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Abstract—Recently, direction-of-arrival (DOA) and position estimation
for acoustic signals have been studied intensively and many different
algorithms have been proposed. Among different approaches for multiple
sources, independent component analysis (ICA) based methods have
drawn much attention. In this paper, we study the effects of permutation
ambiguity, source scaling ambiguity and sensor gain mismatch on source
localization based on an estimate of the channel matrix or its inverse.
We show that the source scaling ambiguity can be removed from the
estimate of the inverse channel by proper normalization, but not the
sensor gain mismatch. We evaluate the influence of source scaling
ambiguity and sensor gain mismatch on two frequency domain ICA based
localization algorithms, the averaged directivity pattern (ADP) and the
state coherence transform (SCT) using simulations. We show that the
original ADP is very sensitive to source scaling ambiguity and sensor
gain mismatch. In contrast, SCT is completely insensitive to these effects
and shows a superior localization performance.

Index Terms—source localization, independent component analysis, av-
eraged directivity pattern, state coherence transform, scaling ambiguity,
sensor gain mismatch

I. INTRODUCTION

The task of acoustic source localization is to estimate the position

of one or multiple sound sources by using an array of microphones.

There are indirect localization methods over the explicit estimation

of the time-difference of arrival (TDOA) and direct spatial scanning

methods. Among the latter ones, some methods like ADP [1] and SCT

[2] are model-based since they explicitely model and estimate the

acoustic channel for localization by using ICA. Other algorithms like

SRP-PHAT [3] are not model-based as they perform the localization

without a channel model. [1, 2, 4, 5] discuss some advantages of

ICA based localization over SRP-PHAT, such as better performance

and increased spatial resolution for multiple sources, and improved

robustness to noise. The contribution of this paper is a theoretical

and experimental study of the effects of permutation ambiguity,

source scaling ambiguity and sensor gain mismatch on ICA based

localization for multiple broadband sources.

II. SIGNAL MODEL

ICA aims at separating N convolutives mixtures into N statistically

independent source signals. We can model the convolutive mixing in

the time-domain by an impulse response between each source n and

microphone m:

hmn(t) = amn · δ(t− tmn) + h̃mn(t) (1)

where amn is the amplitude of the direct-path, tmn denotes the

propagation delay of the direct-path and h̃mn(t) is the remaining part

of the impulse response. To simplify the derivations in this paper, we

assume amn ≈ 1. Combining this model for all microphones and

sources, we can write in the frequency domain

H[k] = ∆[k] + H̃[k], (2)

where k = 1, · · · , K is the frequency bin index. H[k] ∈ C
N×N is a

square matrix of the room frequency responses from all sources to all

microphones. ∆[k] =
ˆ

ejωktmn
˜

, where ωk is the center frequency

of the k-th frequency bin. H̃[k] models the remaining part of the

room frequency response.

The mixing model in the time-frequency domain is

X[k, l] ≈ G[k]H[k]S[k, l] (3)

where l is the time frame index. S[k, l] ∈ C
N and X[k, l] ∈ C

N

are two column vectors containing the short-time Fourier transform

of the source and microphone signals, respectively. The diagonal

matrix G[k] = diag(g1[k], · · · , gN [k]) ∈ R
N×N models possible

microphone gain mismatch.

Using the model (3), we can apply any frequency domain ICA

algorithm to separate the signals in the time-frequency domain:

Y[k, l] = W[k]X[k, l]. (4)

W[k] is a square demixing matrix to be determined. Since each

frequency bin is treated independently from the others, a permutation

and scaling ambiguity may occur at each frequency bin. To achieve

a good separation, both ambiguities need to be resolved.

Assuming a successfull blind source separation, we obtain

W[k] = Π[k]D[k](G[k]H[k])−1

= Π[k]D[k] ·H−1[k] ·G−1[k]

= Π[k]D[k] · (∆[k] + H̃[k])−1 ·G−1[k]. (5)

Π[k] is the permutation ambiguity matrix and D[k] =
diag(d1[k], · · · , dN [k]) ∈ C

N×N is the scaling ambiguity matrix.

