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ABSTRACT

Much research has been undertaken in the field of blind source sep-
aration (BSS) and a large number of algorithms have been devel-
oped. However, most of them assume that the number of sources
is known. In this paper we present an algorithm to estimate the
number of sources in the (over-)determined and underdetermined
case. We call this algorithm NOSET (Number of Sources Estima-
tion Technique). We start from a description of the BSS problem,
give a short overview of the so-called observation vector clustering
algorithm and then present our approach. It is based on direction-of-
arrival (DOA) estimation from reliable time-frequency points and a
clustering of the DOA estimates. The estimated DOAs can be used
to recover the source signals by performing a nearest-neighbor clas-
sification of the observation vectors instead of the conventional k-
means clustering procedure which is sensitive to the choice of initial
centroids.

1. INTRODUCTION

This paper deals with the estimation of the number of sources for
blind source separation. The task of blind source separation is to
separate M (possibly) convolutive mixtures xm[i], m = 1, . . . , M
into N different source signals. Mathematically we can write the
sensor signals xm[i] as a sum of convolved source signals

xm[i] =

N
X

n=1

hmn[i] ∗ sn[i], m = 1 . . . M (1)

Our goal is to find signals yn[i], n = 1 . . . N such that, after solv-
ing the permutation ambiguity, yn[i] ≈ sn[i] or a filtered version
of sn[i]. Regarding the number of sources N and the number of
sensors/mixtures M , we distinguish between three different cases:
overdetermined (M > N ), determined (M = N ), and underdeter-
mined (M < N ).

It is clear that the underdetermined case is the most challenging
one since we try to find more signals than we have measurements.
Although there is already a big variety of proposed algorithms, most
of them assume that the number of sources is known. Up to now
there are only a few papers [1, 2] discussing ways to estimate the
number of sources in an underdetermined situation where classical
model order estimation approaches (such as MDL and AIC using
the eigenvalues of the correlation matrix) are not appplicable. [1,
2] make use of the sparsity of speech signals but are limited to the
anechoic case. Other algorithms that aim at estimating the number
of sources as well as the source signals use hierarchical clustering
and l1-norm minimization [3]. To the authors knowledge, there is no
thorough study yet of how reliable these algorithms are.

In our work, we focus on BSS algorithms that make use of
the sparsity of speech signals to derive binary time-frequency (TF)

masks in order to separate speech signals. Early work using only two
microphones resulted in the well-known DUET algorithm and since
then many enhancements have been made and led to the so-called
observation vector clustering algorithm [4]. Our NOSET algorithm
makes use of the observation vector and replaces the conventional k-
means clustering (which needs to know the number of sources) with
a method to estimate the number of sources and also the clusters.
The next section presents a short overview of the observation vec-
tor clustering algorithm, before we present the NOSET algorithm in
detail in section 3.

2. OBSERVATION VECTOR CLUSTERING

Using a windowed short time Fourier transform (STFT)

Xm[k, l] :=

L−1
X

i=0

w[i]xm[i + lT0]e
−j 2πki

L (2)

with hop size T0 and bin width f0 = fs/L, we can approximate the
convolutive mixtures in the time-domain as instantaneous mixtures
at each frequency bin k:

X[k, l] ≈

N
X

n=1

Hn[k]Sn[k, l] (3)

X = [X1, . . . , XM ]T is called an observation vector and Hn =
[H1n, . . . , HMn]T is the vector of frequency responses from source
n to all sensors. We assume that the microphone array is placed
in the near-field of the sources which means that we can assume a
strong direct-path and weak multipath components. The algorithm
consists of three steps: normalization, clustering, and reconstruction
of the separated signals.

2.1. Normalization

All observation vectors X[k, l] are normalized for all frequency bins
to form clusters, each of which corresponds to an individual source.
The normalization is performed with respect to a reference sensor J

X̃m[k, l] = |Xm[k, l]| exp

»

j
arg[Xm[k, l]/XJ [k, l]]

4kf0c−1dmax

–

(4)

where c is the propagation speed and dmax the maximum distance
between any sensor and the reference sensor. After the phase nor-
malization in (4) we apply unit-norm normalization

X̄[k, l] = X̃[k, l]/‖X̃[k, l]‖ (5)

Note that observation vector clustering suffers from the same phase
ambiguity problem as the DUET algorithm and hence dmax ≤ c/fs ,



where fs is the sampling frequency. The reason for the phase nor-
malization by 4kf0c

−1dmax in (4) is explained in [4].

2.2. Clustering

The next step is to find clusters C1, . . . , CN formed by all normal-
ized observation vectors X̄[k, l]. This can be done with the k-means
clustering algorithm [4] using the cost function

J =

N
X

n=1

Jn, Jn =
X

X̄∈Cn

‖X̄ − cn‖
2

(6)

where cn is the centroid of cluster Cn.

