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ABSTRACT

Recently, blind source separation (BSS) has been proposed to sep-
arate signals recorded by a microphone array in a reverberant envi-
ronment. This paper deals with BSS of a time-varying number of
moving sources, which often occurs in practical situations. We de-
velop two online algorithms based on time-frequency (TF) sparse-
ness that are able to deal with moving sources: A block-online algo-
rithm that estimates the number of sources and a gradient-based on-
line algorithm with prespecified maximum number of sources. Both
algorithms are evaluated in simulations and real-world scenarios and
show good separation performance.

Index Terms— blind source separation, adaptive beamforming,
real-time separation, moving sources, time-frequency sparseness

1. INTRODUCTION

The task of blind source separation is to separate M (possibly) con-
volutive mixtures xm[i], m = 1, . . . , M into N different source sig-
nals. Mathematically, we write the sensor signals xm[i] as a sum of
convolved source signals

xm[i] =
N

X

n=1

hmn[i] ∗ sn[i], m = 1 . . . M (1)

Our goal is to find signals yn[i], n = 1 . . . N such that, after solv-
ing the permutation ambiguity, yn[i] ≈ sn[i] or a filtered version of
sn[i]. In the case of moving sources, the impulse responses hmn[i]
are time-varying. Several approaches to blind separation of moving
sources have been proposed: [1, 2] use a blockwise ICA algorithm
in the time-frequency domain. They can deal with (over)determined
cases (N ≤ M ) only. [3] proposes maximum SNR beamforming in
the TF domain together with a voice activity detection to find suit-
able segments for direction-of-arrival (DOA) estimation using GCC-
PHAT.

Our online algorithms are based on the observation vector clus-
tering (OVC) algorithm detailed in [4]. They use the so-called nor-
malized observation vectors X̄[k, l] as feature vectors where k is the
frequency index and l is the time frame index, respectively. Each
cluster with centroid cn corresponds to a different source. By defin-
ing different cost functions of cluster centroids cn, which we are
looking for,

online: Jl =
X

k

min
n

‖X̄[k, l] − cn‖
2,

block-online: J l2
l1

=

l2
X

l=l1

Jl,

offline: J =
X

l

Jl, (2)

we can derive different versions of the clustering algorithm. The
separation algorithms presented in [4, 5] use k-means clustering and

operate in offline mode since the cost function J is defined over
the complete observation time interval. Hence they are limited in
two ways: They can only deal with stationary sources and need to
know the number of sources. As will be shown in section 6, the of-
fline algorithm provides good separation for stationary sources, but
fails when sources are moving. In this paper, we propose two mod-
ified algorithms to overcome these limitations: A block-online sep-
aration algorithm using the number of sources estimation technique
(NOSET) [6] and a gradient-based online algorithm.

2. OBSERVATION VECTOR CLUSTERING

First, we briefly summarize the OVC algorithm. After a short time
Fourier transform (STFT), we can approximate the convolutive mix-
tures in the time-domain as instantaneous mixtures at each frequency
bin k:

X[k, l] ≈
N

X

n=1

Hn[k]Sn[k, l] (3)

X = [X1, . . . , XM ]T is called an observation vector and Hn =
[H1n, . . . , HMn]T is the vector of frequency responses from source
n to all sensors. We assume that the microphone array is placed
in the near-field of the sources. This implies that we can assume a
strong direct-path and weak multipath components. The OVC algo-
rithm consists of three steps: normalization, clustering, and recon-
struction of the separated signals.

Normalization: All observation vectors X[k, l] are phase-normalized
with respect to a reference sensor and normalized to unit length.
They form clusters each of which corresponds to an individual source.

Clustering: The next step is to find clusters C1, . . . , CN of X̄[k, l]
with centroids cn. This can be done with the k-means clustering al-
gorithm [4] applied to the cost function J . However, k-means clus-
tering has several drawbacks as discussed in [6]. Hence, we will use
the NOSET algorithm from [6] together with its one step clustering
procedure.

Reconstruction: To reconstruct the separated signals, we can de-
sign a binary TF mask Mn[k, l] that extracts the TF points in each
cluster or we can perform blind beamforming as discussed in [5].
This approach has the advantage of reducing or completely remov-
ing musical noise artifacts which are common in binary TF mask
based separation.

3. OFFLINE SEPARATION USING NOSET

Our offline separation algorithm minimizing J in (2) consists of two
steps: Source number and DOA estimation and separation using a
beamformer array.

Source Number & DOA Estimation: We first perform a source
number and DOA estimation using our algorithm NOSET [6]:

1. Select reliable TF points I, i.e. TF points [k, l] where we have a
large enough phase difference among sensors and a high signal



power. The first criterion corresponds to a frequency selection

k > k̃ above a certain threshold where phase estimates are reli-
able. The second criterion selects TF points that are character-
ized by one dominant source only.