Π[k] permutes the rows of H−1[k], D[k] scales the rows of H−1[k]
and G−1[k] scales the columns of H−1[k].

Many algorithms have been proposed to solve the permutation

problem, see [6] for an overview. The source scaling ambiguity

is usually solved using the so-called minimum distortion principle

(MDP) [7]. To the knowledge of the authors, there is no literature

covering the effect of sensor gain mismatch on ICA.

To perform ICA based localization, we want to infer the positions

of the sources by using W[k]. This information is embedded in the

phase of ∆[k]. The next section introduces the averaged directivity

patterns (ADP) and the state coherence transform (SCT) for ICA

based broadband localization averaging K frequency bins.

III. ADP AND SCT

A. ADP

Directivity patterns of the demixing filters have been used for

a long time to correct permutations in each frequency bin. [1]

proposed ADP for 2D DOA estimation. This method is based on

the observation that ICA forms spatial nulls to the position of the

unwanted sources in order to suppress them. To perform localization,

we infer the source positions from the positions of the spatial nulls.

Strictly speaking, this holds only in anechoic environments, but the

idea can also be applied to reverberant rooms when the direct path

is dominant. The directivity pattern for each source n at position p

is defined by the squared amplitude response of the n-th demixing

filter, the n-th row of W[k]:

Bn[k, p] =

˛

˛

˛

˛

˛

N
X

i=1

wni[k]e−jωkτi(p)

˛

˛

˛

˛

˛

2

. (6)



τi(p) is the time delay from a source at position p to microphone

i. Each directivity pattern has in the ideal case N − 1 spatial nulls

or minima and hence would allow to localize N − 1 sources. If

we average the directivity patterns for all frequency bins and n,

except for the directivity pattern with the highest amplitude for a

given frequency bin [1], we obtain

n∗[k,p] = arg max
n

Bn[k, p],

B̃(p) =
1

NK

K
X

k=1

X

n6=n∗[k,p]

Bn[k, p]. (7)

B̃(p) should ideally have minima at the positions of the N sources.

[1] proposed to transform B̃(p) using a nonlinear function in order

to sharpen the minima:

B(p) = tanh

„

4 ·
B̃(p)−min B̃(p)

max B̃(p)−min B̃(p)

«

. (8)

This contrast enhancement can be applied to all methods and does

not change the position of the minima. To compare ADP and SCT

we will use HADP(p) = 1−B(p) in Section IV.

B. SCT

The second approach for ICA based localization is to use the

inverse of the estimated demixing matrix W−1[k] ∼ H[k] instead

of W[k] ∼ H−1[k]. By calculating W−1[k], we can compare an

estimated propagation model with an assumed propagation model

using the SCT approach [2]. The main idea of the state coherence

transform is to compare the “state” e−jωτ from the propagation

model H[k] against its estimate from the result of ICA. We define

the state

rab[k, p] = e−jωkτab(p). (9)

τab(p) is the TDOA of a source at p observed at the microphone pair

(a, b). For a microphone pair (a, b) with small enough distance, the

impulse responses from the source to both microphones will look

similar up to a delay τab and an amplitude scaling. In terms of

the frequency responses Hi[k](i = a, b) from the source to both

microphones, we can write

Ha[k]

Hb[k]
=
|Ha[k]|

|Hb[k]|
e−jωkτab(p). (10)

Generally, we could also use the amplitude ratio
|Ha[k]|
|Hb[k]|

for local-

ization, but this ratio is much less reliable than TDOA, especially

in reverberant environments and when the sources and microphones

have directivity patterns. A comparison with (9) shows

rab[k, p] = exp



j arg

„

Ha[k]

Hb[k]

«ff

(11)

Now we estimate this state for source n from the result of ICA

r̂ab,n[k] = exp

(

j arg

 
ˆ

W−1[k]
˜

an

[W−1[k]]
bn

!)

. (12)

The notation [A]
ij

denotes the (i, j)-th element of the matrix A.