2.3. Reconstruction

To reconstruct the signals, the authors in [4] designed a binary TF
mask Mn[k, l] that extracts the TF points in each cluster and ob-
tained the separated signals Yn[k, l] by

Yn[k, l] = Mn[k, l]XJ′ [k, l] (7)

where J ′ ∈ {1, . . . , M} can be arbitrarily chosen. To obtain the
separated signals in the time-domain, we perform an inverse STFT.
Note that, in addition to the simple binary masking, we can also per-
form blind beamforming as discussed in [5]. This approach has the
advantage of reducing or completely removing musical noise arti-
facts which are common in binary TF mask based separation.

2.4. Problems of k-means Algorithm

We want to note that the k-means clustering has the following draw-
backs that limit its applicability in real world situations:

• The number of clusters needs to be known a priori. Usually we
do not know the number of sources and hence cannot specify the
number of clusters to be created.

• The clustering procedure is sensitive to initial centroids. Tradi-
tional approaches to run the algorithm several times with different
initial centroids and select the result with the lowest squared error
J might not be optimal in terms of signal-to-interference ratio of
the demixed signals.

• We have observed cases where k-means clustering moves the cen-
troids away from their true positions, resulting in very poor sep-
aration performance. This can be explained such that, in reality,
clusters might overlap by a great amount and have “heavy tails”
since not all TF points return a reliable observation vector.

In fact, the goal of a sparsity based BSS algorithm is to reliably es-
timate the number of sources and to find cluster centroids with high
density of points rather than minimizing the overall squared error J .
In section 3 we will present the NOSET algorithm which aims to
achieve this. Our contribution is two-fold: The NOSET algorithm
estimates the number of sources by selecting reliable TF points for
DOA estimation and uses the peaks of the DOA histogram as cen-
troids for a one-step clustering procedure for all TF points. Thus
we are able to overcome the limitations of the conventional k-means
clustering. The motivations for the NOSET algorithm are:

• by selecting a subset of reliable TF points, we are able to estimate
DOAs more reliably and reduce at the same time the amount of
computations.

• in the DOA domain, we can estimate the source number more
conveniently than in the observation vector domain.

• by considering all TF points in the source separation stage, we can
achieve a high signal quality of the demixed signals.

3. SOURCE NUMBER ESTIMATION

Our algorithm NOSET to estimate the number of sources is based on
a DOA estimation. Due to the convolutive mixing process and the
fact that the sources are not perfectly disjoint in the TF domain, the
observation vectors that belong to one source are spread around the
“true” DOA. As a consequence, clusters overlap by a great amount
and we cannot find disjoint clusters. In order to overcome this prob-
lem, we perform a pre-processing step to select only the “reliable”
TF points. A reliable DOA estimation using phase differences is
only possible if the following two conditions are fulfilled:

• The phase difference among different sensors is large enough. In
the low-frequency region, this is not the case and the phase esti-
mate is rather noisy.

• Only one source is dominant at a TF point [k, l].

The first step in finding reliable TF points is hence to limit the fre-
quency region: f > fl. The next step is to detect TF points where
one source is dominant. We will call those points one-source TF
points in the following.

3.1. Selection of One-Source TF Points

In this section we show a simple and efficient way to find one-source
TF points.

Analysis of source activity: We assume that we have perfect know-
ledge about the contribution of each individual source at each sen-

sor. Let simg
Jn denote the image of source n at reference sensor J :

simg
Jn [i] = hJn[i] ∗ sn[i]. The power of source n at TF point [k, l] is

denoted as Pn[k, l] = 20 log10 |S
img

Jn [k, l]|. These signals are avail-
able in simulations. We consider a source sn to be active at a TF
point [k, l] if

• Pn[k, l] > tnoise where tnoise is the noise floor in dB.

• Pn[k, l] > (max
r

Pr[k, l]) − t1, r = 1, . . . , N

In other words, the power of the active source is above the noise floor
and its power is not less than t1 dB below the power of the strongest

source. Let N̂cp[k, l] be the number of strong sources with compa-
rable power at TF point [k, l], i.e. the number of sources satisfying
the above two properties. This number can be calculated in simula-

tions. The probability of N̂cp[k, l] = n conditioned on total power
P [k, l] = 20 log10 |XJ [k, l]| > t is

Pr[N̂cp = n|P > t] =
Pr[P > t|N̂cp = n]Pr[N̂cp = n]

Pr[P > t]
(8)

Pr[P > t|N̂cp = n] =

Z ∞

t

p(P = b|N̂cp = n)db (9)

Pr[P > t] =

Z ∞

t

p(P = b)db (10)

The pdf p(P = b) and conditional pdf p(P = b|N̂cp = n) are
approximated in simulations by power histograms over all TF points

or all TF points where N̂cp = n. Pr[N̂cp = n] is the fraction of

TF points with N̂cp = n. Note that N̂cp[k, l] does not denote the
conventional number of active sources at a TF point, but rather the
number of strong sources with comparable power.