2. Estimate the bearing θ̂ from the phase information of the nor-
malized observation vectors and sensor positions for all TF points
in I using a least-squares approach.

3. Form a histogram R[ν] of all θ̂. R[ν] is the number of bearing
estimates that fall into bin number ν. The estimated number of
sources N̂ is determined by the number of relevant peaks in the
histogram.

Separation: After we have estimated the number of sources and the
corresponding DOAs, we use them as initial centroids in the normal-
ized observation vector space and perform a single k-means iteration
as proposed in [6]. After finding the cluster membership for all TF
points, we perform blind beamforming using a beamformer array as
discussed in [5]. The reason for using a beamformer array and not
just a single beamformer is that a single beamformer can suppress at
most M − 1 interferers. Hence it cannot suppress all interferers if
M < N . We first pre-separate the signals using binary TF masks.
Then we design a beamformer array, consisting of beamformers ded-
icated to suppress different sets of min(M − 1, N − 1) interferers.
Following the derivation in [5], we design several beamformers d to
extract each source n using the following beamformer weights:

wnd[k] =
R

−1
nd [k]an[k]

aH
n [k]R−1

nd [k]an[k]
. (4)

Rnd[k] is the corresponding sensor correlation matrix of noise-plus-
interference only. an[k] is the vector of transfer functions (steering
vector) of source n to all sensors, estimated using a Wiener-Filter

an[k] =

P

l
X[k, l]ŷ∗

nJ [k, l]
P

l
|ŷnJ [k, l]|2

, (5)

where ŷnJ [k, l] = Mn[k, l]XJ [k, l] and Mn[k, l] is the mask of the
desired signal n. XJ [k, l] is the microphone signal at reference sen-
sor J . Each beamformer is designed to suppress a different set of
interferers and has a different input signal. To obtain the separated
signals, we combine the outputs of different beamformers. This pro-
cess is summarized in Fig. 1 for M = 3, N = 4, n = 1, where
each of the three beamformers w1d(1 ≤ d ≤ 3) tries to suppress
M − 1 = 2 interferers.
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Fig. 1. Beamformer array for extracting source 1

After the beamforming step, additional optional binary TF masks
can be used to further suppress the interference. Then we convert the
separated signals back to the time domain using an inverse STFT.

4. BLOCK-ONLINE SEPARATION ALGORITHM

The block-online separation algorithm makes use of the NOSET al-
gorithm described above and hence does not need to know the num-

ber of sources. It uses the cost function J l2
l1

from (2) with a block-

size of P = l2 − l1 + 1 STFT frames. The algorithm consists of the
following steps: source number and DOA estimation, source associ-
ation/permutation and source separation.

Source Number & DOA Estimation: For each block of data, we
perform the source number and DOA estimation using the NOSET
algorithm as in section 3.

Source Association/Permutation: In order to ensure continuous
signals, we need to associate the demixed signals of the current block
p with those from the previous block p − 1. This is done by finding

the best match between the DOA estimates of the current block θ̂[p]

and of the previous block θ̂[p − 1]. In order to deal with a changing
source number (pauses in speech etc.), we perform the matching in
the following way:

1. For each θ̂n[p], calculate the distances d[p, j] ∈ [0◦, 180◦] be-

tween θ̂n[p] and all estimates of the previous block θ̂j [p − 1]:

d[p, j] =



d̃pj if d̃pj < 180◦

360◦ − d̃pj else

with d̃pj = |θ̂n[p] − θ̂j [p − 1]|.
2. Find the minimal distance dmin = minj d[p, j] and the corre-

sponding index m = arg minj d[p, j].
(a) If dmin < t, where t is a maximal allowable deviation,

then associate θ̂n[p] with θ̂m[p − 1].
(b) If dmin ≥ t, then increment the number of tracked sources

and associate θ̂n[p] with the new source.

3. If N̂ [p] < N̂ [p − 1], some DOA estimates θ̂[p − 1] of the pre-
vious block have not been associated with any DOA estimate

θ̂[p] of the current block. In this case, the corresponding source
currently exhibits a speech pause and we are not able to esti-
mate its DOA. We keep the previous DOA estimate in the set of
tracked sources. DOA estimates that have not been active for a
long period (e.g. 5 s) are removed.

Independently of our research, [7] proposes a similar procedure for
source association.

Source Separation: After the source association step, we use the

reordered DOA estimates θ̂[p] as cluster centroids in the observation
vector space. Separation for the block-online algorithm is performed
for each block of data in the same way as for the offline algorithm.

