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Abstract. In this paper, we propose a method for blind source separa-
tion (BSS) of convolutive audio recordings with short blocks of stationary
sources, i.e. dynamically changing source activity but no source move-
ments.It consists of a time-frequency sparseness based localization step
to identify segments with stationary sources whose number is equal to
the number of microphones. We then use a frequency domain indepen-
dent component analysis (ICA) algorithm that is robust to short data
segments to separate each identified segment. In each segment we solve
the permutation problem using the state coherence transform (SCT).
Experimental results using real room impulse responses show a good
separation performance.
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1 Introduction

The task of convolutive blind source separation is to separate M convolutive
mixtures into N different source signals. In this paper we consider dynamically
changing source activity, i.e. active sources can change at any time during the
recording but the sources cannot move.

With stationary mixing conditions we can apply frequency domain ICA with
permutation correction to the complete recording (batch processing). However,
the performance will be poor if the source positions change during the recording.
To overcome this problem we can apply a frame-by-frame or block adaptive
processing but performance will be limited by the convergence time and the
limited amount of considered data. A better separation can be achieved if we
run batch processing on each segment of N = M stationary sources. This is
why we propose to first find segments of N = M stationary sources using a
TF sparseness based localization step. This is done using source positions and
pauses as segmentation cues. Once we have identified the segments, we apply
a frequency domain ICA algorithm to each segment that can cope with short
data segments. The permutation problem is solved using the state coherence
transform (SCT) [1, 2] which is also robust to short data lengths.

Some recent works for dynamically changing source activity are [3, 4]. [3]
models source activity with a hidden Markov model and switches off learning of
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the demixing parameters for inactive sources. However, the computation com-
plexity increases exponentially with the number of sources since all possible
combinations of source activity need to be modelled. [4] proposes an online
Bayesian learning procedure for instantaneous mixtures to incrementally esti-
mate the mixing matrix and source signals in each time frame. This approach
greatly reduces the computational complexity. However, it is not the purpose of
this paper to compare the different approaches for dynamically changing mixing
conditions. Instead we want to propose a simple but effective algorithm to find
and separate segments of N = M active sources.

2 Proposed Segmentation Algorithm

After a short-time Fourier transform (STFT), we can approximate the convo-
lutive mixtures in the time-domain as instantaneous mixtures at each time-
frequency (TF) point [k, l]:

X[k, l] ≈
Ñ

∑

n=1

Sn[k, l]Hn[k] (1)

k = 1, · · · , K is the frequency bin index, l = 1, . . . , L is the time frame index.
X = [X1, . . . , XM ]T is called an observation vector, Hn = [H1n, . . . , HMn]T is
the vector of frequency responses from source n to all sensors. Ñ in (1) reflects
the total number of sources of which only up to N = M sources are assumed to
be active in each time frame l, i.e. the other source signals Sn[k, l] are zero.

We assume that the direct path is stronger than the multipath components.
This allows us to exploit the DOA information for segmentation. The proposed
algorithm consists of two steps: normalization and segmentation.

2.1 Normalization

From the observation vectors X[k, l], we derive normalized phase vectors X̄[k, l]
which contain only the phase differences of the elements of X[k, l] with respect
to a reference microphone J :

X̄[k, l] =
[

ej·arg(Xm[k,l]/XJ [k,l])
]

, m = 1, · · · , M (2)

For a single active source, the phase of the ratio of two elements of X[k, l]
is a linear function of the frequency index k (modulo 2π). We use a distance
metric that includes mod 2π to estimate the direction-of-arrival (DOA) θn of
the sources:

‖X̄[k, l]− c[k, θ]‖2 = 2M − 2 ·
∑M

m=1
cos

(

arg

[

Xm[k, l]

XJ [k, l]

]

− 2π∆fkτm(θ)

)

(3)

∆f is the frequency bin width. c[k, θ] = [cm]1≤m≤M =
[

ej2π∆fkτm(θ)
]

1≤m≤M
is

a state vector which contains the expected phase differences between the micro-
phones m = 1, · · · , M and the reference one J for a potential source at DOA θ.
Using this distance metric and TF sparseness, we can localize the active sources.
For more details, please refer to [5].
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2.2 Segmentation Algorithm

After the normalization we calculate the function

Jl(θ) =
∑

k

ρ(‖X̄[k, l] − c[k, θ]‖2) (4)

where ρ(·) is a monotonously decreasing nonlinear function which reduces the
influence of outliers and increases DOA resolution. Inspired from [1], we propose
to use ρ(t) = 1 − tanh(α

√
t) in (4). Independently of our research, [6] proposed

a similar cost function Jl(θ) for only two microphones. In the ideal case, the
function Jl(θ) in (4) shows maxima at the true source DOAs θ for frame l and
a small value for other DOA values.

