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ABSTRACT
In this paper, we consider two ways of combining classifiers for
speaker independent emotion recognition: serial and parallel com-
bination. In contrast to methods like bagging or boosting, our com-
bination is based on different feature sets, having maximum diver-
sity, instead of different training pattern sets. For that purpose, en-
semble feature selection methods are presented for both combina-
tion types. For the parallel combination, we propose a novel method
that has, to our knowledge, never been considered in the literature.
The evaluation is performed on a well-known German emotional
database [1]. Both new methods outperform the single stage and
the hierarchical classifier presented in [2],[3] on the same database.
Moreover, we examine the generalization capability of these clas-
sifiers when their feature subsets are not optimized directly on the
test set. Here, the parallel combination proved to have the best gen-
eralization capability among all studied methods with a benefit of
about 10%.

1. INTRODUCTION

Feature selection methods for a single classifier have to cope with
the well-known problem of the ”curse of dimensionality”: When the
available feature set is too large and the size of the training set is lim-
ited, keeping all features for classification will give a poor perfor-
mance. An optimal feature subset has thus to be selected and many
features have to be discarded in the selection process, although they
might contain useful information. By combining classifiers with
different feature subsets, more information contained in the com-
plete feature set can be recovered and the recognition performance
can be improved.

Three main methods of combining classifiers have been dis-
cussed in the literature: hierarchical, serial, and parallel combina-
tion. Hierarchical combination starts with a coarse and ends up with
a fine classification. Classifiers are ordered in a tree structure and
the classification process becomes more precise at each node of the
tree. This method has already been proved to be successful in emo-
tion recognition [3]. In serial combination, classifiers are ordered
in a queue. Each classifier recognizes only a subset of the received
patterns it is capable of classifying with a high detection rate, filters
it out, and passes the remaining patterns to the next classifier, hop-
ing it is competent to classify them. The last combination method
is parallel combination. Here, each classifier classifies all patterns
independently from the other classifiers. The final decision is a fu-
sion of all single decisions which is done, for instance, by majority
voting.

Up to now, combination methods have not often been consid-
ered in the application of acoustic emotion recognition. Research
rather concentrated on finding complex single stage classifiers. In
[4], the authors used a single support vector machine to achieve a
recognition rate of 86.7%. [3] showed that similar recognition rates
could also be obtained on the same database by combining Bayesian
classifiers in a hierarchical structure. In this paper, we investigate
two other methods of combining multiple classifiers which differ
only in their feature subsets. Both serial and parallel combination
outperform the hierarchical and the single stage classifier.

Moreover, we also study the issue of overfitting in the feature
selection process and how to design robust combination methods.
Up to now, we used feature selection in order to reduce the number
of features for classification. Unfortunately, the feature selection

used the same validation patterns as for later testing [3],[4]. Some
theoretical papers [5], [6] on feature selection have warned against
that method. There is a risk of finding classifiers which achieve re-
markable recognition rates on the specific evaluation set over which
the feature selection has been optimized, while having a poor gen-
eralization on other test patterns. We avoid this by dividing the
complete pattern set into 3 parts, one for training (training set), one
for feature selection (validation set), and one for testing (test set).

The paper is organized as follows: After we specify the differ-
ent feature groups used in this study in section 2, we briefly intro-
duce the 3-stage hierarchical combination in section 3. Sections 4
and 5 present our serial and parallel combination design methods,
respectively. In sections 6, the simulation setup is explained and our
methods are evaluated and compared with a single stage classifier
and the hierarchical combination. Finally, we compare the recog-
nition performance of 3 different base classifiers, the Bayesian, a
second order polynomial and an artificial neural network classifier.

2. FEATURE GROUPS

In the field of emotion recognition, mainly suprasegmental prosodic
features are used. Sometimes segmental spectral parameters as mel
frequency ceptral coefficients (MFCC) are added. In our approach,
the common prosodic features are combined with a set of so called
voice quality parameters (VQP).