5. ONLINE SEPARATION ALGORITHM

The online algorithm operates on a single frame basis. [8] developed
a two-sensor gradient based online BSS algorithm based on binary
TF masking. We extend this principle to OVC and blind beamform-
ing. We use a gradient search for the cluster centroids cn with pre-
specified maximum number of sources N . Inactive sources result in
empty clusters. The cost function Jl for the l-th STFT frame is

Jl =
X

k

min
n

‖X̄[k, l] − cn‖
2 =

X

k

min(d1, . . . , dN) (6)

with dn = ‖X̄[k, l] − cn‖
2. In order to calculate the gradient of Jl

with respect to cn, we use the approximation from [8]

min(d1, . . . , dN) =
−1

λ
ln(e−λd1 + · · · + e−λdN ) (7)

where λ > 0 is a parameter to control the degree of the approxima-
tion. The cost function Jl is then approximated as

Jl =
−1

λ

X

k

ln
X

n

e−λ‖X̄[k,l]−cn‖2

. (8)



Its gradient vector with respect to cn is

∂Jl

∂cn

= −
X

k

2(X̄[k, l] − cn)e−λ‖X̄[k,l]−cn‖2

P

n
e−λ‖X̄[k,l]−cn‖2

. (9)

The update rule for the cluster centroid cn is

cn[l] = cn[l − 1] − βαn[l]
∂Jl

∂cn

(10)

where β > 0 is a constant learning rate and αn[l] > 0 is a time-
variant learning rate. Similar to [8], we select αn[l] as a function of
the amount of TF points associated with source n, that is

αn[l] =
un[l]

Pl

l′=0 γl−l′un[l′]
, un[l] =

X

k

e−λ‖X̄[k,l]−cn‖2

P

n
e−λ‖X̄[k,l]−cn‖2

(11)
with the forgetting factor 0 < γ ≤ 1.

The other separation steps such as masking, blind beamforming,
and post-processing are similar to the block-online algorithm. We
define a binary TF mask for each source n:

Mn[k, l] =



1 if dn[k, l] < dj [k, l] ∀j 6= n

0 otherwise
(12)

with dn[k, l] = ‖X̄[k, l] − cn‖
2. A computationally efficient ver-

sion of the blind beamforming algorithm can be obtained by using a
recursive update of the steering vectors an[k, l] and the correlation
matrices Rnd[k]

Rnd[k, l] = δRnd[k, l − 1] + nnd[k, l]nH
nd[k, l],

an[k, l] = δan[k, l − 1] +
X[k, l]ŷ∗

nJ [k, l]

|ŷnJ [k, l]|2
(13)

with the forgetting factor 0 < δ ≤ 1. nnd is the noise-plus-interference
at the input of the beamformer wnd. The new weight vector of the
beamformer can be calculated as

wnd[k, l] =
R

−1
nd [k, l]an[k, l]

aH
n [k, l]R−1

nd [k, l]an[k, l]
. (14)

By applying the matrix inversion lemma, we can also update the
inverse correlation matrix R

−1
nd [k, l] recursively.

6. EXPERIMENTAL EVALUATION

For the experimental evaluation, we used a sampling frequency of
fs = 8kHz, a STFT with frame length 512 and 75% overlap, and a
cross-array ( ) with M = 5 microphones. The microphone spacing
is d = 4 cm < c/fs, where c = 343 m/s is the propagation speed.
All sources had equal power and were placed 0.8 . . . 1.0 m from the
center of the array. The block size of the block-online algorithm was
P = 64 STFT frames (roughly 1 second). The online algorithm
used parameters λ = 10, β = 0.006, γ = 0.95, δ = 0.95. The aver-
age real-time factors (= CPU-time / signal length) of our MATLAB
implementations on a single core of an Intel Xeon E5440@2.83GHz
for N = 2, 4 are: 0.21, 0.42 (block-online algorithm) and 0.21, 0.40
(online algorithm).

6.1. Stationary Sources

In the case of stationary sources, we evaluated the separation algo-
rithms using samples from the TIMIT database [9]. They are played
by loudspeakers and recorded in a real office room with T60 =
520 ms. We consider source angular separations of 60◦, 36◦. The
average signal-to-noise ratio (SNR) of the microphone signals was
between 20 and 30 dB. Generally, the block-online and online sep-
aration algorithms will perform worse than the offline algorithm, if
we have a fixed number of stationary sources. Table 1 shows the
separation performance in terms of the signal-to-interference-ratio

(SIR) gains [4] for different number of sources N . SIR gains are
calculated globally over the complete observation time interval and
averaged over all sources. We see that the block-online algorithm
performs only slightly worse than the offline algorithm in most cases
as expected. The performance loss of the online algorithm is larger
since it needs some time to learn the correlation matrices for beam-
forming and the used sound files are only a few seconds long1.

