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ABSTRACT

This paper aims at deriving a relationship between minimum mean

square error (MMSE) based source separation and independent com-

ponent analysis (ICA) based on the Kullback-Leibler divergence

(KLD) for a linear noisy mixing model. Starting from a description

of the demixing task and two well-known solutions, inverse mixing

matrix and MMSE solution, we derive an analytic expression for the

demixing matrix of KLD-based ICA in the presence of noise. The

derivation is done by using a perturbation analysis valid for small

noise variance. Furthermore, we provide an analytic expression for

the mean square error (MSE) of the demixed signals using KLD-

based ICA. We show that for a wide range of the shape parameter

of the generalized Gaussian distribution (GGD), the MSE of KLD-

based ICA is very close to the MMSE. Simulations verify this and

show that in practice the variance of the ICA estimation due to lim-

ited amount of data also influences the achievable performance.

Index Terms— Blind source separation, Independent compo-

nent analysis, Minimum mean square error, Kullback-Leibler diver-

gence, Perturbation analysis

1. INTRODUCTION

Up to now, most research concerning ICA considered the noiseless

mixing model. The presence of noise leads to a bias in the estimation

of the mixing matrix. [1] introduced measures to reduce this bias. [2]

studied the maximum likelihood (ML) estimation of both the mixing

matrix and the signals. It was shown that in the presence of noise,

the ML estimate of the signals is a nonlinear function of the obser-

vations. [3,4] drawed parallels between MMSE estimation and ICA.

They derived the bias of several variants of the FastICA algorithm,

a fixed-point method, from the MMSE solution. [4] also discussed

that many ICA algorithms use an orthogonal constraint resulting in

decreased separation quality in the presence of noise.

In this paper, we focus on gradient-based ICA using the KLD

without such an orthogonal constraint. We derive an analytic ex-

pression for the demixing matrix and the MSE of KLD-based ICA

in the presence of noise. We compare the MSE of ICA with the

MMSE and the MSE of the inverse solution in order to study the

performance loss of blind demixing with respect to nonblind demix-

ing.Furthermore, simulations with limited amount of data show that

for small to moderate signal-to-noise ratios (SNR), natural gradient

(NG) ICA based on KLD achieves an MSE close to the MMSE for

a wide range of the shape parameter β of the GGD.

2. SIGNAL MODEL

We assume the square linear noisy mixing model

x = As+ v (1)

where x ∈ R
N are linear combinations of the N original signals

s ∈ R
N with additive noise v ∈ R

N . We make the following

assumptions:

1. The mixing matrix A ∈ R
N×N is deterministic and invertible.

2. s = [s1, · · · , sN ]T ∈ R
N are N independent non-Gaussian

random variables with zero mean and unit variance (after scal-

ing the rows of A suitably). The probability density functions

(pdfs) qi(si) of si can be different. qi(si) is three times contin-

uously differentiable and all expectations required in the deriva-

tion of (10) exist. This excludes some distributions, such as

α-stable distributions with α < 2 or GGD with β < 1
2

.

3. v = [v1, · · · , vN ]T ∈ R
N are N random variables with

zero mean and covariance matrix E[vvT ] = σ2Rv. σ2 =
1
N

tr
[

E(vvT )
]

is the average variance of v and tr(Rv) = N .

The pdf of v is arbitrary but symmetric, i.e. q(v) = q(−v).

This implies E(vk1

1 · · · vkN
N ) = 0 for k1 + · · ·+ kN odd.

4. s and v are independent.

The task is to demix the signals by a linear transform W ∈ R
N×N

y = Wx = WAs+Wv (2)

such that y is ”as close to s” as possible according to some metric.

3. APPROACHES FOR DEMIXING

To find a demixing matrix W, several approaches exist, which will

now be briefly reviewed.

3.1. Inverse solution

The inverse solution

Winv = A
−1, yinv = s+A

−1
v (3)

has the following properties:

• It is a perfect demixing yinv = s if there is no noise (v = 0).

• There is a danger of noise amplification A−1v if v 6= 0. This

is especially serious if A is close to singular.

• In digital communication, this solution is called zero-forcing.

• It is only possible if we know A in advance.

