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Abstract—In this paper we present a method to compensate
the image motion of a monocular camera on a moving vehicle
in order to detect obstacles. Due to the camera motion, the
road surface induces a characteristic image motion between
two camera shots. The motion of the camera is determined by
the use of odometric data received from the CAN-bus, and the
position and orientation of the road is continuously estimated
with camera self-calibration. This all leads to a motion field
which is predicted based on homography. To prevent the
drawbacks of the real camera perspective, different virtual
camera perspectives are presented in combination with motion
compensation. Possible virtual perspectives are the bird’s eye
view and image rectification. In addition, a non-linear camera
model is used which does not limit the range of obstacle
detection to a certain distance and efficiently uses the available
image information.

I. INTRODUCTION

Video cameras are becoming more and more important in

automotive applications. A variety of video-based Advanced

Driver Assistance Systems (ADAS) are already in use. Char-

acteristic is the use of a single video sensor for different

applications. A side view camera, for example, assists the

driver during a parking maneuver, is part of an Around View

Monitor, prevents side collisions and warns the driver of the

presence of obstacles in the blind spot.

In this paper, we address the detection of obstacles in

the adjacent lane of the vehicle. Possible applications are

the Lane Change Assistant or the Blind Spot Assistant. If

the driver intends to change lanes in the presence of an

obstacle, he is warned in order to prevent a collision. For

both applications it is important to detect objects regardless

whether it is a vehicle, motorcycle, bus or something else.

We make use of a monocular camera in combination with

odometric data (wheel speed and yaw rate). The basic idea

is to exploit the image motion for the detection of obstacles.

The road surface induces a specific image motion between

two successive frames if the camera has moved. Fortunately,

the image motion of static or moving objects differs from the

image motion on the road. Therefore, localizing the differ-

ences in the image motion leads directly to the identification

of possible threats.

One could imagine determining the image motion for each

image position, resulting in a motion field. This is well

known as both motion estimation and optical flow. When

the motion in the image is determined, it can be compared

to the image motion on the road. This idea is used in [1]–

[4]. Logically, the following question arises: What is the

image motion on the road? There are two possible solutions:

either the motion vectors are predicted based on a known

camera motion and road plane, or a model of motion vectors

is estimated which fits best to the measured optical flow.

The second solution is proposed in [5], [6]. However, the

calculation of the optical flow is difficult for automotive

applications, since the road has almost no surface structure

to reliably assign corresponding image points.

Motion estimation is in general difficult and compu-

tationally expensive. Therefore, the motion between two

consecutive images is often not explicitly calculated but

the current image is warped using the predicted optical

flow. The transformed image corresponds to the previous

image for points on the road, whereas image points located

on static or moving objects often significantly differ from

each other. The so-called Inverse Perspective Mapping (IPM)

is the basic idea to compensate the motion on the road.

Generally, the conversion of 2D image coordinates to 3D

world coordinates is ambiguous, since the depth is unknown.

In the presence of a road, the mapping becomes unique.

Furthermore, the obtained 3D world points can be projected

onto the second camera perspective and the mapping between

the previous and current images is established. If the road

is assumed to be flat, the transformation can be expressed

easily by a projective transformation, also called homography

or collineation. The motion compensation, for example, is

applied in [7]–[9] for obstacle detection.

The real perspective of the camera has the following dis-

advantages for motion compensation and obstacle detection:

There is no prediction for image points above the horizon.

The Region of Interest (ROI), namely the adjacent lane, is

only a subset of the image and the size of an object in the

image increases if the object is approaching the camera. This

complicates the processing of the image. For this reason, the

image is transformed to a top view or side view perspective

in [10]–[12] to simplify the image processing. This kind of

transformation is called Virtual Camera Perspective (VCP).

In this paper, we combine the motion compensation with

different VCPs. We predict the motion on the road as

mentioned before. The camera motion is computed based

on odometric data available from the CAN-bus. The road

is assumed to be flat. Both the camera motion and the

road plane require the exact position and orientation of

the camera, also known as the extrinsic parameters of the

camera. Recently, we presented a method for the calibration

of the extrinsic parameters in [13]. This method continuously



calibrates the camera parameters online. This enables a

reliable operation of the system even if the orientation of

the camera changes. Up until now, most of the video-based

ADAS rely on an offline calibration process with a fixed

extrinsic parameter set. To describe the motion on the road,

we determine a homography matrix. Besides a top view

perspective we also make use of image rectification, which

is well known in stereo vision. Additionally, we introduce a

non-linear camera model, which does not limit the range of

obstacle detection to a certain distance. Furthermore, it does

not replicate information like the pinhole camera model but

efficiently uses the available image information.

