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Abstract. In this paper, we propose a novel method for blind source
separation (BSS) based on time-frequency sparseness (TF) that can esti-
mate the number of sources and time-frequency masks, even if the spatial
aliasing problem exists. Many previous approaches, such as degenerate
unmixing estimation technique (DUET) or observation vector cluster-
ing (OVC), are limited to microphone arrays of small spatial extent to
avoid spatial aliasing. We develop an offline and an online algorithm that
can both deal with spatial aliasing by directly comparing observed and
model phase differences using a distance metric that incorporates the
phase indeterminacy of 2π and considering all frequency bins simultane-
ously. Separation is achieved using a linear blind beamformer approach,
hence musical noise common to binary masking is avoided. Furthermore,
the offline algorithm can estimate the number of sources. Both algo-
rithms are evaluated in simulations and real-world scenarios and show
good separation performance.
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1 Introduction

The task of convolutive blind source separation is to separate M convolutive
mixtures xm[i], m = 1, . . . , M into N different source signals. Mathematically,
we write the sensor signals xm[i] as a sum of convolved source signals

xm[i] =

N
∑

n=1

hmn[i] ∗ sn[i], m = 1 . . .M (1)

Our goal is to find signals yn[i], n = 1 . . .N such that, after solving the permu-
tation ambiguity, yn[i] ≈ sn[i] or a filtered version of sn[i]. In the case of moving
sources, the impulse responses hmn[i] are time-varying.

Our algorithms cluster normalized phase vectors X̄[k, l] in the time-frequency
domain, where k is the frequency index and l is the time frame index, respec-
tively. Each cluster with the associated state vector c[k,pn] corresponds to a
different source n with the associated location or direction-of-arrival (DOA) pa-
rameter vector pn. Different from DUET, our algorithms can use more than
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two microphones. In contrast to DUET and OVC, our algorithms do not suffer
from the spatial aliasing problem. After clustering the phase vectors X̄[k, l], we
apply time-frequency masking or the blind beamformer from [1] to separate the
sources.

2 Proposed Offline Algorithm

After a short-time Fourier transform (STFT), we can approximate the convo-
lutive mixtures in the time-domain as instantaneous mixtures at each time-
frequency (TF) point [k, l]:

X[k, l] ≈
N

∑

n=1

Hn[k]Sn[k, l] (2)

X = [X1, . . . , XM ]T is called an observation vector and Hn = [H1n, . . . , HMn]T

is the vector of frequency responses from source n to all sensors. We assume
that the direct path is stronger than the multipath components. This allows us
to exploit the DOA information to perform the separation. Note that we are
only interested in separation and not in dereverberation. Hence, we do not aim
at a complete inversion of the mixing process. As a consequence, we do not
require minimum-phase mixing. The proposed algorithm consists of three steps:
normalization, clustering, and reconstruction of the separated signals.

2.1 Normalization

From the observation vectors X[k, l], we derive the normalized phase vectors
X̄[k, l] which contain only the phase differences of the elements of X[k, l] with
respect to a reference microphone J :

X̄[k, l] =
[

ej·arg(Xm[k,l]/XJ [k,l])
]

, m = 1, · · · , M (3)

For a single active source, the phase of the ratio of two elements of X[k, l] is a
linear function of the frequency index k (modulo 2π):

arg (Xm[k, l]/XJ [k, l]) = 2π∆fkτm + 2πo, o ∈ Z (4)

where ∆f is the frequency bin width and τm is the time-difference of arrival
(TDOA) of the source with respect to microphone m and J . If there is no
spatial aliasing (i.e. o = 0), we can cluster the TDOAs at all TF points because

of τm = 1
2π∆fk arg

[

Xm[k,l]
XJ [k,l]

]

. However, in the case of spatial aliasing (o 6= 0),

we can no longer cluster 1
2π∆fk arg

[

Xm[k,l]
XJ [k,l]

]

directly. Instead we would need to

take into account all possible values of o. However, we can avoid this problem by
directly comparing the observed phase difference and the model phase difference
for multiple microphone pairs using the distance metric

‖X̄[k, l] − c[k,p]‖2 = 2M − 2 ·
M
∑

m=1

cos

(

arg

[

Xm[k, l]

XJ [k, l]

]

− 2π∆fkτm(p)

)

(5)
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with the state vector c[k,p] = [cm]1≤m≤M =
[

ej2π∆fkτm(p)
]

1≤m≤M
. c[k,p] con-

tains the expected phase differences for a potential source at p with respect to
microphones m = 1, · · · , M and J .

