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Abstract
Recently, position estimation for acoustic signals has been
studied intensively and many different algorithms have
been proposed. The different methods can be classi-
fied into indirect (estimation of time-difference of arrival
(TDOA) and then position) and direct (direct estimation of
position) methods. Furthermore, they can be classified ac-
cording to whether they use a model for the mixing channel
(model-based) or not. In this paper, we compare three dif-
ferent algorithms for source localization: one non-model
based indirect method (DATEMM), one non-model based
direct method (SRP-PHAT) and one model-based direct
method (ICA-SCT). We compare them with respect to the
underlying concept and the localization performance us-
ing simulations and real room recordings. We evaluate the
influence of number of microphones, number of sources,
microphone arrangement and reverberation time.

1 Introduction
The task of acoustic source localization is to estimate the
position of one or multiple sound sources by using an ar-
ray of microphones. There are indirect localization meth-
ods over the explicit estimation of the time-difference of
arrival (TDOA) such as DATEMM [1] and direct spatial
scanning methods. Among the latter ones, some methods
like ADP [2] and SCT [3] are model-based since they ex-
plicitely model and estimate the acoustic channel by using
independent component analysis (ICA). Other algorithms
like SRP-PHAT [4] and DATEMM are not model-based
as they perform the localization without a channel model.
Since many different approaches have been proposed, this
paper aims at comparing three different algorithms: SRP-
PHAT, DATEMM and ICA-SCT. The comparison is done
with respect to the underlying concept and the localization
performance using simulations and real room recordings.

We assume a convolutive mixing model

xm[i] =
N

∑
n=1

hmn[i]∗ sn[i], m = 1 . . .M, (1)

where xm[i] are the microphone signals, sn[i] are the source
signals and hmn[i] are the impulse responses. The convolu-
tive model in the time-domain can be transformed into an
instantaneous mixing model in the time-frequency domain:

X[k, l] ≈ H[k]S[k, l] (2)

where 1 ≤ k ≤ K is the frequency bin index and l is the
time frame index.

One common approach for localization is a TDOA es-
timation by the generalized cross-correlation with phase
transform (GCC-PHAT), followed by a position estima-
tion. However, it suffers from several ambiguities:

• Multipath: GCC-PHAT shows multiple maxima and
the direct path maximum is not necessarily the
strongest one.

• Multiple sources: When multiple sources are present,
GCC-PHAT shows multiple maxima and it is difficult
to group the TDOAs originating from the same source.

These two ambiguities are shown in Fig. 1 which plots
the GCC-PHAT for a two-source scenario in a medium-
reverberant room. The two direct path TDOAs are indi-
cated by dashed lines.

Figure 1: GCC-PHAT for two sources in a real room

2 Localization Methods

• SRP-PHAT combines the GCC-PHAT for all |I | mi-
crophone pairs with I ⊆ {(a,b)|1 ≤ a < b ≤ M}. The
combination is done by summing the individual GCC-
PHAT functions cab[·] evaluated at the expected TDOA
τab(p) for a potential source located at p.

HSRP-PHAT(p) = ∑
(a,b)∈I

|cab[τab(p)]| (3)

SRP-PHAT aims to resolve the ambiguities of GCC-
PHAT by combining multiple GCC-PHAT functions.

• DATEMM is based on the observation of two TDOA
constraints implying information redundancy. By ap-
plying these constraints to TDOA estimates derived
from GCC-PHAT, the ambiguity of TDOA estimation
can be significantly reduced. The first constraint is
the relationship between the extremum positions in
the cross-correlation and autocorrelation of the micro-
phone signals, called raster condition. The second im-
portant observation is: For each subset of microphones
and the same number of corresponding direct or echo
paths, a zero cyclic sum condition always holds for
TDOAs originating from the same source. Using the
raster condition we obtain sets of direct path TDOA
estimates which are then synthesized into consistent
TDOA graphs using the zero cyclic sum condition.
Each consistent graph contains the TDOAs of a sin-
gle source which are then used to estimate its position
by an appropriate method.