3.2. MMSE solution

The MMSE solution is given by

WMMSE = argmin
W

‖Wx − s‖2

= E
(

sx
T
) [

E
(

xx
T
)]−1

= A
T
(

AA
T + σ2

Rv

)−1

=
[

I− σ2
A

−1
RvA

−T
]

A
−1 +O(σ4) (4)

=
[

I− σ2
Rṽ

]

A
−1 +O(σ4) (5)

where ṽ = A−1v,Rṽ = E
[

ṽṽT
]

and the last two lines are a first-

order Taylor series approximation of WMMSE(σ
2) at σ2 = 0. It has

the following properties:

• WMMSE = Winv = A−1 if σ2 = 0 (no noise).

• It can only be calculated if we know {A,Rv, σ
2} or E

(

sxT
)

and E
(

xxT
)

can be estimated from measurements of x and s.



3.3. KLD-based ICA

In blind demixing or blind source separation, neither A nor s are

known. Hence, neither Winv nor WMMSE can be caclulated.

In this paper, we focus on the ICA solution based on the KLD

Dpq(W) =

∫

py(y;W) log
py(y;W)

q(y)
dy, (6)

with q(s) =
∏N

i=1 qi(si) being the true pdf of s. KLD utilizes

the full pdf and hence yields different solutions than the MMSE

criterion which is solely based on second order moments. KLD is

closely linked to mutual information, the well-known information

maximization (INFOMAX) principle and for the noiseless case to

ML estimation [5]. Hence the following study applies to all ICA

algorithms that use this type of cost function. The derivative of

Dpq(W) with respect to W is

dDpq(W)

dW
=

[

dDpq(W)

dwij

]

ij

=
[

E(ϕ(y)yT )− I
]

W
−T

(7)

with

ϕ(y) = [ϕ1(y1), · · · , ϕN (yN )]T , ϕi(yi) = −
q′i(yi)

qi(yi)
(8)

Hence, a necessary condition for the ICA solution WICA =
argminW Dpq(W) is given by

E(ϕ(yICA)y
T
ICA)

!
= I (9)

with yICA = WICAx = WICAAs+WICAv = ŷ +WICAv. Note,

that (9) characterizes the stationary points of the KLD cost function

(6) and hence holds for the noiseless as well as noisy case.

NG-ICA uses a gradient descent search with the modified gradi-

ent ∆W =
[

E(ϕ(yICA)y
T
ICA)− I

]

W. This improves the conver-

gence but does not change the final ICA solution WICA.

The properties of the ICA solution are:

• WICA = Winv = A−1 if σ2 = 0 (no noise).

• We do not need to know A or s. Only the pdf q(s) =
∏N

i=1 qi(si) is required and qi(si) needs to be non-Gaussian.

• There is no permutation ambiguity if qi(si) 6= qj(sj)∀i 6= j.

• There is no scaling ambiguity if qi(si) is known ∀i. Only a sign

ambiguity remains if qi(si) is symmetric.

Now, we derive an analytic expression for WICA in the presence of

noise by using a perturbation analysis. Motivated by WICA
σ2=0
=

A−1, we assume that WICA can be written as WICA = A−1 +
σ2B+O(σ4) (see appendix A for a rigorous justification) and obtain

B by a two-step perturbation analysis:

1. Taylor series approximation of E(ϕ(y)yT ) in (9) at y = ŷ =
WICAAs

2. Taylor series approximation of the result of the above step by

exploiting WICA = A−1 + σ2B + O(σ4) and ŷ = s +
σ2BAs+O(σ4)

In this way, we determine explicitely the deviation σ2B of WICA

from the inverse solution A−1.

As shown in appendix A, the final ICA solution is

WICA=(I+σ2
C)A−1+O(σ4)=(I−σ2

M⊙Rṽ)A
−1+O(σ4). (10)

⊙ denotes elementwise multiplication, Rṽ = A−1RvA
−T and

Mii =
κi +

1
2
λi

1 + ρi
, Mij =

κj(κi − 1)

κiκj − 1
i 6= j

κ = [κ1, · · · , κN ]T , κi = E(ϕ′
i(si))

ρ = [ρ1, · · · , ρN ]T , ρi = E(ϕ′
i(si)s

2
i )

λ = [λ1, · · · , λN ]T , λi = E(ϕ′′
i (si)si)

WICA in (10) depends on the mixing matrix A, the noise covariance

matrix Rv and the pdfs qi(si). κ is a measure of non-Gaussianity.

κ ≥ 1 for all pdfs. κ = 1 if and only if s is Gaussian [6].

Note, that the expression in (10) has been derived by evaluating

the expectations exactly. Hence, strictly speaking, it is valid only for

infinite amount of data.