The distance metric (5) allows an estimation of the location or DOA pa-
rameters pn of all sources even if spatial aliasing occurs. This is achieved by
considering all frequency bins simultaneously: Due to the spatial aliasing, (5)
contains location ambiguities for higher frequencies. However, these ambiguities
are removed by summing across all frequency bins. We define J (p)

Jl(p) =
∑

k

ρ(‖X̄[k, l] − c[k,p]‖2), J (p) =
∑

l

Jl(p), (6)

which has maxima for p = pn. ρ(t) is a monotoneously decreasing nonlinear
function in the range [0, 1] that reduces the influence of outliers and increases
spatial resolution.

We estimate pn by looking for the maxima of J (p) and then cluster the TF
points as described in the next section.

2.2 Source Number Estimation and Clustering

We need to estimate the number of sources N̂ and then find clusters C1, . . . , CN̂
of X̄[k, l] with centroids c[k, p̂n]. Unlike [2–4], we achieve the clustering by a
direct search over all possible TDOAs or DOAs p and do not use iterative
approaches such as k-means or expectation-maximization (EM). This has the
advantage, that we are guaranteed to find the global optima of the cost func-
tion. Inspired from [5], we propose to use ρ(t) = 1− tanh(α

√
t) as the nonlinear

function ρ(t) in (6). Independently of our research, [6] proposed a similar cost
function Jl for only two microphones and without the summation over time for
localization purposes.

Another advantage of the direct search is that we do not need to know the
number of sources beforehand as in [2]. Instead, we can count the number of
significant and distinct peaks of J (p): This is done by finding all peaks pn of
J (p) with J (p) > t and sorting the peaks in descending order J (pi) > J (pi+1).
Then we start from the first peak and accept the next peak if the minimum
distance to a previously accepted peak is larger than a certain threshold t2. The
number of estimated sources N̂ is then given as the number of accepted peaks.

Since in (6) the peak height is a function of the amount of source activity
it might be difficult to count the number of sources if the amount of source
activity differs a lot among the sources. One way to solve this problem is to use
the max-approach from [6] to estimate the number of sources by replacing J (p)
by J̃ (p) = maxl Jl(p). This modified function is less sensitive to the amount of
source activity because the peak height is proportional to the coherence of the
observed phase. So if for each source there is at least one time frame where it is
the single active source, J̃ (p) will yield a large peak for this source. Fig. 1 shows
J (p) and J̃ (p) for two scenarios with different amounts of source activity. In
Fig. 1(b) the max-approach is clearly superior because the contrast beetween true
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peaks and spurious peaks is larger. Furthermore, the max-approach improves
TDOA estimation for closely spaced microphones: It selects time frames with
high coherence of the observed phase, i.e. a single active source.
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Fig. 1. Source Number and DOA Estimation for different source acitivity (length 24 s)

The positions/DOAs p̂n, n = 1, · · · , N̂ of the sources are given by the relevant
peaks of J (p) or J̃ (p). For each source, we generate the corresponding state
vectors c[k, p̂n], n = 1, · · · , N̂ and assign all TF points to cluster n for which
‖X̄[k, l]− c[k, p̂n]‖2 is minimal.

Comparison with EM algorithm with GMM model : [4] uses a related
approach for two microphones: They use an EM algorithm with a Gaussian
mixture model (GMM) for the phase difference between the two microphones
at each TF point. The phase difference of each source is modelled as a mixture
of 2Kf + 1 Gaussians with mean 2πk · (1 + ∆fµq), k = −Kf , · · · , Kf , where
µq is the mean of the q-th component. The observed phase difference for all
sources is then described as a mixture of Q such models. Furthermore they use a
Dirichlet prior for the mixture weights αq, q = 1, · · · , Q to model the sparsity of
the source directions, i.e. to represent the phase difference with a small number
of Gaussians with large weight αq. After convergence of the EM algorithm the
mean µq of the Gaussians with large weight αq and small variance σ2

q reflect the
estimated TDOAs of the N sources. Our approach differs in a number of ways:

– We use a direct search instead of an iterative procedure to estimate the
source parameters pn.