2.1 Prosodic features

There are three main classes of prosodic features: pitch, energy, and
duration. Two more classes that do not belong directly to prosody
are articulation (formants and bandwidths) and zero crossing rate.
The individual features are obtained by measuring statistical values
of the corresponding extracted contours. Mean, median, minimum,
maximum, range, and variance are the most used measurements.
All together we extracted 201 prosodic features from the speech
signal.

2.2 Mel frequency cepstral coefficients

The cepstrum of a signal is the inverse Fourier transform of the
logarithm of the Fourier transform. In contrast to the standard cep-
strum, MFCC uses frequency bands which are positioned logarith-
mically based on the mel scale motivated by the human auditory
system. MFCC is a standard spectral parameter set in automatic
speech recognition. For this study the mean values as well as the
2nd to the 5th central moments of 13 MFCC are calculated. The
total number of MFCC features is thus 65. The implementation we
use was first published in [7].

2.3 Voice quality parameters

In contrast to other spectral feature sets, the voice quality param-
eters describe the properties of the glottal excitation. Phonation is
one important process besides articulation and prosody in generat-
ing emotional coloured speech. By inverse filtering, the influence of
the vocal tract is compensated to a great extent. The feature set we
use is a parameterization of the voice quality in the frequency do-
main by spectral gradients, see Figure 1. The detailed computation
of the basic speech features, the vocal tract compensation, and the
voice quality parameters is given in [3]. All together we extracted
67 voice quality parameters.
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Figure 1: Spectral gradients at fixed frequencies in the glottal excitation spectrum

2.4 Feature selection

There are two main reasons for reducing the number of features
from the original set. First, the number of training patterns had to
be enormous if we want to use all features. Second, the feature
extraction and the training would take a long time when using the
whole feature set. So for all classifications, the original number of
333 features is reduced by using an iterative selection algorithm.
After the selection process, the final feature number is reduced to
25 because for this feature number a local maximum in the classi-
fication rate was observed. We used the sequential floating forward
selection algorithm (SFFS). It is an iterative method to find a subset
of features that is near the optimal one. It was first proposed in [8].
In each iteration, a new feature is added to the subset of selected
features and afterwards the conditionally least significant features
are removed. As selection criterion, the speaker independent recog-
nition rate is used. This process is repeated until the final dimension
is obtained.

3. HIERARCHICAL COMBINATION OF CLASSIFIERS

Motivated by the psychological emotion model [3], we found out
that one can improve the emotion classification performance by us-
ing multiple Bayesian classifiers. In the hierarchical combination,
we perform 5 binary classifications in 3 stages as shown in Fig-
ure 2. Every frame corresponds to one Bayesian subclassification
whose best 25 features are optimized by SFFS separately. In the first
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Figure 2: Design of a 3-stage hierarchical combination classifier

stage, we classify two different activation levels. One class includ-
ing anger, happiness, and anxiety has a high activation level while
the second class including neutral, boredom, and sadness has a low
activation level. In the second stage, we classify two potency levels
within each activation class. That means, all patterns that were clas-
sified to high activation in the first stage are classified to one class
containing happiness and anger or to a second class only containing
anxiety. Similarly, all patterns that were classified to low activation
in the first stage are classified to one class containing neutral and
boredom or to sadness. In the third stage, we distinguish between
the emotions that only differ in the evaluation dimension: happiness
vs. anger as well as neutral vs. boredom.

In hierarchical combination, a pattern is correctly classified,
only if every single subclassification is correct. That means, the
recognition ratePi is the product of all subrecognition ratesPi,k,
wherei is the class index andk the label of the classification stage.