• ICA-SCT is based on the ”self-steering“ capability of
frequency-domain ICA. The ideal ICA solution is

W[k] ≈ Π[k]D[k]H−1[k]. (4)

D[k] is a diagonal complex-valued scaling matrix and
Π[k] is a permutation matrix. The ICA-SCT approach
uses the inverse of the estimated demixing matrix
W−1[k] ∼ H[k] to compare an estimated propagation
model with an assumed propagation model by using
the so-called state coherence transform (SCT) [3, 5].
The main idea of the state coherence transform is to
compare the “state” e− jωτ from the propagation model
H[k] against its estimate from the result of ICA. The
position estimation is achieved by spatial scanning as
in SRP-PHAT. For frequency-domain ICA, we use the
approach from [6].



Table 1 summarizes key properties of the different
algorithms. SRP-PHAT uses the simplest TDOA dis-
ambiguation by summing over microphone pairs, while
DATEMM uses the raster condition and the concept of
consistent TDOA graphs. ICA-SCT relies on system iden-
tification by ICA to yield state vectors containing the
TDOAs of a single source. Another important aspect is the
computational complexity: DATEMM uses a TDOA esti-
mation for each microphone pair and then forms consistent
graphs to directly estimate the location of the sources. A
high resolution spatial scanning is not necessary. Hence,
it is fast and can be implemented in real-time [1]. SRP-
PHAT is a direct spatial scanning method and hence re-
quires the computation of the cost function over a two-
or three-dimensional grid. The search grid resolution di-
rectly influences the localization accuracy. Although there
are methods like multi-resolution approaches to overcome
the high computation cost, SRP-PHAT is still considerably
more computationally intensive than DATEMM. ICA-SCT
has the highest computational complexity among the three
methods, since it first uses an ICA algorithm and then per-
forms spatial scanning as in SRP-PHAT.

method direct model TDOA disambiguation

SRP-PHAT yes no over microphone pairs

DATEMM no no raster condition, consistent graphs

ICA-SCT yes yes system identification by ICA,

state vector contains TDOAs of a

single source

Table 1: Comparison of the different methods

3 Experiments
We compare the performance of the different methods us-
ing simulations with the MATLAB RoomSim toolbox [7]
and real room recordings. Although we use stationary
source positions, we evaluate the different methods under
the assumption that the sources could slowly move. This
means that we assume a maximum usable data length of
≈ 500ms. We study the influence of the microphone set,
number of microphones, number of sources and reverber-
ation time on each method. Fig. 2 shows the microphone
and source positions for the real room. We use M = 4 or
M = 8 microphones and for each case we evaluate two dif-
ferent microphone sets, shown in Table 2. For M = 8, the
microphones are located at the left and bottom side of the
sources in set 1, while the sources are surrounded by mi-
crophones in set 2. In the simulation, we use similar mi-
crophone and source positions.
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Figure 2: Room layout and experimental setup

For SRP-PHAT and ICA-SCT we perform spatial scan-
ning with a grid resolution of 1cm and locate the sources
by finding the N highest peaks (with minimum distance of
20cm) of the cost function in each block. For DATEMM,
we accept all estimated positions (possibly > N) regard-
less of the their quality measure. Unfortunately, different

microphone set 1 microphone set 2

M = 4 1,2,7,8 1,4,5,8

M = 8 1, · · · ,8 1,4,5,8,9,10,11,12

Table 2: Microphone sets

localization algorithms might require different block sizes
to work optimally. SRP-PHAT and DATEMM use non-
overlapping frames of length 170.67ms and a sampling
frequency of 96kHz. ICA-SCT uses a block size of 512ms
and a sampling frequency of 16kHz. To make a fair com-
parison, we cluster the positions estimated by SRP-PHAT
and DATEMM in a time interval of 512ms by agglomera-
tive hierarchical clustering using the nearest neighbour dis-
tance metric D between clusters. The clustering algorithm
starts with each estimated position as an individual cluster.
It then repeatedly merges the two clusters with minimum
D if D < 20cm. Otherwise the clustering procedure stops.
Note, that the number of resulting clusters can be larger
than N. The final estimated positions in each time interval
of 512ms are given by the cluster centroids.

