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ABSTRACT
Recently, direction-of-arrival (DOA) and position estimation for
acoustic signals has been studied intensively and many different al-
gorithms have been proposed. Among different solutions for mul-
tiple sources, blind source separation (BSS) methods have drawn
much attention due to their good performance. In this paper, we
present a localization algorithm using the results from a frequency
domain independent component analysis (ICA) algorithm combined
with an extended version of the state coherence transform (SCT).
We motivate the SCT as an approximated maximum likelihood (ML)
approach and compare our localization algorithm with the steered-
response power with phase transform (SRP-PHAT) and the averaged
directivity pattern (BSS-ADP) algorithm. 2D localization results
show superior performance of our algorithm.

Index Terms— direction-of-arrival estimation, source localiza-
tion, blind source separation, state coherence transform

1. INTRODUCTION
The task of acoustic source localization is to estimate the posi-
tion of one or multiple sound sources by using an array of micro-
phones. There are non-BSS based approaches such as SRP-PHAT
[1], DATEMM [2], and BSS based approaches such as [3], [4], [5].
In this paper, we use BSS to estimate the propagation model first.
Using this propagation model, we then extract location information
such as 1D/2D DOA or 2D/3D position.

In contrast to [3], our algorithm does not suffer from spatial alias-
ing. Different from [4], our system can perform localization directly
without an intermediate time-difference of arrival (TDOA) estima-
tion and without a spatial ambiguity resolver. [5] proposed to use the
averaged directivity pattern (ADP) of the BSS solution to estimate
2D DOA. In this way, there is no need for a spatial ambiguity re-
solver. Our approach is similar since the SCT compares an assumed
propagation model against the estimated one. However, in contrast
to [5], our algorithm works in the frequency domain and can han-
dle not only DOA but also source position estimation. It shows im-
proved localization performance.

2. FREQUENCY DOMAIN ICA
The goal of blind source separation is to separate M convolutive
mixtures xm[i], m = 1, . . . , M into N statistically independent
source signals. Mathematically, we write the sensor signals xm[i]
as a sum of convolved source signals

xm[i] =
XN

n=1
hmn[i] ∗ sn[i], m = 1 . . . M. (1)

Our goal is to find signals yn[i], n = 1 . . . N such that, after solving
the permutation ambiguity, yn[i] ≈ gn[i] ∗ sn[i]. We focus on fre-
quency domain ICA because of the lower computational complexity
and better convergence properties than time domain approaches. The
convolutive mixture in the time domain can be approximated as an
instantaneous mixture in the frequency domain:

X[k, l] ≈ H[k]S[k, l] (2)
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1 ≤ k ≤ K is the frequency bin index and l is the time frame
index. For the purpose of ICA, we assume an identical number of
sources and sensors M = N . H[k] is a square mixing matrix. We
can then apply any frequency domain ICA algorithm such as the
scaled infomax algorithm from [6] to separate the signals in the time-
frequency domain:

Y[k, l] = W[k]X[k, l] (3)

W[k] is a square demixing matrix. The scaled infomax algorithm
shows a fast convergence for a wide range of step sizes and regard-
less of the scaling of the source signals. The separation is done by
maximizing the entropy of the output signals Y[k, l] or equivalently
minimizing their mutual information. Each frequency bin is treated
independently from the others and hence a permutation and scaling
problem occurs at each frequency bin. To achieve a good separation,
both problems need to be solved. Many different approaches have
been proposed, but most of them do not work reliably under adverse
conditions such as low signal-to-noise ratio (SNR), high amount of
reverberation and small sample size. The approach in [7] solves the
permutation problem by using a recursive initialization of W[k] with
a smoothed version of the demixing matrices at previous frequencies
and a permutation correction step with the SCT. It jointly considers
all frequency bins and hence allows wide microphone spacings. We
briefly summarize the SCT in the next section before we provide an
ML interpretation of SCT, extend its idea to multiple microphone
pairs, and apply it to the problem of localization.

