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ABSTRACT

A common problem in frequency domain independent component
analysis (ICA) is the so called permutation problem which arises due
to the independent demixing in each frequency bin. This paper eval-
uates the robustness of a an extension of a recently proposed method
for permutation correction based on the time difference of arrival
(TDOA) of the sources. First, we discuss the permutation problem,
review the proposed method, and give an intuitive model to predict
the number of permutations. Then the theoretical performance using
perfect knowledge of the TDOAs of the sources as well as the prac-
tical performance using the TDOAs estimated from a multidimen-
sional state coherence transform (SCT) are evaluated through exten-
sive simulations. In our experiments, ICA with SCT based permuta-
tion correction outperforms Independent Vector Analysis (IVA).

Index Terms— blind source separation, independent component
analysis, permutation problem, state coherence transform

1. INTRODUCTION
The goal of blind source separation is to separate M convolutive
mixtures ym(i), m = 1, . . . , M into N statistically independent
source signals. In frequency domain blind source separation (BSS)
a time-frequency representation of the signals is generally derived
by means of a short-time Fourier transform (STFT) and the signals
observed at microphones are modeled as follows:

y(k, l) = H(k)x(k, l). (1)

Here k denotes the frequency bin index, l is a time index related to
the analysis frame, y(k, l) is a vector of observed mixtures, x(k, l) is
a vector of original signals, and H(k) is a mixing matrix. If N = M ,
the BSS problem is determined and the original signals x(k, l) can
be recovered by applying a complex-valued ICA to y(k, l). The
separation is done by estimating a set of demixing matrices W(k):

x̂(k, l) = W(k)y(k, l) (2)

Due to the intrinsic indeterminacy of ICA, the matrix W(k) is an

estimate of H(k)−1 up to a scaling and permutation ambiguity:

W(k) = Λ(k)Π(k)Ĥ(k)−1
(3)

where Λ(k) are diagonal scaling matrices, Π(k) are permutation

matrices and Ĥ(k)−1 is the estimated inverse of the true mixing
matrix H(k). The matrix Π(k) is responsible for the so called per-
mutation problem. Many methods have been proposed to resolve
this permutation but a widely accepted solution is still not available.
One way to resolve the permutation is to estimate the multidimen-
sional propagation model [1], which can be approximated in terms
of the time differences of arrival (TDOA). In [2] the state coherence
transform (SCT) was proposed as an one-dimensional TDOA esti-
mator. Recently, it has been extended to the multidimensional case
by using a state vector instead of a scalar state variable [3, 4]. It was
used for multidimensional source localization of multiple sources.
In this paper, we propose the multidimensional SCT as an effective
solution for the permutation problem. We study its robustness w.r.t
to reverberation and noise and discuss its advantages and limitations.

The paper is organized as follows: In Sec. 2, the multidimensional
SCT is formulated. Sec. 3 derives a model for the permutation error.
Experimental results are presented in Sec. 4, and Sec. 5 gives a
comparison with IVA [5].

2. MULTIDIMENSIONAL SCT

According to its physical meaning, a mixing matrix H(k) under ane-
choic conditions can be modeled as

H(k) = [hmn(k)]1≦m≦M

1≦n≦N

, hmn(k) = |hmn|e
−j2πfkTmn . (4)

fk is the frequency corresponding to the k-th frequency bin, Tmn

is the time of arrival (TOA) from n-th source to m-th microphone,
|hmn| is the amplitude attenuation between n-th source and m-th mi-
crophone. Now we define a state for the n-th source, k-th frequency
bin and microphone pair (a, b):

c
(a,b)
n (k) =

han(k)

hbn(k)
=

|han|

|hbn|
e
−j2πfkτ

(a,b)
n (5)

where τ
(a,b)
n = Tan − Tbn is the true TDOA of the n-th source with

respect to the microphone pair (a, b). Assuming comparable ampli-
tude attenuations (e.g comparable source-microphone distances), (5)
simplifies to

c
(a,b)
n (k) = e

−j2πfkτ
(a,b)
n . (6)

Let τττ = [τ 1, · · · , τS]T be a TDOA vector containing the TDOA
values of S microphone pairs related to a generic source. The ideal
acoustic propagation can be represented by combining the states of
these microphone pairs into a single column vector

c(k,τττ ) = [e−j2πfkτs

]1≦s≦S . (7)

