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Abstract
In this paper we study the relevance of so called high-level
speech features for the application of speaker independent emo-
tion recognition. After we give a brief definition of high-
level features, we discuss for which standard feature groups
high-level features are conceivable. Two groups of high-level
features are proposed within this paper: a feature set for the
parametrization of phonation called voice quality parameters
and a second feature set deduced from music theory called har-
mony features. Harmony features give information about the
frequency interval and chord content of the pitch data of a spo-
ken utterance. Finally, we study the gain in classification rate by
combining the proposed high-level features with the standard
low-level features. We show that both high-level feature sets
improve the speaker independent classification performance for
spontaneous emotional speech.
Index Terms: emotion recognition, high-level features, har-
mony features, voice quality parameters

1. Introduction

In the area of emotion recognition usually low-level features of
basic acoustic characteristics are used. Among them, prosodic
and spectral parameters are the most popular. In contrast to
other areas of acoustic signal processing, e.g. music informa-
tion retrieval (MIR), the idea of using high-level speech features
is not very common in the community of speech signal process-
ing. There are mainly two reasons that are responsible for that
fact. On the one hand, for historical reasons, spectral speech
features are still state of the art in many speech processing ap-
plication, e.g. automatic speech recognition. On the other hand,
there are no apparently well performing and universally appli-
cable high-level features for the different speech applications.

In contrast to low-level features that can be extracted by
a straight forward method, high-level features are always based
on a certain theory or model. These models can be adopted from
other disciplines and should be verified by expert knowledge.
Mathematic formulas deduced from this expert knowledge lift
the features onto a higher-level and distinguish them from stan-
dard low-level features. That requires interdisciplinary research
in cooperation with for example, linguists, psychologists, med-
ical scientists, or even musicians.

For the application of emotion recognition, we see the po-
tential for high-level features mainly in three speech feature
groups: intonation, spectral information of voiced speech, and
speech rhythm. For these feature groups low-level features do
not satisfactory describe the complexity of the information con-
tained in the speech data. For both of the first two groups a
feature set is proposed in this paper. Rhythm features had to be
built upon the low-level despriptors of both energy and duration
but are not presented here.

The paper is organized as follows. Section 2 summarizes
the basic acoustic low-level speech features. Then two ap-
proaches for the extraction of high-level features called voice

quality parameters and harmony features are introduced in sec-
tion 3 and 4, respectively. In section 5 the proposed high-level
and low-level features are compared by three classification ex-
periments using the FAU AIBO database [1].

2. Standard speech features

In the area of emotion recognition, mainly two important feature
groups can be distinguished. These are spectral features and the
well known prosodic features. Statistical functionals are applied
to mathematically describe the shape of the contours of both
feature groups. By doing this we obtain the so called low-level
features.

2.1. Prosodic features

There are three main subgroups of prosodic features: intona-
tion, intensity, and duration. The intonation of a spoken utter-
ance can be approximated by the corresponding pitch contour.
This is a vector containing the fundamental frequency for ev-
ery speech segment. The intensity of the uttered words is cov-
ered by the signal energy. In our implementation, duration is
parametrized by the speed of talking and both the length and
number of pauses within an utterance.

2.2. Spectral features

The whole spectral content of a spoken utterance is contained
in spectral parameters. As state of the art in automatic speech
recognition, mel frequency cepstral coefficients (MFCC) are the
most popular spectral features. Usually 13 MFCC parameters
and the first and second derivatives are used. Another feature set
corresponding to the spectral feature group is the zero crossing
rate (ZCR). It simply counts the zero crossings of the time signal
within a defined time frame.