3. STATE COHERENCE TRANSFORM

The main idea of the state coherence transform is to compare the
“state” e−jωτ from the propagation model against its estimate from
the result of ICA. We first define the state

rab[k,p] = e−jωkτab(p)
(4)

where ωk is the angular frequency in frequeny bin k and τab(p) is
the TDOA of a source at position p observed at the microphone pair
(a, b) located at da and db:

near-field (2D/3D position): p = [x, y]T or p = [x, y, z]T ,

τab(p) = c−1(‖da − p‖ − ‖db − p‖)

far-field (1D/2D angle): p = [sin θ, cos θ]T , or

p = [sin θ cos φ, cos θ cos φ, sin φ]T

τab(p) = c−1(da − db)
T
p (5)

c is the sound propagation speed.

If we assume that the microphone pair (a, b) has a small enough
distance, the impulse responses from the source to both microphones
will look similar up to a delay τab and an amplitude scaling. In terms
of the frequency response Hi[k](i = a, b) from the source to both
microphones, we have

Ha[k]

Hb[k]
=

|Ha[k]|

|Hb[k]|
e−jωkτab(p). (6)

Note that the impulse responses can be arbitrary as long as they are



similar up to a delay and a scaling. Hence our signal model is much
more general than the typical assumption of a dominant path. Gen-

erally, we could also use the amplitude ratio
|Ha[k]|
|Hb[k]|

for localization,

but it is much less reliable than the TDOA, especially in reverberant
environments and when the sources and microphones have directiv-
ity patterns. A comparison with (4) shows

rab[k, p] = exp



j arg

„

Ha[k]

Hb[k]

«ff

(7)

Now we estimate this state from the results of ICA

r̂ab,n[k] = exp

(

j arg

ˆ

W−1[k]
˜

an

[W−1[k]]bn

)

(8)

The notation [A]
ij

denotes the (i, j)-th element of the matrix A.

Assuming a quite successfull blind source separation, we obtain

W[k] ≈ Π[k]D[k]H−1[k] or H[k] ≈ W
−1[k]Π[k]D[k]. (9)

D[k] is a diagonal complex-valued scaling matrix and Π[k] is a per-
mutation matrix. Since D[k] is diagonal, the ratio of elements in (8)
is invariant with respect to D[k]:

ˆ

W−1[k]
˜

aΠ(n)

[W−1[k]]
bΠ(n)

≈
[H[k]]

an

[H[k]]
bn

. (10)

This implies

r̂ab,Π(n)[k] ≈ rab[k,pn], (11)

where pn is the position of the source associated with column n
of H[k]. Π(n) describes the permutation, i.e. the column n in H[k]
corresponds to the column 1 ≤ Π(n) ≤ N in W−1[k]1. This means
[Π[k]]

nΠ(n) = 1.

[7] proposed to use the states r̂ab,n[k] from all frequency bins

and all columns of W−1[k] to solve the permutation problem in fre-
quency domain ICA. It defines a so called state coherence transform
(SCT) for sensor pair (a, b)

SCT(τ ) =
N

X

n=1

K
X

k=1

ρ(|r̂ab,n[k] − rab[k, τ ]|) (12)

with ρ(t) = 1− tanh(αt/2). SCT(τ ) has maxima for τ = τab(pn)
if we choose a large enough value of α > 0. By looking for maxima
in SCT(τ ), we can estimate the TDOA of the sources. In [7], (12)
was derived heuristically and uses only one sensor pair. Below we
will provide an ML motivation of SCT and apply it to localization
using multiple sensor pairs.

4. OUR LOCALIZATION ALGORITHM BSS-SCT

Taking more than just one sensor pair into account, we define a state
column vector and a corresponding estimate for certain sensor pairs
(a, b) ∈ I ⊆ {(a, b)|1 ≤ a < b ≤ M}:

r[k, p] = [rab[k,p]](a,b)∈I

r̂n[k] = [r̂ab,n[k]](a,b)∈I (13)

We introduce the following model for r̂n[k]:

r̂Π(n)[k] = r[k, pn] + vn[k] (14)

vn[k] is the noise with an unknown probability density function

(pdf). Considering all N columns of W−1[k], we obtain:

R̂[k]Π[k] = R[k, P] + V[k] with

R̂[k] = [r̂1[k], · · · , r̂n[k]], R[k] = [r[k, p1], · · · , r[k, pn]],

V[k] = [v1[k], · · · ,vN [k]], P = [p1, · · · ,pN ]. (15)

Π[k] is a permutation matrix at frequency bin k.