For the evaluation, we associate each estimated posi-
tion p̂i with the true source position pn if di = minñ ‖p̂i −
pñ‖ = ‖p̂i −pn‖ is smaller than a threshold t (e.g. 20cm).
In each time interval of 512ms, every pn can only be as-
sociated with the closest p̂i. Non-associated p̂i with di > t
are considered as false positives. For the complete record-
ing of 24s and each pn, we count the number of asso-
ciated p̂i and calculate from these the mean localization
error d̄n of each source n. Important performance crite-
ria are the mean localization error, the number of correct
source detections (true positives TPn) for source n, the to-
tal number of false positives (FP) and the total number of
non-associated p̂i with di < t (NA). Ideally, an algorithm
should yield a low mean localization error with a large TPn

and small FP and NA. In the result tables, we normalize
TPn, FP and NA by the number of blocks and give the
resulting value in percent. Note that FP and NA can be
larger than 100%. For the ICA-SCT algorithm, the sum of
TPn (1 ≤ n ≤ N), FP and NA should be N. For DATEMM
and SRP-PHAT, this sum could be larger or smaller than
N, because these two algorithms do not return exactly N
source position estimates per 512ms block. In Table 3, for
example, TP1=91 means that SRP-PHAT detects source 1
in 91% of the 512ms blocks. FP=26 and NA=45 mean
that there are on average 0.26 false positives and 0.45 non-
associated estimates per block.

In the simulations, we have used source 1 and 2 for
N = 2 and source 1 to source 4 for N = 4. In general, all
algorithms allow an accurate localization with a mean lo-
calization error of less than 7cm, even for a reverberation
time of T60 = 300ms (see Table 3). However, the localiza-
tion error of DATEMM is in most cases higher than that of
SRP-PHAT or ICA-SCT.