We want to use this two-dimensional function Jl(θ) to detect source position
changes and to find segments with N = M stationary sources by looking for the
cumulative source activity in the time interval [lstart, lend]. By this we mean how
many sources have been active in total during this time interval. For this purpose
we define J (θ) = f (Jlstart(θ), · · · ,Jlend

(θ)), where the generic function f(·)
could be mean

l
(·), median

l
(·), max

l
(·), or

l
maxq(·). The operation

l
maxq(·) selects

the q-th largest value from its arguments. The mean and median operation have
the disadvantage of a long memory, i.e. they detect a new source too late. The
max operation detects a new source very fast, but it is not robust to single spikes
of Jl(θ). In comparison, the maxq operation is more robust since Jl(θ) should
have a large value in at least q frames for a fixed θ before J (θ) confirms the
source activity with a large value as well for the same θ. However, the maxq

operation detects a new source too late. Hence, we use a combination of the
max and maxq approaches (Algorithm 1):

Algorithm 1 Search for segments with N = M stationary sources

lstart := 1, lend := lstart + lmin, marker:=[ ], lprev := 1, lb := 1
while lend < L do

Determine N̂ using Algorithm 2 with J (θ) := max
l

(Jlstart (θ), · · · ,Jlend
(θ))

if N̂ ≤ M then

lend := lend + 1
else

Determine N̂2 using Algorithm 2 with J̃ (θ) =
l

maxq(Jlprev (θ), · · · ,Jlend
(θ))

if N̂2 > M then

Append lb to the list of segment boundaries: marker:=[marker lb], lprev := lb
end if

Start a new segment: lb := lend, lstart := lb, lend := lstart + lmin

end if

end while

The proposed algorithm starts with a short segment of length lmin frames
and increases the size of the current segment until N̂ > M active sources are
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detected by J (θ) = max
l

Jl(θ). We store the current frame as a potential segment

boundary in lb. We then start a new segment and increase this segment until we
detect the next potential segment boundary by J (θ) = max

l
Jl(θ). Now we verify

the previously detected segment boundary lb by checking if J̃ (θ) =
l

maxq Jl(θ)

shows N̂2 > M maxima for the combined segment [lprev, lend] containing the
previous and current segment. lprev contains the last but one segment boundary.
This process is repeated until the end of the recording. The number of sources
N̂ for the current segment is determined using Algorithm 2 by looking for the
number of significant and distinct maxima of J (θ) or J̃ (θ).

Algorithm 2 Source number estimation

Find all extrema of J (θ)
Find the distance h in height between each maximum and its neighbouring minima
Discard maxima with small h

Sort remaining maxima θn in descending order of J (θn)
n:=1, max list:=[ ]
while J (θn) > t1 do

if (min |max list − θn|) > t2 then

max list:=[max list θn]
end if

n:=n+1
end while

N̂ := length(max list)

Fig. 1 illustrates J (θ) and J̃ (θ) for three segments starting at 0 s and ending
at 1.5 s, 3 s and 3.9 s. We want to identify segments with N = M = 3 sources.
3 sources at θ1,2,3 = 30◦, 90◦, 150◦ are active before 3 s. At the time instant 3 s,
a new fourth source at θ4 = 126◦ appears while the third source at θ3 = 150◦

disappears. Clearly J (θ) detects the fourth source as soon as it becomes active
(at 3 s) since J (θ) shows four distinct maxima in Fig. 1(b). J̃ (θ) takes additional
0.9 s to verify that it is truely a new source and not a spurious spike since J̃ (θ)
shows three distinct maxima in Fig. 1(b) and four distinct maxima in Fig. 1(c).

Algorithm 1 works quite well, but sometimes it still detects a segment bound-
ary too late if the newly active source does not start with a frame with high phase
coherence, i.e. J (θ) is not large enough. This can happen if the newly active
source has a smaller power or there is no frame at the beginning of the segment
where it is the single dominant source. However, we can use additional informa-
tion based on pauses in the segmentation process: We first detect pauses of more
than T frames by counting the number of consecutive frames where maxθ Jl(θ)
is small. This corresponds to frames with no source activity. We detect a pause
end if the maximum of J (θ) gets larger than a predefined threshold t3, i.e. the
coherence of the observed phase becomes large. This corresponds to one or mul-
tiple active sources. This procedure is summarized in Algorithm 3. Using the
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Fig. 1. Segmentation process using J (θ) and J̃ (θ), new source becomes active at 3 s

detected pauses, we perform a segment verification step: If Algorithm 1 detects
a segment boundary shortly after a pause we move the segment boundary to
the end of the pause if this yields a segmentation with N = M sources in the
previous and current segment.

Algorithm 3 Pause detection
count:=0
for all l = 1 to L do

if maxθ Jl(θ) < t3 then

count:=count+1
else

count:=0
end if

pause count[l] := count
end for

pause end:={l ∈ [1, · · · , L] : pause count[l] = 0 ∨ pause count[l − 1] > T}

3 Separation

After we have identified the segments containing N = M active sources, we
perform frequency domain ICA to separate the sources in each segment. We
have to deal with the following two issues:

– Choice of the ICA algorithm for short data segments. It is well
known that the performance of most ICA algorithms degrades if only a small
amount of data is available. Since we are considering dynamically changing
mixing conditions, we have to use an ICA algorithm that can deal with short
amounts of data. [7] showed that a recursive initialization of the demixing
matrices across frequencies improves the robustness of the scaled Infomax
algorithm for short data segments. We use this separation algorithm below.