– We are guaranteed to find the global optima of the function J (p), whereas
the EM algorithm could converge to local optima.

– We estimate the number of sources by counting the number of significant and
distinct peaks instead of checking the weights and variance of the components
of a GMM model.

– We do not model the phase difference of each source using 2Kf + 1 Gaus-
sians. Instead we use the distance metric (5) which incorporates the phase
wrapping.
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– Our approach is computationally less demanding: We need Ngrid · K · L
function evaluations, while the EM algorithm requires Niter·Q·(2Kf+1)·K ·L
function evaluations. For a typical scenario Ngrid = 180, Niter = 10, Q =
8, Kf = 5 and assuming comparable computational cost for each function
evaluation, our approach would be about 6 times faster.

The differences between [4] and our approach can be summarized as differ-
ences in the model (wrapped Gaussians vs. 2π-periodic distance function) and
in the clustering algorithm (iterative EM algorithm vs. direct search and simple
clustering).

The authors would like to thank Dr. Shoko Araki for running our proposed
algorithm on her dataset from [4]. Using t = 0.5 and t2 = 5◦, our algorithm
estimates the number of sources correctly for all tested cases.

2.3 Reconstruction

To reconstruct the separated signals, we use the blind beamforming approach
discussed in [1]. This approach reduces or completely removes musical noise
artifacts which are common in binary TF mask based separation. After the
beamforming step, additional optional binary TF masks can be used to further
suppress the interference. Then we convert the separated signals back to the
time domain using an inverse STFT.

3 Online Separation Algorithm

The online algorithm operates on a single frame basis and uses a gradient ascent
search for the TDOAs/DOAs of the sources with prespecified maximum number
of sources N . Inactive sources result in empty clusters. The cost function Jl for
the l-th STFT frame is

Jl(pn) =
∑

k

ρ(‖X̄[k, l] − c[k,pn]‖2) (7)

Its gradient vector with respect to pn is

∂Jl

∂pn
= −

∑

k

ℜ
{

j2π∆fk · ∂ρ(t)

∂t
· ∂τττ

∂pn
· c[k,pn] ⊙ 2(X̄[k, l]− c[k,pn])

}

, (8)

where τττ = [τm]1≤m≤M . Similar to [7], we use a time-varying learning rate which
is a function of the amount of TF points associated with source n. The separation
steps are similar to the offline algorithm. A computationally efficient version of
the blind beamforming algorithm can be obtained by using recursive updates of
the parameters as in [8].

4 Experimental Evaluation

For the experimental evaluation, we used a sampling frequency of fs = 16 kHz,
a STFT with frame length 1024 and 75% overlap. SNR was set to 40 dB. We
selected six speech signals from the short stories of the CHAINS corpus [9].
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4.1 Stationary Sources

First, we evaluate the offline algorithm using the measured impulse responses
of room E2A (T60 = 300 ms) from the RWCP sound scene database [10]. This
database contains impulse responses for sources located on a circle with radius
2.02 m with an angular spacing of 20◦. The microphone array is shifted by 0.42 m
with respect to the center of the circle. We consider a two-microphone array with
the spacings d = 11.3 cm and d = 33.9 cm. All sources have equal power and a
length of 5 s. For d = 11.3 cm, J (p) sometimes does not show N distinct max-
ima. Hence, we use J̃ (p) for d = 11.3 cm since it provides increased resolution
by using frames with a single active source for the localization. We have tried dif-
ferent signal combinations and DOA scenarios (A,B,C,D): For scenarios A,B,C
we varied the DOAs between 30◦ . . . 150◦ and tested different angular spacings
between the sources. For case D we distributed the sources with maximum angu-
lar spacing between 10◦ . . . 170◦. The angular spacings between the sources are
summarized in Table 1. For each scenario, we considered all signal combinations

Table 1. Considered scenarios

A B C D

N = 2 20◦ – 40◦ 160◦

N = 3 20◦/40◦ 40◦/20◦ 40◦/40◦ 80◦/80◦

N = 4 20◦/40◦/40◦ 40◦/20◦/40◦ 40◦/40◦/40◦ 60◦/40◦/60◦

of N = 2, 3, 4 out of the 6 source signals. Table 2 summarizes the performance of
the source number estimation and the signal-to-interference (SIR) gain for the
different cases. For the source number estimation, we used thresholds t = 0.46 for
d = 11.3 cm and t = 0.55 for d = 33.9 cm. t2 was set to 10◦ for both microphone
spacings d. The performance is evaluated by the percentage of estimations for
which N̂ = n, n = 1, · · · , 5. This is known as the confusion matrix.