Taking more than just one sensor pair into account, we define a state

column vector and a corresponding estimate for certain sensor pairs

(a, b) ∈ I ⊆ {(a, b)|1 ≤ a < b ≤M}:

r[k, p] = [rab[k, p]](a,b)∈I , r̂n[k] = [r̂ab,n[k]](a,b)∈I . (13)

This leads to the objective function to be maximized

HSCT(p) =
N
X

n=1

K
X

k=1

ρ(‖r̂n[k]− r[k, p]‖) (14)

for a single source at p. ρ(t) is a locally confined kernel function

that puts more weight on t ≈ 0 and increases resolution.

The state estimates r̂ab,n[k] calculated from W−1[k] =
G[k]H[k]D−1 [k]Π−1[k] by using (12) are up to a permutation

identical to those calculated from W−1[k] = H[k] as long as

G[k] ∈ R
N×N , i.e. the sensors have only amplitude and no phase

mismatch. The scaling ambiguity D[k] scales each column of H[k]
individually. This is irrelevant for the state estimate in (12). The

gain mismatch G[k] affects the row scaling of H[k], but does not

introduce any phase distortion. In other words, the SCT is robust to

both scaling ambiguity and sensor gain mismatch.

C. Role of Nonlinear Summation

ADP uses a posterior contrast enhancement, i.e. applying a nonlin-

ear function after the two summations in (7). This is quite different

from the nonlinear transform in the SCT method [4] where it is done

before the summation over n and k. In contrast to ADP (8), the

transform in the SCT method can change the position of the maxima.

It can be seen as a robust distance metric and serves to suppress

outliers and to increase the resolution.

As an illustrating example, we consider a uniform linear array

(ULA) with M = 3 microphones and a microphone spacing of d =
0.1 m for 1D DOA estimation. K = 39 frequency bins are equally

spaced between 100 Hz and 4 kHz. Assuming an anechoic far-field

mixing model, we can write H[k] as

H[k] =

2

4

1 1 1

e−jωkτ1(p1) e−jωkτ1(p2) e−jωkτ1(p3)

e−jωkτ2(p1) e−jωkτ2(p2) e−jωkτ2(p3)

3

5 (15)

where τm(pn) = m ·dc−1 sin(θn), pn = θn is the DOA of source n
and c is the sound propagation speed. We assume W[k] = H−1[k]
for this section. The true DOAs are θ1,2,3 = −30◦,−20◦, 15◦.

SCT: Fig. 1 shows the individual terms Fn(p) = ρ(‖r̂n[k] −
r[k, p]‖) for a single frequency bin k, as well as F =

P

n Fn for

the case of ρ(t) = 1 − t/2 and ρ(t) = 1 − tanh(5 · t/2). Clearly,

the nonlinear transform increases the localization resolution.
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(b) ρ(t) = 1 − tanh(5 · t/2)

Fig. 1: SCT for a single frequency bin

ADP: The ADP method implicitly contains a nonlinearity in the

summation process: The exclusion of the directivity pattern with

maximum amplitude from the summation in (7) is a nonlinear

operation. This exclusion is necessary to obtain a function B̄[k,p]
with minima at the correct positions as shown in Fig.2 which plots

Bn[k, p], B∗ =
P

n Bn[k, p] and B̄ =
P

n6=n∗[k,p] Bn[k,p].
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Fig. 2: ADP for a single frequency bin

IV. EFFECT OF THE DIFFERENT AMBIGUITIES

A. Analysis of Permutation Ambiguity

If there was no permutation, we could estimate the location of

source n by using the n-th row of W[k] along all frequency bins k.