– Permutation problem. Since we are applying ICA to each frequency bin
individually, the permutation problem has to be solved. For this task many
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approaches have been proposed. They can be classified into a family using
properties of the separated signals (e.g. correlation across frequency) and
another one based on propagation model parameters or smoothness of the
demixing matrices across frequency. Correlation based methods work well
if the observable data length is sufficiently long. However, when the data
length is short, performance decreases. We have shown in [2] that the multi-
dimensional SCT is a robust way to solve the permutation problem even for
short data lengths. Hence, we will use it to solve the permutation problem in
the given context of short data segments with stationary sources. For more
details please refer to [1, 2].

4 Experimental Results

4.1 Results using RWCP Database

We consider two scenarios using impulse responses from the E2A room (T60 =
300 ms) of the RWCP database [8]: We use an uniform linear array (ULA) with
M = 2 or M = 3 sensors with a total aperture of d = 11 cm and segments
from the short stories of the CHAINS database [9]. The source activity and the
corresponding source DOAs for the two scenarios are depicted in Fig. 2(a) and
(b). Each scenario has 7 segments with different lengths and source DOAs.
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Fig. 2. Source activity and resulting segmentation using our algorithm

Fig. 2(c) and (d) show Jl(θ) from (4) as gray value and the detected segment
boundaries (red solid lines) together with the true ones (blue dashed lines).
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Clearly our algorithm detects the segments with N = M sources very well since
the estimated segment boundaries match the true boundaries.

For each segment found by our proposed segmentation algorithm, we run
frequency domain ICA with the SCT for permutation correction. We used an
STFT frame size of 4096 with 75% overlap. Evaluation of the separation qual-
ity is done using the BSS EVAL toolbox [10] for each segment where there are
N = M active sources. We use the signal-to-interference ratio (SIR), signal-
to-distortion ratio (SDR) and signal-to-artifact ratio (SAR) defined in [10] as
separation performance measures. As proposed in the SISEC2010 task ”Deter-
mined Convolutive Mixtures under Dynamic Conditions”, we use an A-weighting
filter before the evaluation of the performance measures to model the frequency
characteristic of the human ear. The separation results for M = 2 and M = 3
are summarized in Table 1. Clearly, the proposed algorithm is able to separate
the sources very well. Separation quality is influenced by the duration of the
segments, the amount of activity for each source and the angular spacing be-
tween the sources. The more difficult case of N = M = 3 shows a slightly lower
separation quality than N = M = 2.

Table 1. Separation performance for each segment in dB with A-weighting

segment 1 2 3 4 5 6 7 mean

N = M = 2
SIR 19.4 21.1 21.1 17.5 18.9 16.9 16.9 18.9

SDR 5.9 11.7 8.0 4.3 7.6 10.2 4.3 7.4
SAR 6.2 12.3 8.3 4.6 8.0 11.4 4.6 7.9

N = M = 3
SIR 18.2 20.0 18.9 13.2 11.8 20.1 17.8 17.2

SDR 6.2 8.8 6.6 4.0 3.4 10.8 7.5 6.8
SAR 6.6 9.3 6.9 4.9 4.7 11.5 8.0 7.4

4.2 SISEC2010 Data

We have submitted our algorithm for the task ”Determined Convolutive Mix-
tures under Dynamic Conditions” of the SISEC2010 campaign. The task uses
impulse responses from a very reverberant room with T60 = 700 ms and dif-
ferent datasets for a microphone array with M = 2 microphones and spacing
d = 2, 6, 10 cm. Here we show the results for the example dataset for a mi-
crophone spacing of d = 6 cm. The separation performance for the complete
recording using an STFT frame size of 8192 with 75% overlap is summarized in
Table 2 where we give the mean values of SIR, SAR and SDR with and without
A-weighting and the corresponding standard deviations.

On the test dataset (http://irisa.fr/metiss/SiSEC10/dynamic/dynamic_
task2_all.html), our algorithm outperforms the other approaches except for
the case of d = 2 cm. A possible explanation is that localization accuracy for
d = 2 cm is insufficent to yield an accurate segmentation.
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Table 2. Mean and standard deviation of separation performance for SISEC2010 ex-
ample dataset in dB

without A-weighting with A-weighting

SIR SDR SAR SIR SDR SAR

9.13 ± 2.99 3.21 ± 2.86 6.42 ± 1.54 12.13 ± 3.78 4.47 ± 3.71 6.47 ± 2.36

5 Conclusion

In this paper we have presented a method to separate recordings of short blocks
of stationary sources. It is based on a segmentation of the recording into blocks
of N = M active sources through a time-frequency sparseness based DOA esti-
mation for each time frame. Through a sliding time window, the change points
are detected and the recordings are divided into blocks of N = M active sources.
We then use a frequency domain ICA algorithm suited for short data segments
[7] together with permutation correction using the state coherence transform
[1, 2]. Experimental results show that our approach achieves good separation
performance even when the source activity changes frequently.
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