Table 2. Source number estimation and SIR gain

N̂ accuracy (%) SIR gain [dB]

N spacing 1 2 3 4 5 A B C D

2
d = 11.3 cm 0 97 3 0 0 4.6 – 7.9 15.9
d = 33.9 cm 0 100 0 0 0 6.0 – 9.0 13.0

3
d = 11.3 cm 0 1 98 1 0 3.7 5.7 8.7 11.4
d = 33.9 cm 0 0 100 0 0 6.2 8.9 9.4 13.1

4
d = 11.3 cm 0 0 2 95 3 2.8 6.0 7.1 6.4
d = 33.9 cm 0 0 0 100 0 6.5 8.9 8.0 8.4

Our offline algorithm estimates the number of sources correctly in almost all
cases and shows a good separation performance. A larger microphone spacing
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achieves a better separation performance for closely spaced sources (case A and
B) or for large source numbers. On the short two-source-two-microphone mix-
tures of the SISEC2010 campaign (http://irisa.fr/metiss/SiSEC10/short/
short_all.html), separation performance is comparable to other algorithms.

4.2 Moving Sources

In order to have a precise reference for moving source positions, we performed
simulations using the MATLAB ISM RoomSim toolbox [11]. The considered
room was of size 5 m × 6 m × 2.5 m and we chose reverberation times of T60 =
100, 200, 300 ms. We used a cross-array ( ) with M = 5 microphones. The micro-
phone spacing was d = 10 cm, so spatial aliasing occurs above 1700 Hz . We have
N = 3 sources that move along a circle with radius 1.0 m. Source 1 moves from
θ1 = 30◦ to θ1 = 120◦ and back, source 2 moves from θ2 = 120◦ to θ2 = 210◦

and back and source 3 moves from θ3 = 240◦ to θ3 = 300◦. The total simulation
time is 24 s. Fig. 2(a) shows the estimated angles θ̂onl[l] using our online algo-
rithm as well as the reference angles θtrue[l]. The online-algorithm was initialized
with the true angles θtrue[0]. As we see, the online algorithm accurately tracks
the sources. During speech pauses, angle estimates are not updated. The sepa-
ration performance of the online and offline algorithm is summarized in Table 3.
As expected, the offline algorithm fails to separate the source signals while our
gradient-based online algorithm achieves good results. The reason for the fail-
ure of the offline algorithm is that it averages the DOAs of the moving sources.
The estimated DOAs are 63◦, 119◦ and 240◦. Two of the three estimated DOAs
match the initial and final DOAs of the two sources and hence separation qual-
ity for these two sources (2 and 3) is acceptable for T60 = 100 ms. However,
the separation performance drops significantly when the sources start moving
as shown in Fig. 2(b). It shows the local SIR gains which are calculated over
non-overlapping segments of 1 second and averaged over the three sources.

Table 3. Global SIR gain in dB for moving sources

T60 algorithm source 1 source 2 source 3 mean

100 ms
offline 4.5 18.2 10.1 10.9
online 25.9 28.1 27.8 27.3

200 ms
offline 5.0 15.9 8.5 9.8
online 24.6 22.4 24.1 23.7

300 ms
offline 4.9 10.7 6.9 7.5
online 17.3 16.5 18.0 17.3

5 Conclusion

In this paper we have presented two blind source separation algorithms based on
TF sparseness that are able to deal with the spatial aliasing problem by using
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Fig. 2. Fixed number of moving sources, T60 = 200 ms

a distance metric which incorporates phase wrapping (mod 2π) and averaging
all frequency bins for the estimation of the location or DOA parameters of the
sources. The offline algorithm reliably estimates the source number and achieves
the clustering using a direct search. The online algorithm assumes a prespecified
maximum number of sources and is able to track moving sources. Both algo-
rithms show good separation performance in midly reverberant environments.
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