2.3. Feature contour and statistics

By concatenating the feature values from the single speech seg-
ments, a so called feature contour in obtained. Low-level fea-
tures are extracted by measuring statistical values of the cor-
responding feature contours. Mean, median, minimum, maxi-
mum, range, interquartile range, and variance are the most often
used functionals. Thus low-level features are describing both
the mean level and the variability of the feature contour. Some-
times, higher order statistics as skewness or kurtosis are also
extracted. All together our low-level feature set contains 290
features. The numbers of low-level features belonging to the
different feature subgroups are summarized in Table 1.

features energy pitch duration spectral overall

low-level 75 55 16 144 290

high-level - 7 - 99 106

Table 1: Number of low-level and high-level features
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Figure 1: Spectral gradients at fixed frequencies

3. Voice quality features

Voice quality describes the phonation type of speech like modal,
breathy, rough, or creaky voice. Besides the standard prosodic
aspects, voice quality is an important factor in conveying emo-
tional information. Hence, one idea of generating spectral high-
level features is based on the well known source filter model
of speech production. It originates from the expert knowledge
that the non-interacting processes of phonation and articulation
can be separated by a method called inverse filtering. After that,
independent parameters for both the phonation (VQP) and the
articulation (ART) can be extracted. While the parameteriza-
tion of the articulation process by formants is a state of the
art method, the parameterization of the glottal source activity
for emotion recognition is a less explored field. We propose a
method in the frequency domain to calculate gradients of the
glottal excitation spectrum.

3.1. Measurement of basic speech features

First, we estimate some well known basic speech features from
windowed, voiced segments of the speech signal, see Table 2.
We perform the voiced-unvoiced decision and the pitch estimate
F0 according to the RAPT algorithm [2] that looks for peaks
in the normalized cross correlation function. To measure the
spectral gradients, we also use higher harmonics. In order to
get a fixed number of 20 gradients, we extract the harmonics
Fpk next to fixed frequencies at multiples of 200 Hz. So all
together 21 harmonics are used, which cover the relevant fre-
quency range for voice quality up to 4000 Hz. The frequencies
and bandwidths of the first four formants are estimated by an
LPC analysis [3].

feature meaning

Fp0 = F0 pitch

Fp0, . . . , Fp20 frequency of harmonics

H0, . . . ,H20 amplitude at Fp0, . . . , Fp20 [dB]

F1, F2, F3, F4 formant frequencies

B1, B2, B3, B4 formant bandwidths

Table 2: Speech features for voice quality parameter estimation

3.2. Compensation of the vocal tract influence

Since the voice quality parameters shall only depend on the ex-
citation and not on the articulation process, the influence of the
vocal tract has to be compensated. This is done by subtracting
terms which represent the vocal tract influence from the ampli-
tudes of each harmonic Hk as described in [4]. The amplitudes
of the compensated harmonics are H̃k.

3.3. Estimation of the voice quality parameters

Former approaches used only 4 amplitude quotients to charac-
terize the glottal source signal [5]. In order to better parame-
terize the glottal excitation signal for emotion recognition this
parameter set is extended to 20 gradients. Figure 1 illustrates
the definition of the spectral gradients (SG).

SGk =
H̃0 − H̃k

Fpk − Fp0
(k = 1, . . . , 20) (1)

In addition to the 20 gradients normalized to the linear fre-
quency difference ∆ fk = Fpk − Fp0, the same amplitude dif-
ferences ∆H̃0 − H̃k are also normalized to frequency differences
in both octave and bark scale. Octave is a logarithmic scale

octave (k) = log2
Fpk

Fp0
(2)

and the bark scale is based on the human auditory system:

bark (∆ fk) = 13 tan
−1(0.00076 ·∆ fk)+ 3.5 tan
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In addition, the four formant bandwidths Bn normalized to
the corresponding formant frequencies Fn are calculated.

ICn =
Bn

Fn
(n = 1, . . . , 4) (4)

Another three more voice quality parameters describe the voic-
ing, the harmonicity, and the periodicity of the signal, see [6].
In total, we obtain a set of 67 voice quality features. Together
with formant frequencies and their bandwidths we estimate 99
spectral high-level features.