The outline of this paper is as follows: In Sec. II we

introduce the fundamentals. The estimation of the motion

of the camera is described in Sec. III-A. The calculation

of the motion field including motion compensation, and the

different virtual camera perspectives are presented in Sec. IV.

Finally, a conclusion is given in Sec. V.

II. BASICS

A. Camera projection

The underlying camera model is the pinhole camera. It de-

scribes the projection of a 3D object point Mv = [X,Y, Z]T

onto its image point mp = [up, vp]
T by

m̃p = λ

[
mp

1

]
= A [Re te]

[
Mv

1

]
(1)

where λ is a scalar factor for the normalization, see (4),

[Re te] are the extrinsic parameters, and A is the intrinsic

matrix. The intermediate step

m̃c = λ

[
mc

1

]
= Mc = Re Mv + te (2)

transforms the point Mv from the vehicle coordinate system

VCS to the point Mc in the camera coordinate system

CCS by an Euclidean transform. Re is a rotation matrix

with R
−1
e = R

T
e and te is a translation vector, resulting

in normalized coordinates mc = [uc, vc]
T . The intrinsic

transform between the normalized and the image coordinates

is defined by

m̃p = Am̃c and m̃c = A
−1

m̃p. (3)

Here, ”∼” represents homogeneous coordinates. The rela-

tionship between Cartesian coordinates m and homogeneous

coordinates m̃ is

λ ∈ ℜ\{0} : λ

[
m

1

]
= m̃. (4)

Therefore, homogeneous coordinates can be scaled arbitrarily

while maintaining the representation of the same point.

B. Vehicle coordinate system VCS

Without loss of generality, let us consider a VCS whose

origin is located on the road surface and below the camera’s

center of projection (COP). The z-axis of the VCS is pointing

vertically towards the camera, whereas the x-axis is pointing
parallel to the lateral profile of the vehicle into the direction

of travel. As a result, the x- and y-axis are on the road

surface.

C. Extrinsic parameters

The extrinsic parameters [Re te] were already defined in

(2). The Euclidean transform can be inverted as follows

Mv = R
T
e Mc + th with th = −R

T
e te. (5)

Based on the assumption in II-B, the COP has the coordinates

Mc = 0 in the CCS and Mv = th = [0, 0, hc]
T in the VCS,

where hc denotes the camera height. Since

te = −Re th, (6)

the extrinsic parameters can alternatively be expressed by the

rotation matrix Re and the camera height hc. The extrinsic

parameters and the VCS are illustrated in Fig. 1.
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Fig. 1. Definition of the extrinsic parameters Re and hc with respect
to the VCS, and the relationship between the motion in the VCS and the
motion of the COG defined by [Rv tv ] and [Rg tg], respectively

D. Relationship between the motion of the center of gravity,

the motion of the vehicle and the motion of the camera

The center of gravity (COG) of the vehicle is often used as

the reference point to model the motion of the vehicle. The

position of the COG with respect to the VCS is described

by the vector ts, which is typically known when the camera

is mounted to the vehicle. The motion of the vehicle can be

described by a translation vector tg and the rotation matrix

matrix Rg (see Fig. 1). The resulting motion in the VCS can

be expressed by an Euclidean transform as follows

M
′

v = Rv Mv + tv (7)

where M
′

v represents the same 3D point as Mv after the

vehicle has moved. See Appendix I for a detailed derivation

of Rv = R
T
g and tv = ts−R

T
g ts−R

T
g tg . In the following,

(2), (5) and (7) are combined to determine the motion of the

camera. If T is the elapsed time between two camera shots,

the motion of the camera in the CCS is

M
′

c = ReRvR
T
e︸ ︷︷ ︸

Rc

Mc + (−ReRvR
T
e te + Retv + te︸ ︷︷ ︸

tc

). (8)

The relationship between different coordinates of the same

object point in the VCS and the CCS before and after the

motion is illustrated in Fig. 2. The extrinsic parameters are

assumed to be identical for both camera shots.
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Fig. 2. Relationship between different coordinates