4. MSE OF THE DIFFERENT SOLUTIONS

In this section, we derive analytic expressions for the mean square

error MSE = E
(

‖y − s‖2
)

of the demixed signals y = Wx. It is

straightforward to show that

MSE = tr
[

W(AA
T + σ2

Rv)W
T + (I− 2WA)

]

. (11)

For the inverse solution and the MMSE solution, we get after some

calulations

MSEMMSE = σ2
tr(Rṽ)− σ4

tr(R2
ṽ) +O(σ6), (12)

MSEinv = σ2
tr(Rṽ). (13)

With WICA = (I+σ2C)A−1+O(σ4), we get for the ICA solution

MSEICA = σ2
tr(U) + σ4

tr
(

CC
T +CRṽ +RṽC

T
)

+O(σ6)

= MSEMMSE + σ4
tr
[

((1−M)⊙Rṽ)((1−M)⊙Rṽ)
T
]

+O(σ6). (14)

where 1 denotes a matrix whose elements are all one.

5. DISCUSSION

5.1. Theoretical results

Comparing (10) and (5), we see that the ICA solution and the MMSE

solution are quite similar except for the scaling matrix M. If M ≈
1, the ICA solution is close to the MMSE solution. The elements of

M are determined by the pdf q(s) of the sources:

Mij → 1 if κi · κj → ∞ and Mii → 1 if
κi+1/2λi

1+ρi
→ 1.

We now consider the generalized Gaussian (GGD) distribution

q(s) = β

2αΓ( 1

β
)
e
−
(

|s|
α

)β

, where Γ(·) is the Gamma function. The

GGD is a flexible distribution that incorporates the Gaussian dis-

tribution (β = 2), Laplacian distribution (β = 1) and uniform

distribution (β → ∞). For a GGD with variance 1, i.e. α =
√

Γ(β−1)/Γ(3β−1), we get after some calculations

κ =







Γ
(

2− 1

β

)

Γ
(

3

β

)

Γ2

(

1+ 1

β

) β > 1
2

∞ otherwise

,

ρ = β − 1,

λ =

{

(β − 2)κ β > 1
2

−∞ otherwise
. (15)

With (15), Mii simplifies to Mii = κi/2. Fig. 1 shows κ, Mii

and Mij when all sources si follow a GGD with the same shape

parameter β. In the following, we consider N = 2 such sources

with mixing matrix coefficients Aii = 1 and Aij = 0.5 (i 6= j)

and Gaussian noise with Rv = I. Fig. 2 plots the relative MSE

MSErel = MSE/MSEMMSE of the ICA solution for different values

of the SNR 1/σ2 and β. The MSE is calculated using the exact

expression from (11). The relative MSE of the inverse solution is

1.35 and 1.04 for the two SNRs of 10 dB and 20 dB. We see that for

a wide range of β, the MSE of the ICA solution is close to MSEMMSE.

This range becomes larger as the SNR increases. MSEICA shows

a local maximum at β = 2 and two minima which move towards

β = 0 or β → ∞ as the SNR increases.
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Fig. 2: Relative MSE (with respect to MSEMMSE) of theoretical ICA

solution for different values of β and different SNRs

5.2. Simulation results

In the simulations, we want to study the MSE of demixed signals

which is achievable in practice, i.e. with a NG KLD-based ICA

algorithm and with limited amount of data. In practice, both the

bias of WICA from the MMSE solution and the covariance of WICA

contribute to the MSE. We consider the same scenario with N = 2
identically distributed sources as in Section 5.1. Since q1(s1) =
q2(s2), ICA suffers from the permutation ambiguity. Furthermore,

the variance of the signals demixed by the ICA solution differs from

the variance of the signals demixed by the MMSE solution. Hence,

we adjust the row permutation and row scaling of WICA such that

diag(WICAW
−1
MMSE−I) = 0. We then use (11) to calculate the MSE

for an estimated WICA and average the MSE for 100 independent

trials. We use NG adaptation with an adaptive step-size ensuring

that the cost-function decreases in each iteration.

First, we consider Laplacian distributed sources and study the

behaviour for different SNRs and sample sizes L. As shown in

Fig. 3, NG-ICA yields an MSE that is close to the theoretical MSE

of ICA for moderate SNR and close to MSEMMSE for low to moder-

ate SNR. Due to small noise assumptions in the derivation of WICA,

the theoretical MSE of ICA is only valid for moderate to high SNRs.

For low SNR up to 20 dB, ICA outperforms the inverse solution for

sample sizes L ≥ 103. In the high SNR region, the MSE of ICA is

bounded by the estimation variance due to limited amount of data.