We define the estimated normalized state for the n-th source, k-th
frequency bin and sensor pair (a, b) as:

r
(a,b)
n (k) =

r
(a,b)
n (k)

|r(a,b)
n (k)|

, r
(a,b)
n (k) =

ˆ

W(k)−1
˜

an

[W(k)−1]
bn

. (8)

It can be shown that if Ĥ(k)−1 = H(k)−1 (i.e. perfect BSS) and

Π(k) = I (i.e. no permutation), r
(a,b)
n (k) is equivalent to c

(a,b)
n (k)

regardless of the diagonal scaling matrix Λ(k). Even if Π(k) 6= I
the equivalence holds except for a permutation of the source indices.
Similarly as above, we combine S estimated states for the n-th
source, k-th frequency bin and S sensor pairs into a single column
vector

r̄n(k) = [rs
n(k)]1≦s≦S . (9)

Then, the multidimensional SCT is defined as

SCT (τττ) =
X

k

N
X

n=1

[1 − g (D[c(k,τττ), r̄n(k)])] (10)

where g(·) is a suitable nonlinear function, D[·, ·] is a generic dis-
tance metric. It has been shown that the N maxima of SCT (τττ)
give the TDOA vector estimates τ̂ττn of the N sources regardless of



the permutation matrix [3, 4]. Therefore, the function in (10) can be
considered a likelihood of the multidimensional source location in
the TDOA domain.

Interestingly, the estimated TDOAs can be used to solve the per-
mutation problem of frequency domain ICA without knowledge of
the microphone array geometry. Let Πk(·) be a permutation function
for frequency bin k which defines the mapping between the indices
of the true sources and indices of the demixed sources. Πk(·) is an-
other but equivalent notation of the permutation matrix Π(k). If e.g.
Π(k) = I, then Πk(n) = n, ∀n. Given the estimated state vectors
r̄n(k) and the TDOA estimates τ̂̂τ̂τn, we determine the permutation
Πk(·) at frequency bin k by the optimization

Π̂k = argmin
Πk

N
X

n=1

D[c(k, τ̂ττn), r̄Πk(n)(k)]. (11)

It is a combinatoric optimization problem.

3. MODEL OF PERMUTATION ERRORS

The optimization in (11) aims to find the best match between the
estimated state vectors r̄n(k) and the ideal state vectors c(k, τ̂ττn)
by finding the permutation which minimizes the sum of the distance
metrics D[c(k, τ̂̂τ̂τn), r̄Πk(n)(k)]. The number of permutation errors
Pk after permutation correction in each frequency bin k can be cal-
culated by counting the number of zero elements on the diagonal

of Π(k)Π̂(k)−1, where Π(k) is the true permutation matrix at fre-
quency bin k. In the simulations, Π(k) is determined by correlat-

ing the ideally demixed sources (using H−1(k)) with the separated
source signals x̂(k, l) and finding the permutation which gives the
largest correlation. The percentage of permutation errors is then

P =
1

K · N

K
X

k=1

Pk. (12)

After permutation correction using (11), there might remain permu-
tation errors if D[c(k, τ̂̂τ̂τn), r̄Πk(n)(k)] < D[c(k, τ̂̂τ̂τn), r̄Πk(m)(k)]
for any n 6= m. The permutation error P is expected to assume a
low value if the estimated states r̄n(k) for different sources are suffi-
ciently separated, which means that there is enough spatial diversity
between the propagation of each source. Therefore, the effective-
ness of (11) is strictly dependent on the acoustic conditions and on
the locations of sources and microphones which intrinsically mod-
ify such a spatial diversity. If the acoustic conditions are bad (high
reverberation, high noise, closely spaced sources) the state vector
estimates r̄n(k) will have a large variance and hence the remaining
permutation error will be high.

To derive a model of the permutation errors, we assume the rever-
beration as a diffuse noise field which is applicable if certain con-
ditions are met [6]. We model the estimated TDOA vectors τ̂̂τ̂τn as
Gaussian random vectors and hence use the following model for the
estimated states

r̄Πk(n)(k) = c(k, τ̂̂τ̂τn) (13)

where τ̂̂τ̂τn ∼ N (τττn,C). τττn is the vector of true TDOAs of source
n and C is the covariance matrix of the noise. We can then estimate
the expected value of P by Monte-Carlo simulation as follows:

• For each τττn, generate Q realizations τ̂̂τ̂τn ∼ N (τττn,C).

