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Abstract. Despite an increased interest in complex independent com-
ponent analysis (ICA) during the last two decades, a closed-form expres-
sion for the Cramér-Rao bound (CRB) of the complex ICA problem has
not yet been established. In this paper, we fill this gap for the noiseless
case and circular sources. The CRB depends on the distributions of the
sources only through two characteristic values which can be easily calcu-
lated. In addition, we study the CRB for the family of circular complex
generalized Gaussian distributions (GGD) in more detail and compare
it to simulation results using several ICA estimators.
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1 Introduction

Independent Component Analysis (ICA) is a relatively recent signal processing
method to extract unobservable source signals or independent components from
their observed linear mixtures. We assume a linear square noiseless mixing model

x = As (1)

where x ∈ CN are N linear combinations of the N source signals s ∈ CN . We
make the following assumptions:

A1. The mixing matrix A ∈ CN×N is deterministic and invertible.
A2. s = [s1, · · · , sN ]T ∈ CN are N independent random variables with zero

mean and unit variance (after scaling the rows of A suitably). The proba-
bility density functions (pdfs) pi(si) of si can be different. We assume the
sources to be circular, i.e. pi(si) = pi(sie

jα) ∀α ∈ R. Hence E[s2i ] = 0. Fur-
thermore, pi(si) is continuously differentiable with respect to si and s∗i in
the sense of Wirtinger derivatives [1] which will be introduced in Sect. 2.
The expectations in (15) and (20) exist.

The task of ICA is to demix the signals x by a demixing matrix W ∈ CN×N

y = Wx = WAs (2)
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such that y is ”as close to s” as possible according to some metric. The ideal
solution for W is A−1 neglecting scaling, phase and permutation ambiguity [2].

It is very useful, to have a lower bound for the variance of estimation of W.
The Cramér-Rao bound (CRB) provides a lower bound on the covariance matrix
of any unbiased estimator of a parameter vector. Although much research in the
field of ICA has been undertaken, a closed-form expression for the CRB of the
real instantaneous ICA problem has been derived only recently [3, 4]. However,
in many practical applications, such as telecommunication or audio processing in
frequency domain, the signals are complex. Although many different algorithms
for complex ICA have been proposed [5–9], the CRB for this problem has not yet
been established. In this paper, we fill this gap by deriving closed-form expres-
sions for the CRB of the vectorized parameter θ = vec(WT ) and for the CRB
of ϑ = vec((WA)T ). Due to the intrinsic phase ambiguity in circular complex
ICA (cf. A2.: pi(si) = pi(sie

jα) ∀α ∈ R), we can only derive a CRB with the
constraint [WA]ii ∈ R. The CRB depends on the distributions of the sources
only through two scalars defined in (15) which can be easily calculated.

2 Prerequisites

2.1 Complex Functions and Complex Random Vectors

Define the partial derivative of a complex function g(θ) = u(α,β) + jv(α,β)
with respect to α = ℜ[θ] as ∂g/∂α = ∂u/∂α + j∂v/∂α and with respect to
β = ℑ[θ] as ∂g/∂β = ∂u/∂β + j∂v/∂β. Then the complex partial differential
operators ∂/∂θ and ∂/∂θ∗ are defined as

∂g

∂θ
=

1

2

(

∂g

∂α
− j

∂g

∂β

)

,
∂g

∂θ∗ =
1

2

(

∂g

∂α
+ j

∂g

∂β

)

. (3)

These differential operators have first been introduced for real valued g by
Wirtinger [1]. As long as the real and imaginary part of a complex function
g are real-differentiable, the two Wirtinger derivatives in (3) also exist [10]. The
direction of steepest descent of a real function g(θ) = u(α,β) is given by ∂g

∂θ∗ and

not ∂g
∂θ [11]. The complex Jacobian matrix of a complex function g: CM → CN

is defined as the complex 2N × 2M matrix

Dg =

[

∂g
∂θ

∂g
∂θ∗

(

∂g
∂θ∗

)∗ (
∂g
∂θ

)∗

]

, (4)

i.e. it is the augmented matrix of ∂g/∂θ and ∂g/∂θ∗. The covariance matrix of a
complex random vector x = xR+jxI ∈ CN is cov(x) =E

[

(x−E[x])(x−E[x])H
]

.

The pseudo-covariance matrix of x is pcov(x) =E
[

(x−E[x])(x−E[x])T
]

.