4. Harmony features

Starting from infancy, we are influenced by music. That leads
to the fact that even children without any musical education are
able to distinguish between melodies having positive or negative
modality [7]. The key for either positive or negative impression
on the listener is mainly the harmonic structure of music. This
raises the question whether people also adapt these structures
in their own speech prosody. In case they do, especially the
speech melody called intonation may be influenced. Thus, we
try to detect and quantify these basic harmonic structures in the
pitch data of spoken utterances by the parameters dissonance,
tension, and modality. These terms were also used by [8] upon
approximating the pitch histogram by mixtures of Gaussians.

Our proposed method is based on the second- and third-
order autocorrelation of the circular pitch histogram. The basic
idea is to scan the pitch data regarding the intensity of inter-
vals respectively the triads: major, minor, diminished, and aug-
mented. Based on the detected intervals and triads, the parame-
ters dissonance, tension, and modality are estimated.
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4.1. Circular pitch histogram

The pitch contour F0,Hz of voiced segments of a spoken utter-
ance is extracted by normalized crosscorrelation followed by
dynamic programming (RAPT algorithm). It is then trans-
formed to the logarithmic semitone scale, where one octave
(frequency ratio of 2) contains 12 semitones (ST).

F0,ST = 12 log2

{

F0,Hz

Fref

}

(5)

According to the music theory, the perception of a 2-tone
interval or a 3-tone chord should be invariant with respect to
the modification of tone frequencies by powers of 2 (octaves).
Hence, we map all pitch values F0,ST to one octave by applying
a modulo-12 operation.

F0,ST,mod = mod12
{

F0,ST
}

(6)

The circular pitch histogram is calculated by quantizing all the
pitch values F0,ST,mod to L bins per ST, resulting in a histogram
h(n) (0 ≤ n ≤ M − 1) with M = 12 L bins, see Figure 2.
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Figure 2: Circular pitch histogram with L = 5 bins per semitone

4.2. Higher-order autocorrelation of pitch histogram

To obtain the interval and chord content, autocorrelations of the
circular pitch histogram h(n) are calculated. The value of the
autocorrelation at a certain lag corresponds to the intensity with
which a certain tone combination is present in the pitch his-
togram h(n). For detecting 2-tone intervals, we determine the
second-order circular autocorrelation:

rhh(k) =
1

M

M−1
∑

n=0

h(n) h (modM(n + k)) (0 ≤ k ≤ M − 1) (7)

Similarly, we compute the third-order circular autocorrela-
tion to measure the intensity of a 3-tone combination :

rhhh(k, l) =
1

M

M−1
∑

n=0

h(n) h (modM(n + k)) h (modM(n + l)) (8)

4.3. Harmony parameters

Dissonance DIS is a parameter describing the valence of the
sound perception of a tone pair. It can be computed from inter-
val content rhh(k) by the inner product:

DIS =
1

M

M−1
∑

k=0

w(k) rhh(k). (9)

The weights w(k) contain the dissonance values for different in-
tervals motivated by the music theory [9].

The basic triads major, minor, diminished, and augmented cor-
respond to samples of rhhh(k, l) at specific lag values according
to Table 3. These autocorrelation values can be used as a mea-
sure for the intensity of the basic chords contained in the pitch
data.
Tension TEN parameterizes the phenomenon that triads con-
taining neighbouring intervals of equivalent size are perceived
as unresolved, and thus have negative valence. Among the ba-
sic chords, diminished and augmented triads are unresolved.
So, the overall value for tension can be computed as the sum
of the diminished part DIM and the augmented part AUG:
TEN = DIM + AUG. For resolved triads, one can further dis-
tinguish between a major- or minor-like modality.
Modality MOD can be computed as the quotient of the major
part MAJ and the minor part MIN: MOD = MAJ

MIN
. All together

we extract 7 pitch related high-level features called harmony
parameters.