Pi = Pi,act ·Pi,pot ·Pi,eva (1)

4. SERIAL COMBINATION OF CLASSIFIERS

4.1 Binary classifiers for serial combination

In the literature, it is quite usual to use a cascade of asymmetrical bi-
nary classifiers whose costs of misclassification for the two classes
are not equal [9]: There should be almost no false alarm detections
assigning a wrong pattern to one classci , i.e. Pi,FA ≈ 0. On the other
hand, some missing detections rejecting a correct pattern of classci
are tolerated, see Figure 3.

real classci Pi,D

real classci
1−Pi,FA

estimated classci

Pi,FA

estimated classci

1−Pi,D

Figure 3: Model of a binary classification problem

4.2 Design of the serial classifier experts

According to [10], our algorithm applies the serial combination to
multi-class problems: each classifier of the cascade is responsible
for recognizing only one part of the patterns for one specific class,
the so called target class. For these patterns, the classifier is called
expert and filters them out. In general, there are several experts
Ci, j , j = 1, · · · ,Ei for the same target classci containingNi pat-
terns. Each expert is characterized by its target class, the detection
rate of this classPi, j , and the number of patterns which have been
filtered outni, j , see Figure 4. The different classesci , i = 1, · · · ,k
are filtered out iteratively, until almost all patterns have been clas-
sified. It is crucial that every expert has to have a very low false
alarm ratePi,FA, as errors at one stage can never be recovered at a
later stage. On the other hand, we wish that each classifier filters
out as many patterns as possible in order to reduce the length of
the cascade. At the end of the cascade, a multi-class default clas-
sifier Cde f with recognition ratePi,de f is employed to classify the

ni,de f = Ni −∑Ei
j=1ni, j remaining patterns for which no expert could

be found. Since in serial combination a pattern is classified and fil-
tered out by exactly one classifier of the cascade, the recognition
ratePi is the weighted sum of the recognition rates of the experts
for this target class and the default classifier:

Pi =
1
Ni

[

Ei

∑
j=1

(

ni, j ·Pi j
)

+ni,de f ·Pi,de f

]

(2)

The major problem in designing cascaded combinations is
building ”asymmetrical” classifiers which have a very low false
alarm rate, without being too bad in detecting patterns of the target
classci . To achieve that, we use a modified version of SFFS. In that
version, the algorithm chooses the features in order to maximize the
detection rate of the target classPi, j = Pi,D, under the constraint that
the false alarm ratePi,FA is below a given thresholdθ. θ must be
chosen such that a good trade-off is reached between the detection
ratePi,D and the false alarm ratePi,FA. The lowerθ, the higher the
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Figure 4: Design of a serial combination classifier

selectivity of the corresponding classifier (fewer false alarm detec-
tions), but the lower its sensitivity (fewer patterns filtered out). The
whole feature selection algorithm contains the following steps:
a) Features for the first expert are selected due to the criteria:

maxPi,D subject toPi,FA < θ. The selection process for the first
expert ends, when the desired number of features is reached.
The patterns this classifier is expert of are filtered out. The re-
maining patterns are rejected and sent to the next expert.

b) Based only on the rejected patterns, an expert for the next target
class is sought. The selection is performed consecutively for
all the target classes several times. If for one target class the
constraint cannot be fulfilled, the current expert is cancelled and
we proceed directly with selecting features for an expert of the
next target class. An expert for the current class can be found a
lot easier in the next iteration, when some patterns of the other
classes have already been filtered out.

c) The whole design algorithm ends when the maximum number of
expertsEi for each class in reached, in order to avoid adding too
many classifiers which filter out only a few patterns.

5. PARALLEL COMBINATION OF CLASSIFIERS

5.1 Overview of parallel combination methods

It is well known that parallel combination is only efficient when the
pool of classifiers is very diverse and negatively correlated [11]. The
problem of building a good parallel combination amounts to find-
ing an ensemble of single classifiers that are quite good and produce
their classification errors on different patterns. In contrast to bag-
ging or boosting, where the diversity is based on different training
patterns, the diversity can also be achieved by choosing different
feature subsets for each member of the ensemble. The problem of
finding feature subsets that give the optimal recognition rate for the
parallel combination has been called ”ensemble feature selection”
and has received much attention in theoretical pattern recognition
literature [12], [13], [14], but not in emotion recognition.