Example: We play back N = 2 speech signals in a real office room.

Figure 3.1 shows the conditional probability Pr[N̂cp = n|P > t] for
n = 0, 1, 2. Obviously, if the total power P exceeds a certain thresh-
old (e.g. 25 dB), it is much more likely that we have one dominant
source at a TF point rather than no source or two strong sources with
comparable power.



Selection of reliable TF points: Motivated by this observation,
we propose to select reliable TF points using a combined power and
frequency criterion

I = {[k, l] | P [k, l] > t2 ∧ f > fl} (11)

We note that this criterion selects only a small subset (e.g. 25%) of
the TF points. Very weak sources might have only a small number
of TF points or even no TF points at all with enough signal power to
fulfill the power criterion and hence might be discarded. In reality,
this is usually not a problem, since the signal quality would be very
bad if we still try to demix those very weak signals.
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Fig. 1. Probability Pr[N̂cp = n | P > t] as a function of t

Comparison with other criteria: In order to evaluate the selection
of one-source TF points, we compare our selection criterion (11)
with three other methods:

• No selection of TF points at all, i.e. all TF points are used to
calculate the observation vector in (4) or other features.

• Use the eigenvalue ratio λ1/
PN

i=2
λi from [2] to select single-

source TF points. In this case, λi are the decreasingly sorted
eigenvalues of a correlation matrix calculated over a small TF re-
gion around the TF point of interest. A large value of this ratio
indicates a single dominant source. We selected the same total
number of TF points as with our criterion.

• Estimate the number of active sources by using AIC or MDL from
the eigenvalues of the above described correlation matrix and se-
lect the one-source TF points based on this order estimation. Un-
fortunately, both AIC and MDL tend to overestimate. They never
returned TF points with order estimate of one. This is due to the
fact that they are both derived for the anechoic case and tend to
overestimation in a reverberant environment.

Figure 2 shows the percentage of TF points with different number

of active sources N̂cp[k, l]. In the left and right plot, N = 2 and 6
speech signals are played back in a real office room. Clearly, our se-
lection criterion (11) achieves the highest percentage of one-source
TF points among all studied methods. In addition, the criterion (11)
is very simple to implement in comparison to the two other criteria
requiring eigenvalue decomposition. Our criterion improves DOA
estimation while reducing simultaneously the computational com-
plexity since we consider a smaller number of TF points.

3.2. DOA Estimation

Starting from the observation vectors X̄ in (5) at the selected TF
points [k, l] ∈ I, we now determine the DOA of the single dominant
source from the phase differences. Assuming a single source ane-
choic scenario, the time delay δm for sensor m can be written as a
scalar-product of the microphone position vector dm and the source
direction vector q:

δm = d
T
mq, q = [sin θ cos φ, cos θ cos φ, sin φ]T (12)
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Fig. 2. Effect of different TF selection criteria

According to eq. (4), we obtain

arg([X̄]m) =
2πkf0(δm − δJ )

4kf0c−1dmax

=
π

2c−1dmax

(dm −dJ )T
q (13)

This equation also holds approximately for a convolutive near-field
scenario. We estimate the source direction vector by the least-squares
approach:

q̃ =
2c−1dmax

π
D

†
r, q̂ =

q̃

‖q̃‖
(14)

D = [d1 − dJ , · · · ,dM − dJ ]T is a matrix of the relative sen-

sor locations, r = [arg([X̄]1), · · · , arg([X̄]M )]T , and D† is the
Moore-Penrose pseudo-inverse of D. In this paper, we consider 2D
localization only (φ = 0). The bearing θ is thus estimated by

θ = arctan
[q̂]1
[q̂]2

(15)

3.3. Source Number Estimation

The estimation of the source number N̂ is done in 5 steps:

1. Select reliable TF points I using (11).

2. Estimate the bearing θ from all TF points in I using (14)-(15).

3. Form a histogram R[ν] of all θ with a certain bin width. R[ν]
is the number of bearing estimates that fall into bin number ν.
Then we subtract off the minimal value of R[ν]. This reduces
the noise and improves the quotient of peak values calculated
in the next step. Next we find all peaks Rn, n = 1, . . . , Q.

4. Order the peaks in decreasing order (Rn+1 ≤ Rn) and cal-
culate p[n] = Rn/R1.

5. The estimated number of sources N̂ is determined by count-
ing the number of peaks where p[n] is larger than a threshold

t3. Mathematically: N̂ = max{n | p[n] ≥ t3}. This opera-
tion aims to remove weak peaks which might be the result of
source overlap or reverberation.

Figure 3 shows a comparison of the DOA histogram with and with-
out (w/o) our selection criterion (11) for N = 2. We can see that our
criterion improves the DOA histogram.