3-tone chord k/L l/L

major chord MAJ 4 ST 7 ST

minor chord MIN 3 ST 7 ST

diminished chord DIM 3 ST 6 ST

augmented chord AUG 4 ST 8 ST

Table 3: Basic triads and the corresponding lag values of the
third-order autocorrelation function

5. Database and classification experiments

In order to test the relevance of the proposed high-level fea-
tures beyond the low-level features, we perform three classi-
fication experiments. First we compare all low-level features
with the combined feature set of low-level and high-level fea-
tures. In two further experiments, we only use those low-level
feature groups for comparison that are related to the high-level
features. Thus, features of the subgroups energy and duration
are ignored. Second, we study the relevance of spectral high-
level features by comparing it with MFCC features. Finally,
we study the performance of the harmony features in addition
to standard low-level pitch features. The FAU AIBO database
is used for this purpose. It contains the emotion-related states
anger, emphatic, neutral, positive, and rest. All relevant infor-
mation about this database can be found in [1].

In this paper, we performed a classification on turn level,
because in this case the labels for the test set are available and
we can indicate detailed classification results. The feature set
selected by SFFS is optimized on the test set. An overview of
all the features is given in Table 1. For all the classifications a
GMM classifier with a variable number of Gaussians is used.

5.1. Feature selection

To select the best features out of the whole feature set, we use
the sequential floating forward selection algorithm (SFFS). It is
an iterative method to find a subset of features that is near the
optimal one. It was first proposed in [10]. In each iteration, a
new feature is added to the subset of selected features and after-
wards the conditionally least significant features are excluded.
This process is repeated until the final dimension is obtained.
As selection criterion the unweighted classification rate is used.

5.2. Comparing low-level and high-level features

The performance of all low-level features is compared to that of
both low-level and high-level features. Figure 3 shows the av-
erage classification rate of all five emotion-related classes when
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using low-level features only and additional high-level features.
In both cases, feature sets with an increasing number of fea-
tures (up to 25) are selected by SFFS. As we can see, by using
the combined feature set the unweighted average classification
rate is up to 2% higher than by using low-level features only.
So there is a principle gain in using high-level features. In the
following two experiments we check where the gain is exactly
coming from.
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Figure 3: Comparison between all low-level and high-level fea-
tures, 5 emotions classification

5.3. Comparing MFCC and VQP

Now the performance of spectral high-level features is com-
pared to that of MFCC as standard low-level feature set. Fig-
ure 4 shows the average classification rate of the four emotion-
related classes: anger, emphatic, neutral, and positive. Due to
very high inhomogeneity, the rest class is excluded in this exper-
iment. As we see, the classification rate by combining MFCC
and spectral high-level features outperforms that of using only
MFCC by far. In comparison to MFCC only, a gain of up to
10% is achieved. Clearly, the voice quality (VQP) and formant
features (ART) supplement the MFCC for emotion recognition.
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Figure 4: Comparison between spectral low-level and high-
level features, 4 emotions classification

5.4. Comparing standard pitch and harmony parameters

For the group of pitch related high-level features the gain is
marginal by performing the 4 class experiment above. However,
the harmony features provide an additional gain in comparison
to standard low-level pitch features when only classifying the
emotions anger and positive. Figure 5 shows the unweighted
average classification rate for this binary classification. In this
experiment, we observe a gain of approximately 2% by adding
harmony features to low-level pitch features. This is consistent
to the idea that the harmony features can help in discriminating
the evaluation dimension, but not the other dimensions of the

psychological emotion dimension model [11]. Note, that this
improvement is very interesting as it is by nature very difficult
to distinguish the evaluation dimension.
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Figure 5: Comparison between pitch-related low-level and
high-level features, anger vs. positive classification

6. Conclusions

In this paper we studied the relevance of high-level speech fea-
tures for speaker independent emotion recognition of sponta-
neous speech. We proposed two groups of high-level features,
a feature set based on the source-filter model of speech produc-
tion called voice quality parameters and a feature set based on
the harmony structure of music. We showed that using high-
level features can improve the recognition performance of emo-
tions even for spontaneous speech. Most of the gain is made
up by the voice quality parameters for the emotions anger, em-
phatic, neutral, and positive. In addition, the harmony features
lead to a further gain, for the discrimination between the classes
anger and positive.
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