

ground noise. The signal-to-noise ratio (SNR) is roughly 50 dB.

capacitive microphones are randomly placed at the po-

sitions

(26)

Fig. 16. One block of eight microphone signals.

as shown in Fig. 14 to record the speech signals. The micro-

phone signals are sampled at 96 kHz and processed by a Linux

PC (kernel 2.6, dual-core CPU at 2.8 Hz). This high sampling

rate corresponds to a fine range quantization of 3.6 mm at the

sound speed of 343 m/s.

B. TDOA Estimation of a Single Signal Block

Our experiment is based on a block length of 4096 samples.

This corresponds to a speech frame of approximately 43 ms.

Fig. 16 shows one block of eight microphone signals. During

this time, the source signals contain a fricative [f] of one speaker

and a diphthong [au] of the other speaker.

For each signal block, we calculated autocorrelations

and generalized cross-correlations (GCC-PHAT)

[4]. For each GCC , we selected the 15 strongest maxima

and stored their positions in . For each autocorrelation

, the positions of the four strongest extrema were col-

lected in . Then we applied the raster matching as described

in Section V to . This reduces the total number of TDOA

estimates for all microphone pairs from to

148. The exact number of desired TDOAs for two sources is

. The reason for our intentional overestimation is the

conservative detection in (15) in order to avoid miss detections.

As one example, we consider the cross-correlation between

microphone 1 and 2. The microphones have a distance 1.87 m,

corresponding to an upper bound of samples for

the TDOA. From the source and microphone positions, we cal-

culated the true direct path TDOAs to 25.8 and 326.7 samples.

The cross-correlation is shown in Fig. 17 with

(27)

The autocorrelation extrema are located at

(28)

By applying the raster matching, we found a number of

TDOA pairs which match certain autocorrelation extremum
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Fig. 17. Cross-correlation between microphone 1 and 2 and its 15 maxima.

Fig. 18. Pairs of TDOAs whose distances match autocorrelation extremum po-
sitions.

positions from . They are depicted in Fig. 18. If we

only choose the TDOA without arrowheads, there would be just

one valid TDOA at the position 438 which does not correspond

to any of the true source positions. By using the quality value

in (13) with and the detection rule in (15),

the set is reduced to

(29)

Obviously, eight echo path TDOAs have been rejected, while

the true direct path TDOAs 21 and 327 are still contained in

.

Now we combine the seven selected TDOA candidates from

with those of the other microphone pairs by synthesizing

consistent graphs. We used while searching

for consistent triples. Our synthesis algorithm as proposed in

Section VI returned 17 approximately consistent TDOA graphs

with the following connectivity values: 18.2, 12.2, 8.9, 3.9, 3.8,

3.7, 3.3, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.9, 2.7, 2.5 as defined

in (24). The first four graphs are shown in Fig. 19. We only

study graph I to III further. The other graphs contain only four

connected nodes like graph IV and will be discarded due to

their low connectivity.

Graph I connects seven of the eight microphones. A total

number of 21 TDOA estimates fit together to one big approxi-

mately consistent graph corresponding to one source position.

Graphs II and III are quite similar. They connect six and five

microphones, respectively. Interestingly, both graphs share

the same TDOA values between microphone 1, 2, 7, and 8.

They seem to originate from the same second source. Only the

TDOAs involving sensor 3 are different in both graphs. The

explanation is that sensor 3 is in one graph the true microphone

and in the other graph the mirrored microphone with respect to

Fig. 19. Synthesized approximately consistent TDOA graphs.

a wall; see Fig. 10. Which graph is the correct one cannot be

answered here. In the next section, we will resolve this ambi-

guity by using the residual TDOA error after source position

estimation.

A similar explanation applies to graph IV. It is a modification

of graph I caused by a mirrored microphone. The triple (4,6,8)

is identical in both graphs. The sensor 7 in graph IV represents

a mirror of the true microphone 7 in graph I.

C. Source Position Estimation and Accuracy

All TDOA estimates in graphs I–III are converted to distances

by using the sound speed of 343 m/s. We used the simple spher-

ical interpolation (SI) method [17] to estimate the position of

the two sources. Microphone 7 served as the reference sensor

for the SI method. Correspondingly, only 6, 5, and 4 TDOA es-

timates with respect to microphone 7 from graph I to III are

used in source localization. The estimated source positions for

the three TDOA graphs are

(30)

Clearly, and are good estimates for and in (25),

although further improvement could be achieved by using the

complete TDOA graph. does not correspond to any source

position since graph II contains echo path TDOAs caused by a

mirrored microphone.

We introduce two accuracy measures for the source localiza-

tion. The residual position error

(31)
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TABLE II
COMPARISON OF LOCALIZATION ACCURACIES

is simply the norm of the difference between the true source

position vector and its estimate . It is, however, only com-

putable in simulations since it requires the knowledge of the true

source position. The residual TDOA error is defined as

(32)

is the TDOA vector estimate from a synthesized TDOA graph.

It is the input for computing the source position estimate . Then

we calculate the expected TDOA vector from the source po-

sition and the known microphone positions. Since, in general,

and have a varying (but equal) vector length depending

on the synthesized TDOA graph, we normalize against

.