microphone set 1 microphone set 2

T60 100ms 300ms 100ms 300ms

DATEMM

TPn 100 96 93 100 98 91 96 98

d̄n[cm] 5.6 4.4 6.1 6.3 2.7 1.1 3.5 1.6

FP/NA 67/74 489/178 20/41 230/161

SRP-PHAT

TPn 93 91 93 91 93 96 93 91

d̄n[cm] 0.8 1.7 1.9 3.2 0.0 0.2 0.1 0.4

FP/NA 26/46 37/59 30/61 43/59

ICA-SCT

TPn 70 89 7 74 89 93 76 91

d̄n[cm] 1.5 1.3 1.1 4.4 0.0 0.1 0.3 1.7

FP/NA 41/0 93/26 17/0 33/0

Table 3: Simulation results for N = 2 and M = 8



microphone set 1 microphone set 2

T60 100ms 300ms 100ms 300ms

DATEMM

TPn 91 91 48 96 93 100 0 91 98 100 76 59 91 89 50 33

d̄n[cm] 4.1 4.8 2.6 2.5 5.0 6.9 – 4.4 2.8 0.8 1.4 1.8 4.4 1.7 1.5 3.4

FP/NA 78/148 283/209 22/43 291/191

SRP-PHAT

TPn 93 89 50 91 93 85 46 87 96 93 80 80 93 87 63 65

d̄n[cm] 1.9 3.8 3.1 0.1 3.3 4.4 4.1 0.4 0.1 0.1 0.3 0.4 0.1 0.4 0.3 0.6

FP/NA 74/143 137/211 126/228 243/243

ICA-SCT

TPn 85 83 11 93 2 30 0 85 93 91 83 83 72 85 35 48

d̄n[cm] 1.2 1.0 9.4 0.1 19.1 3.2 – 1.9 0.0 0.2 0.2 0.4 0.2 1.2 0.7 4.5

FP/NA 111/17 248/30 37/13 130/30

Table 4: Simulation results for N = 4 and M = 8

microphone set 1 microphone set 2

source 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

DATEMM

TPn 85 80 76 89 54 87 74 85 15 20 65 50 59 70 0 57

d̄n[cm] 4.9 3.9 5.3 7.6 11.2 9.0 5.5 5.7 12.9 10.5 7.0 10.7 11.3 10.6 – 6.5

FP/NA 24/35 50/57 172/72 20/35 20/2 2/22 4/20 4/0

SRP-PHAT

TPn 96 89 87 93 83 96 89 89 91 96 89 93 91 96 83 91

d̄n[cm] 3.5 2.4 3.9 7.2 10.4 8.5 5.9 3.7 5.6 6.2 6.3 10.2 8.8 7.9 8.7 8.0

FP/NA 30/57 37/67 39/96 35/65 61/85 48/76 65/78 122/109

ICA-SCT

TPn 87 72 80 83 70 91 74 72 76 67 74 78 74 72 26 72

d̄n[cm] 2.6 2.1 2.1 4.3 8.8 6.9 5.2 2.1 3.3 2.3 2.2 6.3 8.2 7.0 6.1 3.1

FP/NA 39/2 35/2 37/2 52/2 57/0 48/0 54/0 98/4

Table 5: Real room results for N = 2 and M = 8

M = 8 M = 4

microphone set 1 microphone set 2 microphone set 1 microphone set 2

DATEMM

TPn 74 76 24 26 4 7 4 0 9 4 0 2 4 13 2 2

d̄n[cm] 4.4 3.9 6.7 8.4 9.2 10.1 5.2 – 14.0 10.8 – 12.2 16.6 12.5 11.3 4.7

FP/NA 20/46 7/0 46/0 15/0

SRP-PHAT

TPn 91 93 72 61 93 87 65 76 91 35 76 26 89 87 35 43

d̄n[cm] 5.3 2.6 3.5 6.6 4.9 6.0 6.0 9.4 3.3 2.2 7.3 5.2 3.3 2.5 5.1 6.6

FP/NA 117/211 257/230 350/167 374/209

ICA-SCT

TPn 85 72 37 30 74 52 22 9 80 9 39 11 65 54 26 35

d̄n[cm] 2.7 2.0 2.5 5.5 2.7 2.4 4.6 4.4 5.0 6.0 8.1 7.9 3.6 2.7 2.4 6.4

FP/NA 163/13 220/24 220/41 185/35

Table 6: Real room results N = 4 (source 1 to 4)

sources 1,2,7,8 sources 3,4,5,6

method short block (sb) sb + clustering long block short block (sb) sb + clustering long block

DATEMM

TPn 29 20 11 18 65 41 30 39 72 51 19 19 18 27 30 44 46 48 46 74 38 57 53 68

d̄n[cm] 4.6 2.4 5.6 4.1 4.4 4.7 5.6 5.7 4.5 3.0 5.5 3.8 5.8 6.3 9.6 8.8 6.3 8.2 10.2 9.1 6.9 6.0 10.0 8.1

FP/NA 39/57 35/28 34/109 216/101 141/111 383/219

SRP-PHAT

TPn 78 73 50 51 91 91 87 83 87 76 60 47 41 50 62 74 72 74 85 96 51 47 64 87

d̄n[cm] 3.1 2.6 5.6 3.4 4.1 2.7 5.7 3.4 3.1 2.3 5.5 2.6 3.5 7.0 10.2 8.5 3.4 7.3 9.8 8.6 3.2 6.5 10.0 8.0

FP/NA 114/32 115/196 118/13 120/53 146/233 84/67

ICA-SCT

TPn 68 52 38 40 87 89 76 76 80 65 43 63 36 46 55 69 76 87 89 93 52 59 63 89

d̄n[cm] 3.0 2.1 5.6 2.5 3.1 2.3 5.7 2.8 2.6 1.9 5.3 2.0 2.8 5.9 8.8 7.1 2.9 6.3 8.8 7.7 2.2 5.0 8.7 7.0

FP/NA 176/26 327/231 130/17 156/38 276/229 100/37

Table 7: Real room results, N = 4, M = 8, microphone set 1

From the simulation results, we find:

• Influence of microphone set: As shown in Table 3 and
4, for M = 8 microphones, all methods yield lower lo-
calization error with set 2 than with set 1. This is as
expected, since for omnidirectional sources and micro-
phones, a microphone set surrounding the sources is
optimal [8].

• Influence of number of sources: As the number of
sources increases from N = 2 (Table 3) to N = 4 (Ta-
ble 4), it becomes more difficult to estimate all sources
in all blocks. Hence, TP decreases for all algorithms.
Furthermore, we can observe that the mean localiza-

tion error d̄n for N = 4 is comparable to N = 2. Only
for microphone set 1, large reverberation time, and
large source numbers (N = 4 or N = 6 (not shown)),
DATEMM and ICA-SCT fail to detect all sources.
However, TP for the not detected sources is already low
at T60 = 100ms for all algorithms.