However, the permutation ambiguity changes the order of the rows

of W[k] differently in each frequency bin k. If we do the estimation



step in each frequency bin individually and then combine the results,

permutation ambiguity becomes relevant. If we, however, first sum

over all sources and frequency bins and then do the estimation step,

permutation ambiguity is completely irrelevant since the permutation

only changes the order of the terms in the sum:
X

k

X

n

f
`

[Π[k]W[k]]
n:

´

=
X

k

X

n

f
`

[W[k]]
n:

´

(16)

X

k

X

n

f
`ˆ

(Π[k]W[k])−1
˜

:n

´

=
X

k

X

n

f
`ˆ

W
−1[k]

˜

:n

´

(17)

[·]n: selects the n-th row of a matrix, while [·]:n selects the n-th

column. The ADP cost function is of the type in (16), while the SCT

cost function is of the type in (17). This means, the permutation

ambiguity is irrelevant for both ADP and SCT.

B. Theoretical Analysis of Scaling Ambiguity and Sensor Gain

In this section, we want to theoretically study the effects of scaling

ambiguity and sensor gain mismatch on ADP. In the following, we

assume a direct-path only and neglect permutation. Furthermore, we

consider a single frequency bin k:

W[k] = D[k](G[k]∆[k])−1 = D[k]∆−1[k]G−1[k] (18)

If W[k] = ∆−1[k], then Bn[k, p] would have M − 1 zeros at the

correct locations of the sources. We found out:

• The scaling ambiguity D[k] changes the scaling of the individual

directivity patterns Bn[k,p], but not the positions of the zeros

of both the Bn[k, p] in (6) and the total ADP B(p) in (8).

• The sensor gain mismatch G[k], however, changes the position

of the zeros as we proof in the appendix. As a consequence,

the ADP B[p] does not have its zeros at the correct locations if

G[k] 6= c · I.

We also perform a sensitivity analysis of the zero positions of

Bn[k,p] with respect to sensor gain mismatch (see appendix). From

the sensitivity analysis we conclude:

• The closer the sources (in relation to the microphone spacing),

the more sensitive the positions of the zeros of Bn[k, p] with

respect to sensor gain.

• The larger the sensor gain mismatch, the larger the change in

zero positions of Bn[k, p].

• The sign of the change in zero positions depends on gq ≷ 1.

G[k] 6= c · I can destroy the ADP as shown in the next section.

C. Practical Analysis of Scaling Ambiguity and Sensor Gain

As shown in Sec. III-B, scaling ambiguity and sensor gain mis-

match do not influence the SCT. Hence, we study only the effects

on ADP and give a comparison of ADP and SCT later on. Below

we use the exact model matrix H[k] from (15) for the calculation

of W[k] = D[k]H−1[k]G−1[k]. Fig. 3 plots the averaged HADP(p)
for K = 39 for different cases of D[k] and G[k]. The true DOAs

θ1,2,3 = −30◦,−20◦, 15◦ are marked with dashed vertical lines.

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

 

 

G = D = I

D = diag(4, 1, 0.25)
G = diag(1, 3, 1)

θ[◦]

Fig. 3: ADP for different scenarios

We observe different effects on HADP(p):

• The scaling ambiguity matrix D[k] changes the norm of the rows

of H−1[k]. This does not change the shape of the individual

directivity patterns Bn[k, p] over p, but their relative amplitude

to each other and hence the determination of the row n∗[k,p]
which is excluded from the overall ADP B̃(p) in (7). The result

is a modified HADP(p) as shown in Fig. 3.

• The sensor gain matrix G[k] changes the scaling of the columns

of H−1[k]. Since the elements wni[k] in (6) are subject to

different column scalings, each individual directivity pattern

Bn[k,p] changes significantly. The result is a serious change

of HADP(p) as shown in Fig. 3 where a gain mismatch of factor

3 in the second microphone completely destroys HADP(p).

D. Different Normalization Methods for ADP

To improve the robustness of ADP with respect to scaling ambi-

guity and sensor gain mismatch, we can use different normalization

strategies. These normalizations are proposals by the authors except

for the first one (MDP).