In parallel combination, a pattern is correctly classified if the
majority of theN subclassifiers are correct. If we assume an odd
number of statistical independent classifiers, and the recognition
rate for every subclassifierPi,k = p is constant, then the overall
recognition ratePi for classci can be calculated using the binomial
formula. If p> 0.5, Pi is monotonically increasing with the number
of subclassifiersN [15].

Pi =
N

∑
m= N+1

2

(

N
m

)

pm(1− p)N−m (3)

5.2 Design of the parallel classifier ensemble

To select the feature subsets for our ensemble, we use an approach
which has, to our knowledge, never been considered before. Sub-
classifiers are added one by one to the ensemble. For each new
subclassifier which is added to the ensemble, features are selected
by using SFFS. But instead of choosing the features which perform
best on the whole validation set, we choose those which perform

best on the reduced subset of the validation set which contains only
those patterns difficult to classify by the ensemble of all subclassi-
fiers up to the current stage. This subset alters as new classifiers are
added to the ensemble and it is recomputed at each stage. It will be
called ”difficult validation set” in the following. The design process
is depicted in Figure 5 and the feature selection algorithm consists
of following steps:

a) We initialize the process by selecting features for the first sub-
classifierC1. Those features are optimized to give the best
recognition rate over the whole validation set, which is con-
gruent with the ”difficult validation subset”. Note that the first
classifier in the parallel combination is equal to the overall best
single classifier which is used for the single stage method.

b) At each new stagek, we define the ”difficult validation subset”
as the subset of all patterns of the validation set which have not
been correctly classified by the ensemble ofk subclassifiers up
to now. Except for the initialization of the first subclassifierC1,
this is done by counting the votes of all subclassifiers. A pattern
belongs to the ”difficult validation subset” if the right class has
at most one vote more than the wrong class which has been most
voted for. Features for the next subclassifierCk+1 are optimized
only on the current ”difficult validation subset”.

c) The algorithm ends up when the size of the ”difficult validation
subset” can not be further reduced by adding more subclassifiers
to the ensemble.
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Figure 5: Design of a parallel combination classifier

Note that the underlying principle of this algorithm has much in
common with boosting [16]. But in boosting, classifiers use differ-
ent training subsets, which contain increasingly difficult patterns.
Here, we train all classifiers on the whole training set and choose
different feature subsets that perform well on increasingly difficult
patterns of the validation set.

6. SIMULATION RESULTS

6.1 Database and evaluation

All simulations were performed on the Berlin emotional database
[1] using six emotions: happiness, boredom, neutral, sadness, anger,
and anxiety. The 690 short utterances are spoken by 10 actors. Ev-
ery pattern is of 2-5 seconds length.

Two methods are used to evaluate our classifiers, see Figure
6. These two methods significantly differ in the patterns that were
used for feature selection. First, a leave-one-speaker-out cross-
validation is performed which was used in previous works on the
same database. By one cross validation loop over all 10 speakers,
the training is performed by using 9 speakers and the 10th speaker
is used for both the feature selection and the testing. It will be called
”evaluation method with optimized feature set”. Here, the feature
selection is optimized to the test set implying an overfitting. If the
selected features are applied to some other test patterns which have
not been used in the feature selection process, we expect a signifi-
cant performance drop indicating a poor generalization capability.

