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ABSTRACT

Due to ambiguities and estimation errors, combining time dif-

ferences of arrival (TDOAs) for simultaneous localization of

multiple acoustic sources is a challenging task. This paper

studies this problem under the framework of consistent graphs

and proposes an efÝcient algorithm to determine TDOAs orig-
inating from the same source.

Index Terms— Delay estimation, graph theory, position

measurement

1. INTRODUCTION

Microphone-array based acoustic source localization systems

usually consist of two estimation steps: First, the TDOA at

each microphone pair is estimated using either generalized

cross-correlation [1] or blind channel identiÝcation [2] meth-
ods. Knowing the positions of sensors and the velocity of

sound, the source is then localized by least-squares meth-

ods like in [3, 4, 5]. This procedure has been approved in

many single source scenarios. However, litte research work

has been spent on the simultaneous localization of multiple

sources without tracking. One problem is that each sensor

pair producesmore than one TDOA estimate in a multi-source

scenario and it is not clear which TDOAs belong together to

the same source. This paper addresses this TDOA ambiguity

and proposes an algorithm to combine TDOAs of the same

source.

Throughout the paper, a true (but unknown)TDOAwill be

denoted by ta,kl,µν when it results from source a∈{1, . . . , N},
sensor pair (k, l) with k, l∈{1, . . . , M}, and the correspond-
ing paths µ and ν between the source and sensors. The indices

µ = ν = 0 denote the direct paths used in localization. µ≥ 1
and ν≥1 indicate echo paths which make the localization dif-
Ýcult. Different TDOA estimates at sensor pair (k, l) will be
represented by τkl,σ . The problem now is to combine TDOA

estimates from different sensor pairs to estimate the so called

source TDOA vectors

ta = [ta,12,00, ta,13,00, . . . , ta,M−1 M,00]
T , (1)

each containing all direct-path TDOAs of one source a. Clearly,

this combination is ambiguous, and as shown in Fig. 1, er-
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Fig. 1. Hyperbolas used for localization ofN =2 sources.

roneous combination of TDOAs means intersection of non-

matching hyperbolas for localization, which will cause phan-

tom sources.

As proposed by the authors in [6], the ambiguity can be

partly resolved by exploiting the condition that any cyclic sum

of TDOAs must disappear. This means

ta,kl,µkνl
+ta,lm,µlνm

+. . .+ta,pq,µpνq
+ta,qk,µqνk

= 0, (2)

where all involved TDOAs stem from the same source a and

share the same paths µs = νs with s ∈ {k, l, m, . . . , p, q}.
In the following, the problem of combining TDOAs is

studied under the framework of consistent graphs. In sec-

tion 2, consistent graphs are introduced and the computational

complexity of different consistency checks is analyzed. Sec-

tion 3 discusses some practical issues on consistent graphs

of TDOA estimates. An efÝcient algorithm for the synthesis
of consistent graphs is shown in section 4. Finally, section 5

presents some results of a real-timemulti-speaker localization

system using the proposed approach.

2. CONSISTENT GRAPHS

As shown in Fig. 2, the content of the source TDOA vector ta
in (1) can be visualized by a directed and labeled graph. Each

node represents a sensor. Each directed branch between two

nodes is labeled by the corresponding TDOA value.
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Fig. 2. A fully linked, consistent TDOA graph with 7 nodes

and the related source TDOA vector ta.

The graph is called consistent, because the sum of all

branch labels along any closed path in the graph is zero ac-

cording to (2). This is very similar to Kirchhoff’s second law,

valid for electrical circuits (voltage graphs), except that we

replace voltage by TDOA values.

In the following, different strategies to check the consis-

tency of a graph are discussed and compaired in terms of their

computational complexity. Thereby, each addition and each

comparison is counted as one operation and we assume a fully

linked graph withM nodes.

Consistency check for node triples

A node triple consisting of 3 nodes and 3 branches requires

one addition and one comparison for its consistency check.

Since an M -node graph has
(

M
3

)

node triples, this strategy

consumes

Ctrip = 2 ·

(

M

3

)

=
M(M−1)(M−2)

3
(3)

operations.