III. MOTION OF THE CAMERA BETWEEN TWO FRAMES

A. Motion of the vehicle

Modern vehicles are equipped with sensors, like the yaw

rate sensor, steering wheel sensor and wheel speed sensor,

which allow the estimation of the motion of the vehicle,

namely the rotation Rg and translation tg . The motion is

defined with respect to the COG, because many sensors are

calibrated in reference to the COG. Similar to [14], we use

the velocity and the yaw rate of the vehicle to estimate the

trajectory of the vehicle. The velocity v and the yaw rate φ̇
of the vehicle are assumed to be constant for the short time

interval T . Consequently, the trajectory has the shape of an

ideal circle
[
∆x
∆y

]
=

∫ T

0

v

[
cos(φ̇ t)

sin(φ̇ t)

]
dt = r

[
sin(φ̇ T )

1 − cos(φ̇ T )

]
(9)

where the radius of the circle is r = v/φ̇. The yaw of the

vehicle is defined by the angle φ = φ̇ T . The motion of the

vehicle is assumed to be planar. This means that the vehicle

rotates by the angle φ about the z-axis and the rotation matrix

Rg has the form

Rg =




cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


 . (10)

The angle φ is called the yaw angle. The roll and pitch of

the vehicle are neglected. The translation vector tg is defined

by

tg = [∆x,∆y, 0]. (11)

The last component of tg is zero, since the motion is assumed

to be planar. ∆x is the movement into the direction of travel,

whereas ∆y is the lateral motion of the vehicle.

The radius in (9) is undefined if the yaw rate is zero.

Nevertheless, the translation is tg = [v T, 0, 0]. To avoid the

case discussion, the radius can be reformulated by

r =
v T

2 sin( φ̇ T

2 )
≈

v T

2 φ̇ T

2

for |φ̇ T | ≪ π (12)

if the distance ∆s = v T of the circular motion is assumed

to be identical to the distance in a straight line. This

simplification is illustrated in Fig. 3.

The smaller the yaw angle φ is, the better the approxima-

tion is. We will discuss in Sec. III-B that the assumption of a

small yaw angle holds for our purpose. Using sin(2 φ̇ T ) =

COP

COG

∆s

φ

2

r

Fig. 3. The distance ∆s = v T of the circular motion versus the identical
distance in a straight line

2 sin(φ̇ T ) cos(φ̇ T ) and cos(2 φ̇ T ) = 1 − 2 sin2(φ̇ T ), the
radius of (12) substiuted into (9) leads to

[
∆x
∆y

]
= ∆s

[
cos( φ̇ T

2 )

sin( φ̇ T

2 )

]
with ∆s = v T. (13)

The simplification not only prevents numerical problems for

φ̇ = 0 but also enables easy adaption of the formula if the

acceleration of the vehicle is additionally considered. The

solution of the differential equation in (9) is more complex

if the velocity is modeled by v(t) = v + v̇ t. Combined with

the approximation in (13), the vehicle’s acceleration v̇ leads

directly to ∆s = v T + 1
2 v̇ T 2. The model of the yaw angle

can be extended similarly.

One could imagine that the yaw rate depends on the

velocity and steering angle of the vehicle. This is true and the

relationship is established in the area of vehicle dynamics.

Unfortunately, all derivations need vehicle-specific quantities

such as the wheel base etc. Additionally, they fail to predict

the yaw angle in the presence of crosswind and on sloping

roads. In comparison, a yaw rate sensor measures the real

rotation of the vehicle where the camera is attached, an

advantage that enables the direct determination of the yaw

angle without the knowledge of vehicle-specific parameters.

These are the main reasons to make use of the velocity

and yaw rate alone. It is worthwhile mentioning that further

sensory data is successfully integrated in systems like the

Electronic Stability Control (ESC) to determine the driver-

intended trajectory based on the steering angle etc. However,

the main contribution of this work is the use of odometric

data in video-based ADAS. We will show that our approach

is suitable for that purpose.

B. Access to odometric data

We obtain the velocity and yaw rate via the Controller

Area Network (CAN-bus) of the vehicle. The velocity sensor,

actually the wheel speed sensors, and the yaw rate sensor

have a temporal resolution of 20 ms. The quantization is

0.01 km/h and 0.04 ◦/s, respectively. Both values might be

different for other vehicles or sensors. The yaw rate and

velocity are depicted in Fig. 4 for a part of a typical drive.