Second, a leave-one-speaker-out cross-validation with inner
and outer loop is used as presented in [17]. It will be called ”eval-
uation method with realistic feature set”. In this case, 8 speakers
are used for training, one speaker for feature selection (validation
set), and one speaker for testing. The training and feature selection
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are made in an inner cross-validation over 9 speakers, and recog-
nition rates are computed on the remaining 10th speaker (test set).
So, the feature set is not optimized on the test data because the 10th
speaker was neither used in the training nor in the feature selection
process. By calculating the weighted overall recognition rate over
all 10 speakers, we obtain a quite good measure for the generaliza-
tion capability and consequently for the robustness of a classifica-
tion method.

evaluation with optimized feature set

training set validation set

evaluation with realistic feature set

training set validation set test set

Figure 6: Two methods for speaker independent evaluation of the
classifiers with ”leave-one-speaker-out cross-validation”

6.2 Single stage classifier and hierarchical combination

By using the ”evaluation with optimized feature set”, the hierarchi-
cal combination clearly outperforms the single Bayesian classifier
as stated in [3], see Table 1. For the ”evaluation method with re-
alistic feature set”, the recognition rate of the single Bayesian clas-
sifier and for the hierarchical combination decreases considerably
to 58.6% respectively 59.7%, see Table 2. With this evaluation
method, the hierarchical combination is only slightly better than the
single Bayesian classifier. For both methods, happiness and neutral
are particularly badly recognized as can be seen in Table 3.

6.3 Serial combination

The results in the optimized case are presented in Table 1. The serial
combination has the highest overall recognition rate with 96.5%.
The recognition rate and the percentage of classified patterns in each
stage are depicted in Figure 7. Only 4% of all patterns have to be
classified by the default classifier. Most of the patterns are classi-
fied in early stages. The feature selection algorithm failed to find
an expert fulfilling the constraint in the first stage, so this emotion
had to be skipped at the beginning. This is not surprising, as it has
already been noticed in [3] that happiness is very difficult to sep-
arate from other emotions. However, good detectors for happiness
could be found at later stages, so happy patterns could be filtered
out more efficiently at the end. A basic assumption of serial com-
bination proves to be true: difficult patterns become much easier to
classify once the simplest patterns have been filtered out.
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Figure 7: Overall recognition rate and number of classified patterns
using serial combination and optimized feature set

When the feature subsets are realistically optimized, the aver-
age recognition rate is not much higher than that obtained with a
single Bayesian classifier, see Table 2. That means, this method
is prone to overfitting and does not have a good generalization ca-
pability. Interestingly, speakers who are difficult to recognize (3,

method single stage hierarchical serial parallel
rec. rate 74.6% 88.8% 96.5% 92.6%

Table 1: Overall recognition rates for a Bayesian classifier and op-
timized feature set

4, and 10) are improved, whereas easy speakers (5, 8, and 9) have
a slightly lower recognition rate. So the range in recognition rate
between the best ant the worst speaker has significantly decreased
from 30% to 19%. The same phenomenon can be observed for the
recognition rate of the different emotions, see Table 3. The recogni-
tion rates of difficult emotions (happiness and neutral) are improved
compared to the single Bayesian classifier, whereas the recognition
rates of ”easy” emotions remain almost unchanged.

6.4 Parallel combination

In the optimized feature set case, the parallel combination performs
slightly better than the hierarchical combination, but worse than the
serial combination, see Table 1. Here, the overall recognition rate
is given for an ensemble of 25 classifiers. The evolution of the
overall recognition rate up to 25 classifiers is depicted in Figure
8. However, it is almost constant when the number of classifiers
is higher than 20, as the size of the ”difficult classification subset”
does not vary much after that number of classifiers.
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Figure 8: Overall recognition rate as a function of the number of
classifiers using parallel combination

For the ensemble in stage 1, the two classifiers have been cho-
sen to maximize the amount of patterns over which they disagree.
Thus, the majority voting gives very poor results. However, the
ensemble with 3 classifiers already performs better than the single
Bayesian classifier and the overall recognition rate further increases
after that stage. A similar increase can also be observed when using
the realistic feature subset. The overall performance with 25 clas-
sifiers is 70.1%, see Table 2. This is by far the highest recognition
rate in the realistic case. It is improved by 11.5% compared to the
single Bayesian classifier and 10.4% compared to the hierarchical
combination. So the parallel combination has a good generalization
capability. It performs better than the other combination methods
on all speakers, see Table 2, and all emotions, see Table 3. In par-
ticular, the performance of the emotions difficult to classify (happy
and neutral) is improved by at least 15% compared to the single
stage Bayesian classifier.