ang. sep. algorithm N = 2 N = 3 N = 4 N = 5 N = 6

60◦
offline 14.82 15.69 15.55 15.36 14.27
block-online 14.02 14.85 15.35 15.58 15.92
online 12.41 13.22 13.43 13.46 13.80

36◦
offline 13.39 13.64 12.82 12.52 12.69
block-online 12.73 13.15 13.46 13.57 13.86
online 10.06 10.69 11.01 11.33 11.85

Table 1. Global SIR gain in dB for stationary sources

6.2. Moving Sources

In order to have a precise reference for moving source positions, we
performed simulations using the MATLAB ISM RoomSim toolbox
[10]. The considered room was of size 3m × 4m × 2.5 m and we
chose reverberation times of T60 = 100, 300 ms. SNR was 30 dB.

Fixed Number of Sources: We have N = 2 sources that move
along a circle with radius 1.0 m. Source 1 moves from θ1 = 30◦

to θ1 = 180◦ and back and source 2 moves from θ2 = 180◦ to
θ2 = 330◦ and back. The total simulation time is 24 s. We selected
one male and one female speaker from the CHAINS corpus [11]. In
order to have natural speech pauses, we used the short stories from
the CHAINS corpus as source signals.

Fig. 2 shows the estimated angles θ̂blk[l] using our block-online

algorithm and θ̂onl[l] using our online algorithm as well as the ref-
erence angles θtrue[l]. The online-algorithm was initialized with the
true angles θtrue[0], whereas the block-online algorithm does not need
an explicit initialization. As we see, both algorithms accurately track
the sources. During speech pauses, angle estimates are not updated.

The separation performance of the block-online, online and of-
fline algorithm is summarized in Table 2. As expected, the offline
algorithm fails to separate the source signals while our block-online
and gradient-based online algorithm achieve good results. The rea-
son for the failure of the offline algorithm is that it averages the
DOAs of the moving sources. As a consequence, the separation
performance drops significantly when the sources start moving as
shown in Fig. 3. It shows the local SIR gains which are calcu-
lated over non-overlapping segments of 1 second and averaged over
the two sources. Note that the simulations assumed omnidirectional

T60 algorithm source 1 source 2 average

100 ms
offline 1.67 3.19 2.43
block-online 24.19 21.72 22.96
online 30.26 26.01 28.14

300 ms
offline 3.95 3.96 3.96
block-online 8.59 7.91 8.25
online 11.58 10.58 11.08

Table 2. Global SIR gain in dB for moving sources

sources which results in a much lower direct-to-reverberant ratio
than in a real world scenario with directional sources. This is also
why the SIR gains for T60 = 300 ms in Table 2 are lower than those
for the real world scenario with T60 = 520 ms in Table 1.

1Increasing the number of sources N results in almost the same SIR

gains due to two competing effects: lower input SIR (due to more interfer-

ing sources) results in higher (possible) SIR gain, more interfering sources

results in more overlap in the TF domain and hence a perfomance reduction.
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Varying Number of Sources: Fig. 4 and Fig. 5 show the DOA
tracking perfomance and local SIR gains of the following scenario:
We have a total of N = 4 sources, two of them are active all the
time and two sources are only partially active. Source 3 is active in
the time interval [5 s, 24 s] whereas source 4 is active in [10 s, 20 s].
We again initialize the online algorithm with the true DOAs θtrue[0].
The block-online algorithm has an advantage over the online algo-
rithm since it is able to estimate the number of active sources within
a block. For source 4, the online algorithm performs worse than the
block-online algorithm since during the inactivity period of source
4, its DOA θ4 follows the DOA of source 1. As soon as source 4
becomes active, the online algorithm moves θ4 to the correct po-
sition. Global SIR gains are summarized in Table 3. Clearly, the
block-online algorithm performs the best on average and especially
for source 4.

source 1 source 2 source 3 source 4 average

offline 7.12 5.97 10.24 3.19 6.63
block-online 19.87 20.57 23.89 25.35 22.42
online 17.83 25.92 25.64 12.24 20.41

Table 3. Global SIR gain in dB for varying number of moving

sources, T60 = 100 ms

7. CONCLUSION

In this paper we have presented two blind source separation algo-
rithms based on TF sparseness that are able to deal with a time-
varying number of moving sources. Experimental results have shown
that both algorithms can accurately track and separate moving sources
in mildly reverberant environments in real-time. The performance
for stationary sources is almost the same as for the offline algorithm.
The block-online algorithm needs neither the number of sources nor
an initialization of DOAs. The online algorithm needs to know the
maximum number of sources and at least an initialization close to
the true DOAs. The block-online algorithm outperforms the online
one when the number of sources is time-varying.
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