The statistical analysis of more than 20, 000 km measured



data reveals that the yaw rate is less than 0.65◦/s for 50%
of the time, less than 1.07◦/s for 75% of the time, less than

1.65◦/s for 90% of the time and greater than 2.19◦/s for

only 5% of the time. A camera in an automotive application

normally operates with frame rates in the range of 10−50 fps.

This confirms the assumption |φ̇ T | ≪ π from the previous

section.

C. Filtering and synchronizing the sensor data

The yaw rate in Fig. 4 is obviously much more affected

by noise than the velocity. The Kalman filter has been

proven to reliably estimate a parameter set (state variables)

based on a known physical model (state space model) if

measurements are affected by noise. The transition state

model describes the fact that the velocity remains constant

or slightly changes if the vehicle accelerates between two

measurements. This has the advantage that the acceleration

of the vehicle can be directly integrated in the estimation

process. The measurement noise of the sensor data is also

part of the estimation. The Kalman filter is known to be used

for this purpose [15] and will not be covered in this paper.
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Fig. 4. Noisy yaw rate (top) and velocity (bottom) over time (400 seconds)

The temporal discretization of the transition state model

depends on the measurements. Unfortunately, the video

camera normally operates at a different temporal resolution

than the other sensors. For a proper operation, the required

velocity and yaw rate for the estimation of the trajectory

have to be in sync with the video data. There are different

solutions to this problem: either the required parameters are

interpolated or extrapolated from adjacent estimates of the

Kalman filter, or an asynchronous Kalman filter is applied.

Note that the latency of the sensors and the CAN-bus have

to be considered as well and the timestamps of the camera

should respect the shutter time.

IV. OBSTACLE DETECTION

A. Prediction of the image motion on the road

The motion on the road can be described by a homography

matrix Hc, if the road is assumed to be flat. The motion of

a point in image and normalized coordinates, respectively, is

defined by

m̃
′

p = AHc A
−1

m̃p and m̃
′

c = Hc m̃c (14)

if the point is on the road. It is known in literature [16] that

the homography matrix Hc for a plane Πc is defined by

Hc = Rc +
tc n

T
c

dc

. (15)

where the plane Πc : nT
c Mc−dc = 0 is defined with respect

to the first view. Rc and tc can be calculated using (8), if the

trajectory of the vehicle is estimated according to Sec. III-

A. With the definition of the VCS from Sec. II-B, the road

surface is defined by nv = [0, 0, 1]T and dv = 0. This plane
is transformed to a plane in the CCS by

Πc : nT
v R

T
e︸ ︷︷ ︸

nT
c

Mc − (dv + n
T
v R

T
e te︸ ︷︷ ︸

dc

) = 0. (16)

The form of Rv and the definition of the extrinsic parameters

in (6) simplifies the translation vector tc and the distance dc.

The relevant parameters required in (15) are finally:

Rc = ReRvR
T
e ,

tc = Re(Rvth − th + tv) = Retv,

nc = Re nv,

dc = −n
T
v R

T
e Reth = −hc.

This leads to a homography between two camera shots which

can be expressed by the matrix

Hc = Re

(
Rv +

tv n
T
v

−hc

)
R

T
e . (17)

Hence, the automatic calibration of the extrinsic parameters

proposed in [13] and the use of odometric data enables the

calculation of the homography matrix Hc.

B. Motion compensation

In the following, we assume that the homography between

two images is known. The intrinsic parameters of the cam-

era are calibrated offline, according to [17], and the lens

distortion is considered as well although it is not mentioned

explicitly. This allows the resampling of one of the images

in order to compensate for the motion on the road. In the

so-called forward transformation, we compute

Im([u, v]T ) = Ic(AHc A
−1 [u, v, 1]T ) (18)

according to (14), where Im is the motion compensated

image and Ic the current image, see Fig. 5. Additionally,

a subset of the resampling coordinates is depicted by the

blue points. Note that an interpolation is necessary because

the coordinates have non-integer values; we use bilinear

interpolation. The previous image is not resampled, but

points above the horizon are rejected - this is also indicated

by the blue points. After the compensation, Im is compared

with the previous image Ip by subtracting the intensity values

for each pixel as follows

Id([u, v]T ) = |Im([u, v]T ) − Ip([u, v]T )|. (19)