• Calculate Q corresponding state vectors according to (13).

• Average the percentage of permutation errors P for all Q re-
alizations using c(k,τττn) instead of c(k, τ̂̂τ̂τn) in (11).

4. SIMULATION RESULTS

To evaluate the robustness of the proposed approach, we have con-
ducted extensive simulations with an L-shaped array with different
microphone spacings d and three sources shown in Fig. 1. We fix
one source at a direction-of-arrival (DOA) of θ3 = 0◦ and vary the
two other DOAs in the range of [0◦, 360◦] in 10◦ steps. For each

scenario, we simulate the room impulse reponses assuming omni-
directional sources and sensors using the ISM RoomSim toolbox [7]
with a sampling frequency of fs = 16 kHz and a room size of
6.0 m × 6.0 m × 2.5 m. We then generate mixtures by convolv-
ing three speech signals of length 5 s with the simulated impulse
responses. The first three experiments consider the noiseless case,
while the fourth experiment uses SNRs of (0, 10, 20) dB. In the fol-
lowing evaluations, we use the states of the microphone pairs (1, 2)
and (1, 3). We use the recursive Scaled Infomax algorithm from [8]
with FFT size 1024. Please note that, although we use the DOA for
the source positions, the permutation correction is performed with-
out knowledge of the array geometry by evaluating the SCT as a
function of the TDOAs. We consider two evaluation criteria:

• The percentage P of remaining permutation errors

• The distribution of the permutation errors Pk over frequency,
but averaged for all considered source positions

We plot P as a function of the two DOAs θ1, θ2. This plot is called
a (remaining) permutation map.
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Fig. 1: Experimental setup

4.1. Comparison of Model with ICA Results
In this experiment, we want to verify the validity of the model pro-
posed in the previous section. We assume the measurements from
different microphone pairs to be independent. Furthermore, we as-
sume the source-to-microphone distance to be comparable for all
microphone pairs and hence we model the vector of TDOAs τ̂ττn as a
Gaussian random vector with covariance matrix C = σ2I. In Fig. 2,
we compare the permutation map obtained using the model for the
estimated states (13) with the permutation map obtained using ICA
to estimate the states (8). For both cases, we use the ideal model
states c(k,τττn) for the permutation correction step (11). Clearly, the
model matches the results from ICA quite well.
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Fig. 2: Permutation map for T60 = 150 ms, d = 0.02 m

4.2. Perfect Knowledge of TDOA
The second experiment evaluates the proposed approach with per-
fect knowledge of the TDOAs, i.e. the permutation correction step
(11) uses the ideal model states c(k,τττn) instead of c(k, τ̂̂τ̂τn), using
different microphone distances d = (0.02, 0.04, 0.1, 0.2, 0.5) m in
three different reverberation conditions T60 = 50ms, 150 ms and
300 ms. Fig. 3 shows the permutation map for T60 = 50ms and
T60 = 300 ms for two different spacings: d = 0.04 m, 0.50 m.

For T60 = 50ms, the proposed approach has very little permu-
tation errors except for the degenerate cases where two of the three
sources arrive from exactly the same direction. For more reverberant
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Fig. 3: Permutation map with known TDOAs

environments, a larger microphone spacing provides less permuta-
tion error for closely spaced sources. This is due to the fact that with
increasing reverberation time, the estimated states have a larger vari-
ance and a larger microphone spacing d provides a better distinction
between the states of different sources.

To quantitatively evaluate the permutation errors, we calculate
the mean µP and the standard deviation σP of P over all consid-
ered source positions excluding the degenerate cases. The results
are summarized in Table 1, histograms of P for T60 = 300 ms are
shown in Fig. 4. Clearly, a larger microphone spacing shows a lower
fluctuation in the permutation errors. This means that the perfor-
mance of the permutation correction is more constant over all con-
sidered source positions. We also see that with T60 = 300 ms and
the assumption of omni-directional sources and sensors, the rever-
beration leads to a large variance in the states and hence even after
permutation correction with perfect knowledge of the TDOAs, we
cannot completely solve the permutation problem.

mic spacing T60 = 50ms T60 = 150 ms T60 = 300 ms

d = 0.02 m 1.62(4.79) 8.44(10.58) 20.86(13.54)
d = 0.04 m 1.31(2.78) 7.43(7.04) 21.59(9.28)
d = 0.10 m 1.16(1.83) 6.59(3.56) 20.20(4.79)
d = 0.20 m 1.32(1.68) 7.01(2.83) 21.37(3.80)
d = 0.50 m 1.43(1.69) 7.20(2.71) 22.38(4.44)