This bound is related to the CRB derived in [6], since the ICA solu-

tionWICA = A−1 for the noiseless case is unbiased and E(s2i ) = 1:

MSEICA|σ2=0 ≥
∑

i6=j

CRB
(

[WA]i,j

)

=
∑

i6=j

1

L

κi

κiκj − 1
(16)

Next, we study the behaviour for a fixed SNR but vary the shape

parameter β of the GGD. Fig. 4 shows the averaged relative MSE of

ICA as a function of the iteration number of NG-ICA and β for an

SNR of 10 dB. At this SNR, the MSE of the ICA solution decreases

monotonically as we move away from β = 2 towards β = 0.5 or

β = 10. This is different from the corresponding theoretical result in

Fig. 2 which shows a local minimum of the MSE for β = 4.62. Two

possible explanations are: Firstly, the theoretical MSE of ICA has

been calculated using WICA from (10) which neglects terms O(σ4).
For an SNR of 10 dB these terms might be important. Secondly, the

variance of WICA due to limited amount of data might depend on κ

and might be smaller for κ → ∞ as in the noiseless case (16).

Furthermore, Fig. 4 shows a minimum of the relative MSE over the

iteration number and its value is very close to one. This behaviour

only occurs for symmetric A and depends on the initialization. For

nonsymmetric A, separation of Gaussian sources (β = 2) fails.
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5.3. Mismatch of ϕ(s)
Here, we consider the case that the assumed pdfs qi(si) and corre-

sponding ϕi(si) in the KLD-based ICA do not match the true pdfs

of the sources. However, we assume that these “wrong” pdfs still

result in the solution WICA = A−1 for the noiseless case. Then our

Taylor expansion approach is still valid and (24) will change to

C
T + diag(κ)C+ diag(ρ− κ)Diag(C)

= I− diag(ξ)− diag(κ)Rṽ −
1

2
diag(λ)Diag(Rṽ) (17)

with ξ = [ξ1, · · · , ξN ]T and ξi = E(ϕi(si)si). (27) remains un-

changed and (25) will be

Cii =
1− ξi
1 + ρi

−
κi +

1
2
λi

1 + ρi
[Rṽ]ii (18)

6. CONCLUSION

In this paper, we have derived an analytic expression for the

demixing matrix obtained from KLD-based ICA for the low noise

regime. Furthermore, we have derived the corresponding MSE of

the demixed signals and have shown its relationship to the MMSE

solution. Although KLD and MMSE differ, linear demixing based

on these two criteria yields demixed signals with similar MSE. Simu-

lation results have verified that MSEICA is indeed close to MSEMMSE

for a wide range of the shape parameter of GGD. We also have shown

that the estimation variance of WICA plays an important role in prac-

tice. We have provided theoretical results for the case when the non-

linearity in the ICA algorithm does not match the true pdf of the

sources. In future, these results may be used to derive nonlinear

functions that can achieve an MSE even closer to MSEMMSE.



A. PROOF OF (10)

A.1. Taylor series approximation of E(ϕ(y)yT ) in (9)

For simplicity, we use the notation W = WICA, y = yICA =
WAs+Wv = ŷ+Wv. With (8) and y− ŷ = Wv, we first get

the Taylor series approximation for ϕi(yi)

ϕ(y) = ϕ(ŷ) + diag(ϕ′(ŷ))Wv

+
1

2
diag(ϕ′′(ŷ)) · (Wv ⊙Wv) +Op(σ

3) (19)

with ϕ′(y) = [ϕ′
1(y1), · · · , ϕ

′
N (yN)]T , ϕ′′(y) =

[ϕ′′
1 (y1), · · · , ϕ

′′
N (yN)]T . diag(a) is a diagonal matrix with

the elements of the vector a and ⊙ denotes the elementwise

multiplication. Op(σ
3) is the order in probability notation, i.e.

limσ→0 P (|Op(σ
3)/σ3| ≥ ǫ) = 0. Multiplying (19) with

yT = (ŷ +Wv)T and taking the expectation, we get from (9)

I = E
[

ϕ(y)yT
]

= E
[

ϕ(ŷ)ŷT
]

+ E
[

diag(ϕ′(ŷ))Wvv
T
W

T
]

+
1

2
E
[

diag(ϕ′′(ŷ)) · (Wv ⊙Wv) ŷT
]

+O(σ3) (20)

since ŷ = WAs is independent of v and E(v) = 0. After some

straightforward manipulations, we get

I = E
[

ϕ(ŷ)ŷT
]

+ σ2E
[

diag(ϕ′(ŷ))
]

WRvW
T

+
1

2
σ2E

[

ϕ
′′(ŷ)ŷT

]

· Diag
(

WRvW
T
)

+O(σ3), (21)

where Diag(Z) deletes all off-diagonal elements of the matrix Z.