Fig. 5 (e) and (f) show this difference image and the result

of a simple pixel-wise threshold segmentation Id([u, v]T ) >
th. Obviously, only moving and static objects are segmented

as obstacles. Note that vehicles in the adjacent lane can be

detected independently of their velocity. This means that they

are detected even if they are traveling at the same speed as

the vehicle equipped with the camera. Unfortunately, the car

in the adjacent lane is only partially segmented as an object,

because it is almost homogeneous in color. Homogeneous



regions appear similar although they have shifted. However,

the lane markings, for example, overlay each other almost

perfectly. This demonstrates the accuracy of the underlying

motion field. We do not claim that a pixel-wise threshold

segmentation is the best method for obstacle detection in

this case, but it shows how simple it could be to implement

this. More advanced methods are presented in [?], [?], [11].

Fig. 5. From top left to bottom right: (a) previous image, (b) current
image, (c) previous image and horizon cropped, (d) current image motion
compensated and horizon cropped, (e) difference image, (f) pixel-wise
threshold segmentation

Fig. 6. From top left to bottom right: (a) previous image, (b) current
image, (c) previous image motion compensated and horizon cropped, (d)
current image and horizon cropped, (e) difference image and undefined
region cropped, (f) pixel-wise threshold segmentation

In the backward transformation, the previous image is

motion compensated by using H
−1
c instead of Hc. The

original and the transformed version of the previous image is

illustrated in Fig. 6. However, the backward transformation

has the problem that those image regions which are not

visible in the previous image remain undefined. This is

difficult to handle in practice, since the size of these regions

depends on the motion of the camera. Both the forward and

backward transformation have additional restrictions:

• The complete image is resampled but only a subset of

the image is required, namely the adjacent lane.

• No reasonable motion compensation is possible for

image points above the horizon.

• Cars in the adjacent lane appear with a different size

although their real size is almost identical. This makes

the segmentation difficult.

C. Virtual Camera Perspective (VCP)

To overcome the restrictions of the real camera perspective

mentioned in Sec. IV-B, an additional resampling of the

image data is performed. The resampling process can be in-

terpreted as the introduction of a virtual camera perspective.

There are two classes: either the centers of projection of the

virtual and real cameras are, or are not identical. The VCP

is realistic only if the COP remains the same. Otherwise, an

arbitrary resampling or the idea of an inverse perspective

mapping IPM can be applied. The image rectification in

stereo vision is a method of the first class. The bird’s eye

view, also known as top view, is a representative of the

second class and well known to be used as a VCP.

D. Virtual bird’s eye view

The advantages of a top view are demonstrated in [10].

Actually, the top view can be generated similar to Sec. IV-A

by a homography

Tt = A [re,1, re,2, te]V
−1 (20)

except that the homography matrix only depends on the

intrinsic matrix A and extrinsic parameters [Re te]. Note
that Re = [re,1, re,2, re,3]. The derivation can be found in

[17]. The matrix V has the structure

V =




αx 0 ox

0 αy oy

0 0 1


 (21)

and is therefore similar to the intrinsic matrix of an ideal

pinhole camera, with the difference that the road is sampled

instead of the image sensor. The sampling frequency and

an offset can be applied by adjusting [αx, αy] and [ox, oy],
respectively. In Fig. 7, the top view is combined with the

motion compensation. The range is limited to a distance of

≈ 20m. Even though the sampling on the road is equidistant,

the resampling coordinates in the image domain are not. The

advantage of the top view is that the real proportions of

the road are recovered. However, only the road is correctly

mapped, whereas other objects are unrealistically deformed.

Unfortunately, the resampled image contains only a small

fraction of the information available in the original image.

Fig. 7. From top left to bottom right: (a) previous image, (b) current image,
(c) previous image with top view, (d) current image motion compensated
with top view, (e) difference image, (f) pixel-wise threshold segmentation



Fig. 8. From top left to bottom right: (a) previous image, (b) current image,
(c) previous previous rectified, (d) current image motion compensated and
rectified, (e) difference image, (f) pixel-wise threshold segmentation

E. Image rectification

Image rectification is a transformation process in stereo

vision. It can be considered to be a rotation around the

center of projection. After rectification, the correspondence

problem is reduced to one dimension, namely the rows of

the image. We recommend the excellent work of [16] for

further information. The transformation process also uses

homography. Here, it is necessary to specify a homography

matrix for the transformation of the previous image Tp and

current image Ta:

Tp = ARp V
−1 and Ta = ARa V

−1. (22)

Rp and Ra are the corresponding rotation matrices. They

are calculated by making use of [Rc tc] as follows

Rp = [
−1

ax

(R−1
c tc),

1

ay

(ez×Rp,1),
1

az

(Rp,1×Rp,2)] (23)

and

Ra = [
−1

ax

tc,
1

ay

(Rc ez × Ra,1),
1

az

(Ra,1 × Ra,2)]. (24)

As mentioned before, they rotate the original perspective to

the new axially parallel alignment. The parameters ax, ay

and az normalize the column vectors of the rotation matrix.