Consistency check for n-tuples

In general, analyzing all
(

M
n

)

n-tuples with n≥3 will cause

Cn-tup =
n − 1

2n
M(M−1) · · · (M−n+1) (4)

operations, as there are
(n−1)!

2 different closed paths combin-

ing each n nodes and each path causes (n−1) operations.

Consistency check for pairs

In analogy to electrical voltage and potential, a time potential

can be deÝned at each node representing the time of arrival
with respect to a reference node of time potential 0. The con-

sistency check for all
(

M−1
2

)

branches not including the refer-

ence node can be reduced to a comparison of their labels with

the corresponding potential differences. This leads to

Cpair = 2 ·

(

M−1

2

)

= (M − 1)(M − 2) (5)

operations. Obviously, Cpair ≤ Ctrip ≤ Cn-tup holds for all

sensor numbersM .

3. SYNTHESIS OF CONSISTENT TDOA GRAPHS

In multi-source localization, the aim is not the analysis but

the synthesis of consistent graphs starting from sets of TDOA

estimates

Pkl = {τkl,1, τkl,2, . . . } (6)

of maybe differing cardinal numbers |Pkl| for different sensor
pairs (k, l). In the ideal case, |Pkl| is equal to the number of
sourcesN and each τkl,σ is equal to one of theN true direct-

path TDOAs ta,kl,00. In practice, TDOA estimates might not

exactly match their true values. Some true TDOAs might not

be estimated at all, and some additional τkl,σ might be pro-

duced by echo paths or other measurement errors. Below we

discuss the resultant effects on synthesis.

3.1. Synthesis complexity

As we cannot ensure that all N true TDOAs are contained

in each Pkl, we will usually try to increase |Pkl| above the
expected number of sources N . On the other hand, it may

happen that a true TDOA is not detectable at all at some sen-

sor pairs even for large |Pkl|, e.g., due to other strong sources
close to those sensors. In this case, the Ýnal graph will only be
partially linked. Hence, assuming a common cardinal number

|P| for all sensor pairs, we have to take |P|+1 possibilities for
each branch into account.

A brute force synthesis algorithm would thus check all

Cbf = (|P| + 1)(
M

2 ) (7)

possible graphs for consistency. Attempts to reduce this high

complexity to an order of |P|(M−1) by using the idea of time

potentials can be abandoned, as they implicitly assume that all

TDOAs involving the reference sensor have been successfully

estimated for all sources, which is not the case in practice.

Therefore, the lowest order of n-tuples to check for con-

sistency is three.
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3.2. Misleading consistencies

Besides the wanted direct-path TDOA graphs, other combi-

nations of TDOAs can form consistent graphs as well. There

are two explanations for these misleading consistencies:

Consistency due to sound reÞections

Condition (2) is also valid for echo-path TDOAs like

ta,kl,0µ+ta,lm,µ0+ta,mk,00 = 0 (µ > 0). (8)

Typically, sensor l is close to a wall here. Modelling sound

propagation by acoustic rays like the image source method

[7], a reÞecting wall has the same effect on a sensor signal as
a corresponding mirrored sensor, see Fig. 3. Clearly, both the

direct-path graph (Fig. 3b) and the echo-path graph (Fig. 3c)

are consistent and cannot be distinguished by condition (2).
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Fig. 3. A typical scenario with sound reÞections where
TDOA ambiguity occurs: Both path 0 and µ to sensor l pro-

duce TDOAs which combine to consistent graphs.

Accidental consistency

Equation (2) is necessary but not sufÝcient for TDOAs origi-
nating from a common source. Scenarios are possible, where

TDOAs of different sources a, b, and c satisfy

ta,kl,00+tb,lm,00+tc,mk,00 = 0. (9)

For randomly distributed sources however, the probability of

fully linked and accidentally consistent graphs is quite small.

3.3. Approximate consistency

Since TDOA estimates are derived from sampled and noisy

sensor signals, condition (2) is only approximately fulÝlled in
practice:

|τkl,σ1
+τlm,σ2

+. . .+τpq,σκ−1
+τqk,σκ

| < ε (10)

with τkl,σ1
≈ ta,kl,µkνl

, τlm,σ2
≈ ta,lm,µlνm

, . . .