In general, if E(vk1

1 · · · vkN
N ) = 0 ∀k1+· · ·+kN odd (as assumed

in Sec. 2), the expectation of all odd terms of v is zero and the Taylor

series (21) and hence also WICA is only a function of σ2.

Using a second Taylor series expansion of WICA(σ
2) at σ2 = 0,

we can write WICA(σ
2) = A−1 + σ2B + O(σ4) with B =

dWICA(σ2)

dσ2

∣

∣

∣

σ2=0
. Since we do not know WICA explicitely, it is hard

to compute B directly by derivative. We do that by a second pertur-

bation analysis in the next section.

A.2. Taylor series approximation of (21) at WICA = A−1+σ2B

Since W = WICA = A
−1 + σ2

B+O(σ4),

ŷ = WAs = s+ σ2
BAs+O(σ4)

= s+ σ2
Cs+O(σ4) = s+ σ2

b+O(σ4)

withC = BA, we get Gij =
[

E(ϕ(ŷ)ŷT )
]

ij
with a second Taylor

series:

Gij = E
[

(ϕi(si) + ϕ′
i(si)σ

2bi)(sj + σ2bj)
]

+O(σ4)

= E [ϕi(si)sj ] + σ2E [ϕi(si)bj ] + σ2E
[

ϕ′
i(si)bisj

]

+O(σ4)

(22)

with bj =
∑N

l=1 Cjlsl. Because si and sj are independent and zero

mean, it holds

E [ϕi(si)sj ] =

{

1 i = j

0 i 6= j

E [ϕi(si)bj ] =

N
∑

l=1

CjlE(ϕi(si)sl) = Cji

E
[

ϕ′
i(si)bisj

]

=
N
∑

l=1

CilE(ϕ′
i(si)slsj) =

{

ρiCii i = j

κiCij i 6= j

with κi = E(ϕ′
i(si)) and ρi = E(ϕ′

i(si)s
2
i ). The result is thus

E(ϕ(ŷ)ŷT ) = I+ σ2(CT + diag(κ)C)

+ σ2
diag(ρ− κ)Diag(C) +O(σ4) (23)

with κ = [κ1, · · · , κN ]T and ρ = [ρ1, · · · , ρN ]T . With W =
A−1 + σ2B and neglecting O(σ4), we get from (21)

E
[

diag(ϕ′(ŷ))
]

WRvW
T =diag(κ)A−1

RvA
−T ,

1

2
E
[

ϕ
′′(ŷ)ŷT

]

Diag(WRvW
T )=

1

2
diag(λ)Diag(A−1

RvA
−T )

with λ = [λ1, · · · , λN ]T and λi = E(ϕ′′
i (si)si). In summary, (21)

simplifies to

C
T + diag(κ)C+ diag(ρ− κ)Diag(C)

= −diag(κ)Rṽ −
1

2
diag(λ)Diag(Rṽ) (24)

with Rṽ = A−1RvA
−T . The diagonal elements (i, i) of (24) are

Cii = −
κi +

1
2
λi

1 + ρi
[Rṽ]ii . (25)

The non-diagonal elements (i, j) and (j, i) of (24) are
[

κi 1
1 κj

] [

Cij

Cji

]

= −

[

κi

κj

]

[Rṽ]ij (26)

If both si and sj were Gaussian, κi = κj = 1 and we would get

Cij + Cji = − [Rṽ]ij . The solution for Cij would then not be

unique. Hence, WICA is ambiguous if there is more than one Gaus-

sian source signal si in s.

If at least one of si and sj is non-Gaussian, κiκj > 1 and we get
[

Cij

Cji

]

= −
1

κiκj − 1

[

κj(κi − 1)
κi(κj − 1)

]

[Rṽ]ij (27)

Hence we can write

WICA=(I+σ2
C)A−1+O(σ4)=(I−σ2

M⊙Rṽ)A
−1+O(σ4) (28)

with

Mii =
κi +

1
2
λi

1 + ρi
, Mij =

κj(κi − 1)

κiκj − 1
i 6= j. �
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