1If the number of sources N is smaller than the number of sensors M ,

some of the estimated states r̂ab,n[k] will not correspond to a true source.

However, this is not a problem since these states will not be coherent across

the frequency and hence will be suppressed in the SCT.

Combining this model for all frequencies, we get
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˜̂
R · Π̃ = R̃(P) + Ṽ (16)

Let fṼ(·) be the pdf of Ṽ. The likelihood function of
˜̂
R is then

fṼ(
˜̂
RΠ̃ − R̃(P)). Hence, the ML estimate of P and Π̃ is

arg max
P,Π̃

fṼ(
˜̂
RΠ̃ − R̃(P)) (17)

To facilitate a simpler estimation, we assume independence of r̂n[k]
among different sources n and frequency bins k. Then we can write

fṼ =

N
Y

n=1

K
Y

k=1

fvn[k](R̂[k]Πn[k] − r[k, pn]) (18)

where Πn[k] is the n-th column of Π[k]. Equivalently we maximize

ln fṼ =
N

X

n=1

K
X

k=1

ln fvn[k](R̂[k]Πn[k] − r[k, pn]). (19)

However, this joint multiple-source localization would be very
challenging due to the dimensionality of the problem and the fact
that we need an extensive search for the discrete valued permutation
matrices Π[k]. Furthermore, the pdf of the noise vn[k] is unknown
and we cannot derive the ML estimator of the source parameters pn

analytically.

An approximation of the ML solution is to assume that vn[k] has
a spherical pdf. Then fvn[k](v) is only a function of ‖v‖. By assum-
ing identical pdf of vn[k] for different frequency bins and different
sources, we can approximate ln fṼ

ln fṼ ≈ H(P) =
N

X

n=1

K
X

k=1

ρ(‖R̂[k]Πn[k] − r[k, pn]‖) (20)

where ρ(t) is a so called Kernel function which is monotonically
decreasing for t ≥ 0.

If we knew the permutation Π[k] or equivalently if there was
no permutation with Π[k] = I, the multiple-source localization
maxP H(P) could be simplified to N independent single-source lo-
calization problems. The ML estimates would then be given by

p̂n = arg max
pn

K
X

k=1

ρ(‖r̂n[k] − r[k, pn]‖). (1 ≤ n ≤ N) (21)

However, due to the unknown permutation Π[k], we do not know
which state estimate r̂n[k] belongs to which source and hence can-
not estimate each source position pn individually. A suboptimal but
easily feasible solution of this problem is to exploit the fact that esti-
mated states r̂[k] that belong to source n will lie in proximity to the
ideal state r[k, pn] while states r̂[k] belonging to a different source
will lie further away from r[k, pn].

By using a locally-confined kernel function ρ(t) that puts more
weight on t ≈ 0, we can implicitly resolve the permutation. In this
case, we replace (20) for multiple sources by

HBSS-SCT(p) =
N

X

n=1

K
X

k=1

ρ(‖r̂n[k] − r[k, p]‖) (22)

for a single source at p. This new cost function still has maxima
at the correct locations p = pn if we select the width of the ker-
nel function ρ(t) narrow enough. Note that (22) contains two ap-
proximations of the original joint multiple-source localization cost
function (19):

• Approximate ln fvn[k](v) by a locally-confined kernel func-
tion ρ(‖v‖).



• Replace the joint multiple-source search over P =
[p1, · · · , pN ] by a sequential single-source search over p in
order to avoid the resolution of permutation.