Table 1: µP (σP ) in % with known TDOAs
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Fig. 4: Histograms of P , known TDOAs, T60 = 300 ms

Furthermore a large spacing d distributes the permutation errors
more equally across the frequency bins and hence has lower per-
mutation error in the low frequency region than a small spacing d.
This is due to the fact that the estimated states r̄n(k) can be bet-
ter separated at low frequencies using a large spacing d than with
small spacing d. Fig. 5 shows the permutation errors across the fre-

quency range (0, 4) kHz for d = 0.02 m, 0.1 m, 0.5 m smoothed
with a moving average filter of order 32. This corresponds to a win-
dow size of 500 Hz.
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Fig. 5: Permutation error across frequency, T60 = 150 ms

4.3. Estimation of TDOAs using SCT
In this section, we compare the performance of permutation cor-
rection based on the TDOAs estimated by the SCT, i.e. permuta-
tion correction using the estimated model states c(k, τ̂̂τ̂τn), and based
on the perfectly known TDOAs, i.e. permutation correction using
the ideal model states c(k,τττn). In both cases, we use ICA to ob-
tain the estimated states r̄n(k). For easy comparison with the true
source locations, Fig. 6 shows the SCT as a function of the DOA by
mapping the TDOAs to the corresponding DOA. The true DOAs are
θ1 = 40◦, θ2 = 240◦, θ3 = 0◦ and are denoted with dashed lines.
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Fig. 6: SCT for T60 = 300ms and d = 0.02 m

Clearly, the SCT is able to estimate the TDOAs very precisely.
Hence, permutation correction using the estimated DOA works al-
most as well as with the perfectly known TDOAs. This is reflected
in Figs. 7 and 8 which show the permutation error map and the
histograms of permutation error P using SCT. However, the SCT
sometimes fails to estimate the TDOAs correctly for closely spaced
sources and a very small spacing of d = 0.02 m. Hence, in the fol-
lowing we will not consider the case of d = 0.02 m. Comparing µP

and σP for the SCT (Table 2) with the results for perfect knowledge
of the TDOAs (Table 1) we note that the results match quite well.

mic spacing T60 = 50 ms T60 = 150 ms T60 = 300 ms

d = 0.04 m 1.50(4.50) 9.25(11.04) 23.39(11.70)
d = 0.10 m 1.17(1.82) 6.59(3.60) 20.48(5.40)
d = 0.20 m 1.33(1.72) 6.99(2.83) 21.47(3.83)
d = 0.50 m 1.41(1.63) 7.17(2.73) 22.39(4.46)

Table 2: µP (σP ) in % with SCT

The low permutation error is also reflected in the SIR gain values
shown in Table 3. Considering the SIR results as well as the permu-
ation errors, a microphone spacing of d = 0.1 m is a good tradeoff
for practical applications.

mic spacing T60 = 50 ms T60 = 150 ms T60 = 300 ms

d = 0.04 m 20.50(5.59) 11.81(5.45) 7.13(4.02)
d = 0.10 m 20.45(5.39) 11.84(5.12) 7.17(4.13)
d = 0.20 m 20.27(5.22) 12.00(4.36) 7.41(3.59)
d = 0.50 m 19.09(5.50) 11.79(3.89) 6.93(3.29)

Table 3: Mean and standard dev. of SIR gain for SCT

4.4. Robustness to Noise
In this section we study the robustness of the permutation correction
with respect to noise. We consider the case of T60 = 150 ms and
d = 0.1 m. Table 4 summarizes the mean µP and standard deviation
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Fig. 7: Permutation map for SCT
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Fig. 8: Histogram of P with SCT, T60 = 300 ms

SNR known DOA SCT

20 dB 12.19(4.52) 12.27(4.98)
10 dB 24.79(5.01) 27.84(8.12)
0 dB 39.19(4.00) 51.65(6.60)

Table 4: µP (σP ) in % for T60 = 150 ms and d = 0.1 m

σP of the permutation errors P for perfect knowledge of the TDOAs
and for the SCT for different noise conditions.