3.4. Clustering

After estimating the number of sources N̂ , we convert the DOAs

of the peaks Rn, n = 1, . . . , N̂ back to the observation vectors cn

using eqs. (13) and (15), assuming equal amplitude for all compo-
nents. cn are normalized to unit length and serve as the centroids for

N̂ clusters. Then we employ a one-step clustering which calculates
cluster membership by minimizing the euclidean distance between

X̄[k, l] and cn, n = 1, . . . , N̂ . This corresponds to the first step of
k-means without changing the centroids, an operation which turns
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Fig. 3. Effect of our selection criterion (11) on DOA histogram

out to be critical. All TF points are used in clustering. Afterwards
we perform binary TF masking or blind beamforming to reconstruct
the separated signals.

4. EXPERIMENTAL EVALUATION

For the experimental evaluation we used a sampling frequency of
fs = 8kHz and a cross-array with M = 5 microphones ( ) with
uniform spacing of d = 4 cm < λmin/2. Sources had equal power
and were placed approximately 80 cm from the center of the micro-
phone array, which justifies the assumption of a strong direct-path
and weak multipath components made in section 2. We evaluated
NOSET by using 16 sets of 6 speech signals (3 male, 3 female, dif-
ferent for each of the 16 sets) from the TIMIT database [6]. For
each number of sources N = 1, . . . , 6, we created all possible com-
binations of signals within each set. We considered different angu-
lar separations (36◦, 45◦, 60◦) of sources and different rotations of
both microphone array and sources. All evaluations were done using
real recorded signals in an office room with a reverberation time of
T60 = 520 ms. The average SNR was between 20 and 30 dB.

4.1. Source Number Estimation

Table 1 shows the confusion matrix of the source number estima-
tion averaged over all experiments. The thresholds for the differ-
ent criteria used in the NOSET algorithm have been determined
through a series of experiments. Typical values are: fl = 250 Hz,
t2 = 20dB, t3 = 0.2. The performance of our order estimator
NOSET is excellent for the whole range of N = 1, . . . , 6, although
it slightly decreases with increasing N . The average probability of
correct source number estimation is 92.0%. Experiments with un-
equal source power show that the algorithm also works satisfactory
for source power differences of up to 10 dB. On average, the proba-
bility of correct source number estimation drops to a value between
65% and 90% depending on the amount of source power difference.

N̂

N

1 2 3 4 5 6 7

1 99.6% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0%

2 0.1% 99.1% 0.8% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.5% 96.2% 3.3% 0.0% 0.0% 0.0%

4 0.0% 0.0% 1.5% 92.0% 6.5% 0.0% 0.0%

5 0.0% 0.0% 0.0% 4.3% 86.0% 9.2% 0.5%

6 0.0% 0.0% 0.0% 2.0% 8.9% 79.5% 9.8%

Table 1. Overall confusion matrix for NOSET

4.2. Source Separation

As we have seen in section 2, source separation using the conven-
tional k-means clustering has three drawbacks:

• Number of clusters needs to be known

• Sensitivity to initial centroids

• Occasional convergence to bad clusters.

This is illustrated in table 2 with N = 2 source speech signals at
the true DOAs θtrue. The k-means algorithm applied to the observa-
tion vectors of all TF points with perfect knowledge of the number
of sources and perfect initialization of the cluster centroids with θtrue

converges to wrong cluster centroids corresponding to θk-means be-
cause the k-means algorithm moves the centroids away from their
true positions. Correspondingly, the gain in signal-to-interference
ratio (SIR) after the blind source separation SIRgain is pretty poor.
In comparison, by using our NOSET algorithm for order estimation
and the much simpler clustering in section 3.4, the DOA estimates
θour by using a DOA histogram bin width of 5◦ are more accurate. In
addition, the gain in SIR after BSS is improved by 6.8 dB in average.

Source 1 Source 2 Average

θtrue 299.5◦ 358.2◦

θk-means 312.5◦ 154.7◦

θour 302.5◦ 357.5◦

SIRin −1.99 dB 1.99 dB 0.00 dB

SIRgain k-means 2.09 dB 2.67 dB 2.38 dB
SIRgain NOSET 12.67 dB 5.71 dB 9.19 dB

Table 2. Comparison of DOA estimation and SIR gain for binary TF

masking using k-means and our algorithms

5. CONCLUSION

In this paper, we have presented the NOSET algorithm to estimate
the number of sources in blind source separation. It relies on DOA
estimation at selected one-source TF points and works in both over-
determined and underdetermined situations. We also showed a sim-
ple clustering method which solves the occasional convergence of
the k-means clustering to bad clusters. The combination of NOSET
and the proposed clustering method is computationally simple and
achieves better performance than k-means clustering based blind
source separation.
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