1) Minimum Distortion Principle (MDP): Generally, frequency

domain ICA methods remove D[k] using MDP [7]:

W[k]← diag(W−1[k])W[k]

= G[k]diag(H[k])D−1[k]D[k]H−1[k]G−1[k]

= G[k]diag(H[k])H−1[k]G−1[k]. (19)

However, this operation introduces the sensor gain mismatch G[k]
as a row scaling matrix. The net effect is to replace the scaling

ambiguity matrix D[k] by the sensor gain mismatch G[k]. Hence

this normalization method does not work in the presence of sensor

gain mismatch.

2) Row normalization of W:

wn[k]←
wn[k]

‖wn[k]‖
e−j arg wnn[k]

(20)

wn[k] is the n-th row of W[k]. This normalization compensates D[k]
but not G[k]. It avoids the calculation of W−1[k]. In principle, we

can use any vector norm ‖wn[k]‖. In our experiments, we used the

l1-norm.

3) Row and column normalization of W: Similar to the row

normalization, we can use a joint row and column normalization

to simultaneously normalize the rows and columns of W[k] to unit

norm. By this procedure, we aim to reduce the influence of the scaling

ambiguity D[k] and the differing row norms of H−1[k] as well as

the sensor gain mismatch G[k]. To achieve a joint row and column

normalization

W[k]← diag(β1, · · · , βN )W[k]diag(γ1, · · · , γN), (21)

we need to solve a set of nonlinear equations such that the l1-

row-norm and the l1-column-norm of W[k] become unit after the

normalization, i.e.

βm ·
N
X

n=1

|wmn|γn = 1, γn ·
N
X

m=1

|wmn|βm = 1, (22)

for all n = 1, · · · , N, m = 1, · · · , N . To find the normalization

weights βm and γn we use a numerical equation solver.

Afterwards, we make the diagonal elements of W[k] real by

W[k]← diag(e−j arg w11[k], · · · , e−j arg wNN [k])W[k] (23)

4) Phase normalization of W−1: From (5), we see that the TDOA

of the sources is embedded in the phase of ∆[k]. Hence, we should

use only the phase from W−1

Ĥ[k] = W
−1[k], ∆̂[k] =

"

e
j arg

„

ĥmn

ĥJn

«
#

1≤m≤N

1≤n≤N

,

W̃[k] = ∆̂
−1[k], (24)

where J denotes a reference microphone. After the calculation of

W̃[k], we perform row normalization as in (20) and use this result

to compute ADP as previously.



E. Effect of Normalization Methods on ADP

The MDP normalization and the row normalization do not correct

the sensor gain mismatch. Hence, Fig. 4 compares only the original

ADP (orig ADP), ADP with row and column normalization (r&c

ADP), ADP with phase normalization (phase ADP) and SCT for W

estimated by ICA [8]. We have considered the scenario with G =
diag(1, 3, 1) from before. We used speech signals with a sampling

rate of 8 kHz and 128 equally spaced frequency bins for averaging

in ADP and SCT.
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Fig. 4: Comparison of ADP and SCT for W estimated by ICA

As shown in Fig. 4, in the presence of sensor gain mismatch, SCT

clearly outperforms ADP without proper normalization: SCT shows

its peaks at the correct DOA values, while the original ADP and ADP

with row and column normalization fail to detect all sources and show

peaks at wrong DOA values. The reasons of the superiority of SCT

over ADP are that, by working on W−1 instead of W, SCT focuses

on phase information of H only which allows to compensate both

scaling ambiguity D[k] and sensor gain mismatch G[k]. If we use

W ∼ H−1, we cannot compensate the sensor gain mismatch G[k]
since W contains the TDOA information coupled in the phase and

amplitude. ADP with phase normalization (24) performs comparable

to SCT but requires two inversions of W while SCT needs only

one. Furthermore, the nonlinear transform in SCT yields an increased

spatial resolution.

As discussed in Section IV-B, the effects of sensor gain mismatch

depend on the spacing of the sources in relation to the microphone

spacing and on the amount of gain mismatch.

V. CONCLUSION

In this paper, we have studied the influence of permutation am-

biguity, scaling ambiguity and sensor gain mismatch on ICA based

source localization. We have shown that the permutation ambiguity

is irrelevant for source localization if we consider all frequency bins

and sources simultaneously. If we work with the demixing matrix

W without proper normalization, localization performance is poor.