Clearly, for increasing noise the number of permutation errors in-
creases. However, as we can see from Fig. 9 (a), the error proba-
bility increases mainly at higher frequencies. This is due to the fact
that speech signals have less power in the high frequency region and
hence the local SNR in that region is much worse than for the lower
frequencies. Furthermore, Fig. 9 (b) shows that the SCT itself is
quite robust to noise and can estimate the source locations correctly
even with considerable amount of noise. This is also the reason, why
the SCT achieves approximately the same number of permutation er-
rors except for 0 dB SNR in Table 4 as we get with known TDOAs.
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Fig. 9: Robustness to noise: T60 = 150 ms and d = 0.1m

5. COMPARISON WITH IVA

First, we repeat the simulation of Sec. 4.4 for IVA [5], an approach
which is supposed to be permutation-free. We get an average per-
mutation error of 34.7%, 48.5%, 58.4% for SNRs of 20, 10, 0 dB.
The mean permutation error for IVA is much higher than ICA+SCT
(see Table 4). This is due to the fact that IVA is sensitive to the
convergence to local minima which may also correspond to wrong
permutations, while ICA+SCT is more robust.
Second, similar to Fig. 1, we individually record 6 sources separated
by 60◦ in a real office room with T60 = 520 ms. Data is available at:
http://www.lss.uni-stuttgart.de/mitarbeiter/loesch/bss signals.html.
We consider all possible mixtures of 3 sources. The input SIR is
−3.0 dB. Table 5 compares the average permutation error P and
the mean SIR for different learning window sizes with the results of
IVA. Due to noise and the small dimensions of the room the data is
difficult to separate and hence SIR values are low. Again, ICA+SCT
clearly outperforms IVA in terms of permutation error and SIR,
especially for short data segments.

1 s 2 s 3 s

IVA 42.3% 0.8 dB 41.4% 3.3 dB 44.2% 2.0 dB
ICA+SCT 30.8% 5.2 dB 27.2% 7.5 dB 26.9% 7.7 dB

Table 5: Comparison of P (%), SIR ( dB) for real room, d = 0.04 m

6. CONCLUSIONS

In this paper, we evaluated the performance of TDOA based permu-
tation correction for frequency domain ICA. First, we evaluated the
performance using perfect knowledge of the TDOA. We have shown
that, for moderately reverberant environments, TDOA based permu-
tation correction is sufficient to almost completely solve the permu-
tation problem. The multidimensional SCT is robust to noise, source
positions and short data segments and achieves for moderately noisy
environments the performance bound of TDOA based permutation
correction using perfect knowledge of TDOA.

7. REFERENCES
[1] H. Sawada, S. Araki, R. Mukai, and S. Makino, “Grouping sep-

arated frequency components by estimating propagation model
parameters in frequency-domain blind source separation,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
15, no. 5, pp. 1592–1604, July 2007.

[2] F. Nesta, M. Omologo, and P. Svaizer, “A novel robust solution
to the permutation problem based on a joint multiple TDOA es-
timation,” Proc. International Workshop for Acoustic Echo and
Noise Control (IWAENC), 2008.

[3] F. Nesta and M. Omologo, “Generalized state coherence trans-
form for multidimensional localization of multiple sources,”
Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), 2009.

[4] B. Loesch, S. Uhlich, and B. Yang, “Multidimensional localiza-
tion of multiple sound sources using frequency domain ICA and
an extended state coherence transform,” Proc. IEEE Workshop
on Statistical Signal Processing (SSP), 2009.

[5] T. Kim, H. Attias, S.-Y. Lee, and T.W. Lee, “Blind source sep-
aration exploiting higher-order frequency dependencies,” IEEE
Transactions on Audio, Speech and Language Processing, vol.
15, no. 1, 2007.

[6] T. Gustaffson, B. D. Rao, and M. Trivedi, “Source localization
in reverberant environments: Modeling and statistical analysis,”
IEEE Transactions on Speech and Audio Processing, vol. 11,
no. 6, pp. 791–803, Nov. 2003.

[7] E. Lehmann, “Image-source method for room impulse re-
sponse simulation (room acoustics),” http://www.watri.
org.au/˜ericl/ism_code.html, 2008.

[8] F. Nesta, P. Svaizer, and M. Omologo, “Separating short signals
in highly reverberant environment by a recursive frequency do-
main BSS,” Proc. Joint Workshop on Hands-free Speech Com-
munication and Microphone Arrays (HSCMA), May 2008.