• Influence of reverberation time: An increase in the re-
verberation time from T60 = 100ms to T60 = 300ms
clearly leads to a larger localization error and a larger
FP for all algorithms. The degree of the performance
loss differs considerably for different microphone sets.
Hence it is difficult to draw general conclusions.



Table 5 to 7 summarize the results of real room ex-
periments. In most cases, all three methods allow a pretty
accurate localization, though DATEMM somteimes fails to
detect all sources. In the real room experiments, we have
tried different source combinations as shown in the first or
second row of Table 5 and 7.

From the real room results, we conclude:

• Influence of source position: The localization error in-
creases when the source to microphone distance in-
creases, as shown in Table 5 for microphone set 1 and
M = 8. The sources 1 and 2 are quite close to the mi-
crophone array and hence the localization error is small
for all methods. In comparison, the sources 5 and 6
are far away and hence the localization error is higher.
Among the three methods, ICA-SCT shows the small-
est localization error.

• Influence of microphone geometry: For M = 8, all three
methods show a larger localization error with micro-
phone set 2 as shown in Table 5 and 6. This is in con-
trast to the results with room simulations in Table 3
and 4. Furthermore, SRP-PHAT and ICA-SCT show
more false positives with microphone set 2. A possi-
ble explanation is the directivity of the sources which
influences the direct-to-reverberant ratio at each micro-
phone. In the real room experiment, the loudspeakers
were approximately facing the lower left corner of the
room (see Fig. 2). Hence, the loudspeakers were facing
away from the microphones 9 to 12 and the direct-to-
reverberant ratio was low at these microphones. As a
consequence, set 2 performs worse than set 1.

• Influence of number of microphones: DATEMM some-
times fails to estimate all source positions, in particular
if the number of microphones is small. This has been
verified in several experiments not shown here. Fur-
thermore, TP for DATEMM is rather small. A possible
explanation is that with a small number of microphones
it is more difficult to find consistent graphs with a suffi-
cient number of TDOAs to properly locate the sources.

• Effect of block size: Table 7 compares results for
different block sizes and post-processing (clustering).
The short block size is 170.67ms for SRP-PHAT and
DATEMM, and 128ms for ICA-SCT. The long block
has a length of 512ms for all three methods. SRP-
PHAT works acceptably well for small and large block
sizes and also for the clustering. Compared to the large
block size, the use of a short block size with cluster-
ing leads to an increase in the TP and only to a small
increase in localization error. For DATEMM, the use
of a small block size combined with clustering gives
a good TP, small FP and acceptable localization error.
ICA-SCT performs best with a large block size because
the ICA algorithm needs sufficient data to converge to
a demixing matrix which is approximately the inverse
of the mixing matrix. With a small block size and no
clustering, the TP are rather low and FP is quite high,
whereas clustering leads to a higher TP but dramati-
cally increased FP.

4 Conclusion
In this paper, we have compared three different algorithms
for acoustic source localization:

• DATEMM, which is based on TDOA estimation and
consistent graphs, has the lowest computational com-
plexity. It allows quite accurate localization but has

problems when the number of microphones is small. It
works best with a small block size and clustering.

• SRP-PHAT, which is based on a sum of individual
GCC-PHAT functions for each microphone pair and
spatial scanning, has a much higher computational
complexity. It performs very well and allows accurate
localization even with a small number of microphones.
Its performance is not very sensitive to the block size.

• ICA-SCT, which is based on a mixing channel identifi-
cation through ICA and spatial scanning, has the high-
est computational complexity. It shows lower localiza-
tion error than SRP-PHAT, especially when the sources
are far away from the microphones. However, com-
pared to SRP-PHAT with small block size and cluster-
ing, the detection rate is lower. Furthermore, ICA-SCT
is more sensitive to a short block size because ICA al-
gorithms require a sufficient amount of data to work
properly. Another aspect is that ICA suffers from poor
convergence for distributed microphone arrays. How-
ever, [9] alleviates this problem.

When comparing simulation results with real room results,
we notice that the directivity of both sources and micro-
phones do have a great impact on the localization perfor-
mance. Most simulations up to now assumed omnidirec-
tional sources and microphones and hence their results are
not realistic.
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