Examples of kernel functions are

ρ1(t) = 1 − tanh (αt/2) , ρ2(t) = e
− t2

2σ2 ,

ρ3(t) = e
− t

β , (t ≥ 0). (23)

It turns out that the exact shape of the kernel function is not impor-
tant, as long as it is locally confined. Fig. 1(a) shows different kernel
functions from (23) with α = 10, σ = 0.15, β = 0.1. Fig. 1(b)
shows the values of HBSS-SCT(τ ) in (22) using these kernel functions.
We have used the TDOA τ as the parameter of the SCT as in [7]. We
considered a scenario with N = M = 2 and T60 = 700 ms. The
results look almost identical for different kernel functions.
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Fig. 1: Effect of different kernel functions

5. COMPARISON WITH OTHER METHODS

5.1. Comparison with SRP-PHAT

In this section, we want to compare our proposed algorithm BSS-
SCT with the well-known SRP-PHAT method [1]. The generalized
cross correlation with phase transform (GCC-PHAT) for each micro-
phone pair (a, b) is defined as

cab[τ ] = IFFT



Xa[k]X∗
b [k]

|Xa[k]Xb[k]|

ff

(24)

with Xa[k] = FFT{xa[i]} and Xb[k] = FFT{xb[i]}. The SRP-
PHAT method combines the GCC-PHAT of all |I| microphone pairs
in I evaluated at the theoretical TDOA τab(p):

HSRP-PHAT(p) =
X

(a,b)∈I

|cab[τab(p)]| (25)

If there is only one source, we can estimate its position by maxi-
mizing HSRP-PHAT(p) over all potential source positions p. In this
case, the height of the peak is independent of the signal amplitude,
since in (24) Xa[k]X∗

b [k] is normalized by |Xa[k]Xb[k]|. However,
if we have more than one source, HSRP-PHAT(p) will show multiple
peaks with different heights. Since Xa[k] in (24) does not represent
the individual source spectrum, but rather the mixture spectrum, the
height of the peaks of HSRP-PHAT(p) will depend on the power of
each source.

5.2. Comparison with BSS-ADP
[5] proposed the averaged directivity patterns (ADP) for 2D DOA

estimation. This principle is based on the obvservation that BSS
forms spatial nulls to the position of the unwanted sources in order
to suppress them. In the context of localization, the spatial nulls are
interpreted to point to the source positions. Strictly speaking, this
holds only in anechoic environments, but we can also apply it in
reverberant rooms when the direct path is dominant. We calculate
the directivity pattern for each source n at position p by calculating
the squared amplitude response of the demixing filter wni[k]:

Bn[k, p] =

˛

˛

˛

˛

˛

N
X

i=1

wni[k]e−jωkτi(p)

˛

˛

˛

˛

˛

2

(26)

Each directivity pattern has N −1 spatial nulls or minima and hence
would allow to localize N − 1 sources. If we average the directiv-
ity patterns for all outputs n = 1 . . . N , except for that directivity
pattern with the highest amplitude [5]

n∗[k, p] = arg max
n

Bn[k,p]

B(p) =
K

X

k=1

X

n6=n∗[k,p]

Bn[k, p], (27)

we get the BSS-ADP which has minima at the positions of the N
sources. In order to compare this approach with SRP-PHAT and
BSS-SCT, we define the cost function to be maximized as

HBSS-ADP(p) = 1 −
B(p)

maxp B(p)
(28)

Our BSS-SCT uses a similar idea by comparing the propagation
model against its estimate from BSS. However, the SCT operates on
the inverse demixing matrix W−1[k] instead of the demixing matrix
W[k].

6. EXPERIMENT

We used a regular office room of size 4.9 m × 3.5 m × 3m with
T60 = 450 ms for 2D localization. The average SNR for all ex-
periments was 15 to 20 dB. Fig. 2 shows the room layout with the
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Fig. 2: Room layout and experimental setup

experimental setup. We played back 3 s of speech on loudspeakers
with membrane diameter of 8 cm.We compare our proposed algo-
rithm BSS-SCT with SRP-PHAT and BSS-ADP. We used a sam-
pling frequency of fs = 48 kHz for SRP-PHAT and fs = 16 kHz
for the two BSS based approaches. The search grid step for all three
methods is 1 cm.