Note that a rotation matrix is orthogonal. The rotation is

based on the idea that the first column vector of the matrix

rotates the x-axis of the new perspective to the baseline

between the two centers of projection, the second column

vector is chosen to be perpendicular to this baseline and the

original z-axis (ez = [0, 0, 1]T ), and the third column vector

is computed as the cross product of the first and second

column vector.

Fig. 8 shows the result of the rectification in combina-

tion with motion compensation. As expected, the resampled

images are realistic versions of an ideal pinhole camera.

However, the range is limited and the resampling is not

beneficial in terms of information redundancy.

F. Non-linear camera model

Until now, the virtual perspectives were defined by the

matrix V, which is derived from an ideal pinhole camera

model. We propose to use a non-linear camera model in-

stead of the linear pinhole camera model to improve the

Fig. 9. From top left to bottom right: (a) previous image, (b) current
image, (c) previous image non-linear rectified, (d) current image motion
compensated and non-linear rectified, (e) difference image and undefined
region cropped, (f) pixel-wise threshold segmentation

resampling and to increase the range of obstacle detection.

In principle, the transformation V
−1[u, v, 1]T is replaced by

[fx(u, v), fy(u, v), 1]T where fx(u, v) and fy(u, v) are non-

linear functions. Fig. 9 demonstrates the advantages of a non-

linear camera model in combination with image rectification

and motion compensation. The range of obstacle detection

is increased without reducing the image information in the

foreground. Note that in Fig. 7 and Fig. 8 the vehicle in the

background is not visible at all.

Actually, a non-linear function is used for fx(u, v) so that

the resampling coordinates are almost uniformly distributed.

In general, if fy(u, v) is independent of u, the epipolar

constraint remains unaffected. We use fy(u, v) = 1
αy

v−
oy

αy
.

Theoretically, the range need not to be limited since the

vanishing point is represented by the epipole. The problem is

that there is no information remaining in the vertical direction

of the resampled image. In practice, it is reasonable to limit

the range and to apply a beneficial non-linear resampling.

A series of segmentations over time are presented in

Fig. 10. The camera operates with a resolution of 640x240

pixels and a frame rate of 30 fps. For demonstration, only

every tenth image pair has been selected. It is easy to track

the segmentation, although the motion increases from left to

right.

V. CONCLUSION

We presented a method to detect obstacles in the adjacent

lane of a vehicle based on the image motion on the road.

The motion field is precisely predicted with the yaw rate and

velocity, if the extrinsic parameters of the camera are known.

The motion field is then used to compensate the motion

in the image. We perform a simple threshold segmentation

of the difference image, which is the subtraction of the

motion compensated image and the corresponding reference

image, in order to demonstrate the accuracy of the underlying

motion field. To simplify the image processing, the bird’s

eye view or image rectification is also used. However, the

range of obstacle detection is limited to a certain distance

and the resampling is not beneficial in terms of information

redundancy. We successfully applied a non-linear camera

model to overcome these drawbacks.



Fig. 10. Segmentation results over time, every tenth image is selected,
current image motion compensated and non-linear rectified on the left side,
pixel-wise threshold segmentation on the right side

APPENDIX I

Assume a coordinate system with the same orientation

as the VCS but with the COG as the origin. The relation

between a point Mg in the new coordinate system and a

point Mv in the VCS is expressed by

Mv = Mg + ts and Mg = Mv − ts. (25)

Remember that ts is the position of the COG with respect

to the VCS. The motion of the vehicle defined in Sec. III-A

can be summarized as follows

Mg = Rg M
′

g + tg and M
′

g = R
T
g Mg − R

T
g tg. (26)

The combination of the previous equations leads finally to

M
′

v = R
T
g︸︷︷︸

Rv

Mv + ts − R
T
g ts − R

T
g tg︸ ︷︷ ︸

tv

. (27)
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