Notice that, in contrast to , can be computed for any

TDOA vector in practice since it does not need the true source

position. Taking the fact into account that is a function of the

true microphone positions while depends on the implicitly

available microphone positions in a TDOA graph, the residual

TDOA error actually compares the implicit microphone po-

sitions in the TDOA graph with the true ones. If contains di-

rect path TDOA estimates only, the value of is small. If,

however, also contains echo path TDOAs caused by mirrored

microphones or TDOAs of different sources, will become

large.

Table II shows both accuracies of our algorithm for the signal

block in Fig. 16. Indeed, of graph II is much larger than

that of graph I and III as expected because the implicit sensor 3

in graph II is a mirrored microphone. We see that the residual

TDOA error after source position estimation provides an ad-

ditional mean to resolve the ambiguity of TDOA graphs. It can

also be used to estimate the number of sources if it is unknown.

In order to study the robustness of our method with respect to

noise, we added additional white noise to the loudspeaker sig-

nals. For the same signal block as before, the estimated source

positions vary up to 1 cm for an SNR of up to 20 dB. Up to

15 dB, both sources were still detected. If we further reduce the

SNR, the sets of GCC-PHAT maxima often do not contain the

true TDOA values, and thus no consistent TDOA graphs can be

constructed anymore.

D. Comparison to Other Localization Methods

We also compared our algorithm to other localization tech-

niques. We applied two different approaches to the same signal

block. First, we simply selected the two largest maxima of GCC-

PHAT for each microphone pair and assigned them manually

to the two sources, assuming that we know a priori the true

TDOAs. We applied the same SI method to all seven TDOA

Fig. 20. Number of brute force graphs versus number of consistent triples.

estimates with microphone 7 being the reference sensor. The

source position estimates are

(33)

We also implemented the SRP-PHAT method in [11]. After a

time-consuming full search of the SRP spectrum with a spatial

resolution of 2 cm, the two maxima for the same signal block

was found at

(34)

Its computation time is about several thousand times of that of

our algorithm (assuming efficient C implementations in both

cases) even for our small lab. Table II summarizes the residual

position and residual TDOA error for these two methods.

Clearly, our algorithm outperforms both of them.

E. Evaluation of Continuous Localization

In a continuous operation of our localization system, the av-

erage CPU load is about 40%. For each signal block of length

43 ms, the average computation time of our complete localiza-

tion algorithm consisting of

• preprocessing like voice activity detection,

• cross- and autocorrelations,

• raster matching,

• synthesis of consistent graphs,

• source position estimation,

is roughly 17 ms. The main computational effort is the calcula-

tion of the cross- and autocorrelations. This low complexity is

mainly due to the significant reduction of ambiguous TDOAs

by raster matching and the synthesis of consistent graphs.

Fig. 20 illustrates the efficiency of the synthesis of consistent

graphs. Each point represents one signal block. The abscissa de-

notes the total number of possible graphs for this

block according to (17) if we perform a brute force search. The

ordinate shows the number of consistent triples for this block

which are used in the synthesis of consistent graphs. For the par-

ticular signal block we studied in this section, the total number

of 148 TDOA estimates after the raster matching would lead to

different brute force graphs. Our ap-

proach finds only 153 consistent TDOA triples.

In order to simplify the evaluation of the accuracy of a contin-

uous localization, we replaced the speech source signals by two

white noise signals. This ensures a constant number of simul-

taneously active sources for each signal block and there is no
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Fig. 21. Residual position errors � in cm for source � (solid) and source �

(dotted) in a continuous localization. (a) Our method. (b) SRP-PHAT.

need to estimate the number of sources. The experimental setup

and the algorithms are exactly the same as before. Fig. 21 shows

the residual position error of both sources for a total number of

121 blocks. Apart from a few outliers, the localization accuracy

of our method in (a) is around 5 cm. This is pretty good since

the loudspeakers have a membrane diameter of roughly 5 cm.

For the SRP-PHAT method, we only performed a local search

for each source within a cube of edge length 60 cm around the

true source position to reduce the computation time. The spatial

resolution of the SRP-PHAT search is again 2 cm. The localiza-

tion accuracy is shown in (b). GCC-PHAT is not evaluated in

this continuous localization due to its difficulty of assigning the

cross-correlation maxima to different sources.

VIII. CONCLUSION

In this paper, we have presented a novel approach for TDOA

disambiguation. By using additional extremum positions of au-

tocorrelations of the microphone signals, we have developed a

raster matching algorithm to identify and reject wrong TDOA

estimates caused by the echo paths. Based on the zero cyclic sum

condition of TDOAs originating from the same source, we have

formulated the TDOA disambiguation problem in the frame-

work of consistent graphs. We have developed an efficient syn-

thesis algorithm of TDOA graphs based on consistent triples.

We also introduced different levels of quality for TDOA esti-

mate, TDOA triple, TDOA graph, and residual TDOA error.

Finally, the efficiency and the real-time capability of our algo-

rithms are demonstrated in a real experiment. We believe that

our algorithms can also be combined with other localization

techniques like the impulse response estimation and SRP search.
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