A possible explanation for the good generalization performance
of that combination method could be found in [18]. By optimiz-
ing the feature subsets of each single classifier on a small part of
the training set in cross-validation, we create overfitted classifiers
which have a very high variance and a very poor generalization
capability. However, the bad quality of single classifiers is com-
pensated for by diversity gain, and the high variance of ensemble
members is diminished by aggregation. In particular, the majority
voting process lowers the influence of a few very bad members.
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method / speaker 1 2 3 4 5 6 7 8 9 10 overall
single stage 61.6% 59.4% 50.7% 50.8% 68.7% 60.7% 60.9% 64.5% 69.4% 39.4% 58.6%
hierarchical comb. 56.1% 75.0% 56.5% 56.7% 67.2% 53.2% 62.3% 64.5% 59.7% 47.9% 59.7%
serial comb. 69.9% 60.9% 55.1% 59.7% 67.2% 62.3% 62.3% 63.2% 66.7% 50.7% 61.8%
parallel comb. 76.7% 78.1% 68.1% 62.7% 73.1% 62.3% 72.5% 80.3% 72.2% 54.9% 70.1%

Table 2: Recognition rates for realistic feature selection averaged over allemotions

emotion happy bored neutral sad angry anxious overall
single stage 36.5% 65.8% 46.1% 70.8% 65.4% 62.8% 58.6%
hierarchical 35.5% 73.9% 48.5% 62.5% 71.3% 62.0% 59.7%
serial comb. 41.1% 67.6% 55.9% 71.7% 67.7% 63.7% 61.8%
parallel comb. 51.9% 73.9% 64.7% 86.0% 77.9% 63.7% 70.1%

Table 3: Recognition rates for realistic feature selection averaged over all speakers

6.5 Comparison of different base classifiers

Until now, all experiments were performed using simple Bayesian
classifiers. Since the parallel combination showed the best results,
we compare different base classifier in parallel combination. As we
can see from Table 4, the parallel combination of other base clas-
sifiers than the Bayesian does not result in significantly different
results. For all 3 applied base classifiers, the parallel combination
improved the classification rate of the corresponding single stage
classifier by more than 5%. The highest gain was achieved for the
Bayesian classifier with an improvement of 11.5%. The best abso-
lute result, with an overall recognition rate of 73.0%, was obtained
by using a parallel combination of the neural network classifier,
with 6 nodes in the hidden layer.

method Bayesian polynomial neural net
single stage 58.6% 61.9% 62.2%
parallel comb. 70.1% 67.2% 73.0%

Table 4: Comparison of different base classifiers using parallel com-
bination and realistic feature set

7. CONCLUSION

In this paper, we presented two ways of combining classifiers for
emotion recognition: a serial and a parallel combination. The latter
uses an ensemble feature selection process that has, to our knowl-
edge, never been considered in the literature. We evaluated the re-
sults when feature sets are optimized on the test set or on a separate
validation set which is disjoint to the test set. The first method suf-
fers from overfitting in the feature selection process but it shows
the theoretical performance of the methods if we assume knowl-
edge about the test set. The latter was recommended in [6]. It is
more relevant for practical applications as it gives a measure of the
generalization capability of the classification method. The serial
combination proved to be the best method when optimized on the
evaluation set; however, it does not have a good generalization ca-
pability, because it can not afford to have a single bad member in the
cascade. The parallel combination has by far the best generalization
capability and outperforms the other presented methods with an im-
provement in the recognition rate of about 10%. It achieved the best
recognition rates on all speakers and all emotions. Concluding we
can say, the diversity of the subclassifier, that is accomplished by
different feature sets, lead to a very robust ensemble classifier.
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