This means that we will accept a deviation ε in the order of

some sampling periods. The choice of ε depends on both the

magnitude of the estimation errors τkl,σ − ta,kl,µν and the

summation length κ. In order to keep ε as small as possible,

short paths are preferred for the consistency check.

4. AN EFFICIENT SYNTHESIS ALGORITHM

Due to the discussions in section 3, we choose a graph synthe-

sis strategy based on triples. In the Ýrst step, we search for all
approximately consistent TDOA triples with all sensor triples.

For each sensor triple (k, l, m), let Tklm denote the set of ap-

proximately consistent TDOA triples (τkl,σ , τlm,̺, τmk,λ) we
have found. The total number of TDOA triples to be checked

is

M−2
∑

k=1

M−1
∑

l=k+1

M
∑

m=l+1

|Pkl||Plm||Pmk|.

Since typically |Tklm| ≪ |Pkl||Plm||Pmk|, the computational
complexity is signiÝcantly reduced because we only combine
(approximately) consistent TDOA triples in the following.

Starting with an initial triple (τkl,σ1
,τlm,̺1

,τmk,λ1
) from

Tklm and using an additional sensor p∈{1, . . . , M}\{k, l, m},
we search for at least two further triples in Tklp, Tkmp, and

Tlmp with pairwise common branch labels. If, e.g., the triples

(τkl,σ2
,τlp,ζ2

,τpk,ι2)∈Tklp and (τlm,̺3
,τmp,η3

,τlp,ζ3
)∈Tlmp

have common labels σ1 = σ2, ̺1 = ̺3, and ζ2 = ζ3, we build

a TDOA quadruple containing six different branches by com-

bining the three triples, see Fig. 4.
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Fig. 4. Combination of an initial triple (bold) with two match-

ing triples into one quadruple (dashed).

Two quadruples or higher order n-tuples are further com-

bined, if they have common brancheswith identical labels and

if at least one branch-connecting triple (dotted triple in Fig. 5)

exists. Implicitly subjoined triples like, e.g., the triples with

sensors (l, p, q) and (m, p, q) in Fig. 5 are also associated to
the TDOA graph.

Continuing this procedure, we Ýnd all possible consistent
and maximally linked graphs that include the chosen initial

triple. Note that no further consistency check in these TDOA

graphs is necessary, as each closed path is approximately con-

sistent by construction.

After we have found all approximately consistent TDOA

graphs containing the initial triple, we choose any not yet as-

sociated triple for the initialization of the next graph and re-

peat this procedure, until each triple is part of at least one

graph. In order to reduce accidental consistency, we Ýnally
reject all graphs containing only one triple.

IV ­ 503



3

4
6

2
4

1

4

3
1

2
4

1

6

1

6

⇒

q

p

m

l

k

6

4

3
1

3

4
6

2
4

1

Fig. 5. Combination of two quadruples having a common

initial triple (bold) with a branch-connecting triple (dotted).

The result is a fully linked n-tuple of order n=5 (dashed).

5. EXPERIMENTAL RESULTS

Using the proposed synthesis algorithm, the combination of

TDOA estimates to valid source vectors becomes a minor task

for the complete acoustic source localization system in terms

of computational complexity. Fig. 6 shows the number of all

possible graphs versus the number of consistent TDOA triples

in a real-time localization system, where two speech sources

are localized by 8 microphones in a reverberant environment.

The typical number of consistent TDOA triples is about 100.

Apart from echo-path graphs caused by sound reÞections,
the number of highly linked consistent graphs and the num-

ber of sourcesN match well in practice. Using the DATEMM

approach in [6], we identify and reject echo paths by exploit-

ing the autocorrelationmaxima before graph synthesis. Echo-

path graphs can also be determined during position estima-

tion, as they usually lead to a larger residual error in least-

squares methods.

Finally, we mention that the choice of initial triples signif-

icantly affects the speed of convergence of our synthesis al-

gorithm. High combination rates can be achieved by starting

with high-quality TDOA triples, where the cross-correlation

amplitudes are large. They are represented by an internal

quality measure in DATEMM.
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Fig. 6. Typical numbers of possible graphs versus the con-

sistent TDOA triples resulting from the same sets of TDOA

estimates.
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