To evaluate the localization performance, we normalized each
cost function H(p) to the range of [0, 1] and performed a 2D peak
search. Fig. 3 compares the normalized cost functions HSRP-PHAT(p),
HBSS-ADP(p), HBSS-SCT(p) for three cases of N sources and M mi-
crophones where both BSS-ADP and BSS-SCT work well. The
dark regions represent hyperbola of possible source locations for
a microphone pair. We used microphones 1, 2, 5, 6 for M = 4
and all 6 microphones for M = 6. For BSS-SCT, we used
the microphone pairs (1, 2), (5, 6), (1, 5), (1, 6) for M = 4 and
(1, 2), (1, 3), (4, 5), (4, 6), (1, 4), (1, 6) for M = 6. Some micro-
phone pairs contain rather closely spaced microphones (35 cm) for a
unique localization and some other pairs contain widely spaced mi-
crophones (> 100 cm) for an accurate localization. For SRP-PHAT
we used all available sensor pairs. Since all three cost functions ex-
hibit many local maxima for a fine search grid, we perform the peak
search in the following way: In each plot of Fig. 3, we marked the
true source positions with � and the 10 highest peaks with ×. Each
peak is enumerated according to its height in descending order. If
there are multiple peaks closer than 20 cm, we keep the strongest
and discard the others. In the top right plot in Fig. 3, for example,
peak 2 is close to peak 1, peaks 4 to 8 are close to peak 1 or 3, and
peak 10 is close to peak 1 or 3 or 9.



SRP-PHAT BSS-ADP BSS-SCT

N
=

2
,
M

=
4

 

y
 [
m

]
1

4

10

0 1 2 3 4
0

1

2

3

 

1

3

5

7

10

0 1 2 3 4
0

1

2

3

 

1

3

9

0 1 2 3 4
0

1

2

3
N

=
4

,
M

=
4

 

y
 [
m

]

1

2

4

7

8

0 1 2 3 4
0

1

2

3

 

1

3

5

9

10

0 1 2 3 4
0

1

2

3

 

1

3

4 9

0 1 2 3 4
0

1

2

3

N
=

6
,
M

=
6

 

y
 [
m

]

1

37

0 1 2 3 4
0

1

2

3

x [m]

1

2

4

67

8

10

0 1 2 3 4
0

1

2

3

x [m]

1

2

3

6

8 9

0 1 2 3 4
0

1

2

3

Fig. 3: Comparison of 2D position estimates with 3 s speech (�: true position, ×: estimated position)

grid size N = 2 N = 3 N = 4

BSS-ADP
5 cm 4.1 (73%) 4.0 (50%) 3.6 (7%)
1 cm 2.9 (80%) 2.7 (55%) 2.7 (40%)

BSS-SCT
5 cm 4.4 (100%) 4.1 (100%) 4.7 (80%)
1 cm 3.1 (100%) 3.1 (100%) 3.2 (87%)

Table 1: 2D localization errors in cm and detection rate (x%)

We see that all methods work well for N = 2 sources (top row)
since the first 2 distinct peaks match the true source positions. How-
ever, when we increase the number of sources to 4 (middle row) or 6
(bottom row), SRP-PHAT and BSS-ADP yields peaks at erroneous
locations, while BSS-SCT yield the first N distinct peaks at the cor-
rect locations. Comparing BSS-ADP and BSS-SCT, we observe that
BSS-ADP shows much higher “sidelobes“, which is harmful when
the number of sources is unknown and results in a lower detection
rate. Table 1 summarizes the mean localization errors and the detec-
tion rate for M = 4 for all possible combinations of N = 2, 3, 4
sources located at the six positions denoted in Fig. 2. Localization is
performed by finding the first N distinct peaks of each cost function
in the same way as in Fig. 3. A source is correctly detected if its po-
sition estimate is within 20 cm of the true source position. Localiza-
tion errors are only calculated for correctly detected sources. As we
can see, localization accuracy of BSS-ADP and BSS-SCT is compa-
rable. However, BSS-ADP has a much lower detection rate and is
less robust to a coarser search grid or smoothing operations which
both are methods to overcome the problem of many local maxima.

7. CONCLUSIONS

In this paper, we have proposed a localization algorithm for multi-
ple sources in reverberant environments. It relies on BSS-SCT and
allows 1D/2D DOA or 2D/3D position estimation by comparing the

signal propagation model against its estimate from BSS. Since our
algorithm explicitly takes multiple sources and arbitrary room im-
pulse responses into account, it shows a superior performance in
comparison to SRP-PHAT and BSS-ADP.
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