The scaling ambiguity can be removed from W but not the sensor

gain mismatch. Working with W−1 allows a source localization that

is independent of scaling ambiguity and sensor gain mismatch. We

have verified these findings by comparing two different localization

approaches: ADP (working on W) and SCT (working on W−1).

SCT is robust to both scaling ambiguity and sensor gain mismatch

and shows a superior performance in comparison to ADP without

proper normalization. If we derive a normalized W by just taking

into account the phase of W−1, ADP performs comparably to SCT.

APPENDIX

A. Positions of Zeros of ADP

For a given frequency bin k, let W = ∆−1G−1 be the perfect

estimate of the inverse mixing matrix ∆−1 except for the sensor gain

matrix G = diag(g1, · · · , gN). We now evaluate the values of the N
individual directivity patterns Bn[k,p], 1 ≤ n ≤ N from (6) at the

N true source positions pm. Clearly, Bn[k, pm] = |Bnm|
2 where

Bnm is the (n, m)-th element of B = W∆ = ∆−1G−1∆. If there

is no sensor gain mismatch, i.e. G = c·I, all off-diagonal elements of

B are zero. This means Bn[k,pm] = 0 ∀m 6= n and each directivity

pattern shows N − 1 zeros at the position of the interfering sources.

Hence, B̄(p) =
P

n6=n∗[k,p] Bn[p] is zero at all N source positions.

If, however, G 6= c · I due to sensor gain mismatch, there is in

each column of B at least one non-zero off-diagonal element. This

can be easily shown by a counter proof. If B = diag(b1, · · · , bN )
was diagonal, then

bm

ˆ

δ1m, · · · , δNm

˜T
=
ˆ

δ1m/g1, · · · δNm/gN

˜T
(25)

would follow for the m-th column of both sides of ∆B = G−1∆.

This implies g1 = · · · = gN and hence G = c · I, which violates the

assumption G 6= c · I.

The non-zero off-diagonal elements in each column of B mean that

for each source position pm, at least one Bn[k,pm] with n 6= m
is non-zero in addition to Bm[k, pm] 6= 0. As a result, B̄(pm) =
P

n6=n∗[k,pm] Bn[k,pm] 6= 0 ∀m. In other words, the ADP function

in (7) loses its zero-value property at all true source positions.

B. Sensitivity Analysis of Zeros of Bn[k, p]

Assuming an ULA and taking the first microphone as reference,

we can write Bn[k,p] = |B(z)|2 = |
PN

i=1 wniz
−(i−1)|2 with z =

ejωkτ(p) for a single frequency bin k. τ (p) is the TDOA between

neighbouring microphones in the ULA. We now find the sensitivity

of B(z) to sensor gain mismatch by calculating
∂B(z)
∂wnq

:

B(z) =

N
X

i=1

wniz
−(i−1) = wn1

N−1
Y

i=1

(1− zni · z
−1)

∂B(z)

∂wni

˛

˛

˛

˛

z=znq

= z−(i−1)
nq =

∂B(z)

∂znq

˛

˛

˛

˛

z=znq

·
∂znq

∂wni

(26)

Solving for the sensitivity
∂znq

∂wni
of the zeros znq of B(z), we get

∂znq

∂wni

= −
zN−i

nq

wn1 ·
Q

ν 6=q
(znq − znν)

. (27)

The change in zero positions ∆znq for a small change ∆wni =
wni ·(1/gi−1) of wni due to sensor gain mismatch depends on how

close the zeros are (znq ≈ znν ) and on the amount of sensor gain

mismatch (1/gi−1). Furthermore the sign of the change depends on

gi ≷ 1.

The zero positions znq of B(z) are related to the zero positions of

Bn[k, p] by z = ejωkτ(p). Closely spaced sources pq ≈ pν result

in zeros znq ≈ znν and hence a large ∆znq if G 6= c · I.
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