2.2 Cramér-Rao Bound for a Complex Parameter

We briefly review the CRB for complex parameters (see for example [12]) before
we derive the CRB for circular complex ICA. Assume that L observations of
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x are i.i.d. distributed having the pdf p(x; θ) with parameter vector θ. The
complex Fisher Information Matrix (FIM) of complex parameter θ is defined as

Jθ =

[

Iθ Pθ

P∗
θ I∗

θ

]

, (5)

where Iθ = E
[

∇θ∗ log p(x; θ){∇θ∗ log p(x; θ)}H
]

is called the information ma-

trix and Pθ = E
[

∇θ∗ log p(x; θ){∇θ∗ log p(x; θ)}T
]

the pseudo-information ma-
trix. Here ∇θ∗ log p(x; θ) = 1

2 (∇α log p(x; θ) + j∇β log p(x; θ)) is the column
gradient vector of log p(x; θ), i.e. [∂/∂θ∗1, · · · , ∂/∂θ∗N ]T log p(x; θ).

The inverse of the FIM of θ gives, under regularity conditions, the CRB of
the augmented covariance matrix of an unbiased estimator θ̂ of θ and hence

[

cov(θ̂) pcov(θ̂)

pcov(θ̂)∗ cov(θ̂)∗

]

≥ L−1J−1
θ =

1

L

[

Iθ Pθ

P∗
θ I∗

θ

]−1

. (6)

It holds cov(θ̂) ≥ L−1(Iθ −PθI−∗
θ P∗

θ)
−1 = L−1R−1

θ with Rθ = Iθ −PθI−∗
θ P∗

θ .
The CRB for a transformed vector ϑ = g(θ) is given by the right-hand-side of

[

cov(ϑ̂) pcov(ϑ̂)

pcov(ϑ̂)∗ cov(ϑ̂)∗

]

≥ L−1DgJ
−1
θ DT

g . (7)

3 Derivation of Cramér-Rao Bound

In ICA, the parameter of interest is the demixing matrix W. We form the
parameter vector θ = vec(WT ) = [wT

1 , · · · ,wT
N ]T ∈ CN2

, where wT
i ∈ CN

are the row vectors of W. The operator vec(·) stacks the columns of its argu-
ment into one long column vector. The pdf of x = As is defined as p(x; θ) =

|det(W)|2∏N
i=1 pi(wix), where pi(si) denotes the pdf of si and W = A−1. By

using matrix derivatives, we obtain

∂

∂WH
log p(x; θ) = A∗ − x∗ϕT (Wx) = A∗(I− sϕH(s))∗ (8)

where ϕ(s) = [ϕ1(s1), · · · , ϕN (sN )]T and ϕi(si) = − ∂
∂s∗

i

log pi(si).

Since θ = vec(WT ), we get ∇θ∗ log p(x; θ) = vec
(

∂
∂WH log p(x; θ)

)

and

Iθ =
(

(I⊗A)M1(I⊗AH)
)∗

, Pθ =
(

(I⊗A)M2(I⊗AT )
)∗

, (9)

where M1 =E
[

vec{I− sϕH(s)}vec{I− sϕH(s)}H
]

, M2 =E
[

vec{...}vec{...}T
]

and ⊗ denotes the Kronecker product.

3.1 CRB for G = WA

For simplicity, we first derive the CRB for the transformed parameter ϑ =
vec((WA)T ) = (I ⊗ AT )θ. The covariance of ϑ̂ = vec((ŴA)T ) is given by

cov(ϑ̂) = (I⊗AT )cov(θ̂)(I⊗A∗) where θ̂ = vec(ŴT ). Hence it holds

cov(ϑ̂) ≥ L−1(I⊗AT )(Iθ − PθI−∗
θ P∗

θ)
−1(I⊗A∗) = L−1R−1

ϑ (10)

with Rϑ = (M1 −M2M
−∗
1 M∗

2)
∗.
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As shown in the appendix, Rϑ =
∑N

i=1

∑N
j=1

j 6=i

(

κiκj−1
κj

)

Lii ⊗ Ljj , with κi =

E
[

|ϕi(si)|2
]

. Lii denotes an N ×N matrix with a 1 at the (i, i) position and 0’s
elsewhere. Rϑ is a diagonal matrix of rank N2 −N . The CRB for Gij yields

var(Ĝij) ≥
1

L

κj

κiκj − 1
i 6= j (11)

where Ĝ = ŴA. Eq. (11) looks the same as in the real case [3, 4], but in the
complex case κi is defined using Wirtinger derivatives instead of real derivatives.

Due to the phase ambiguity in circular complex ICA, the Fisher information
for the diagonal elements Gii is 0 and hence their CRB does not exist. However,
we can constrain Gii to be real and derive the constrained CRB [13] for θ = Gii:
The constraint can be formulated as f(θ) = θ−θ∗ = 0. We then need to calculate

F(θ) =

[

∂f/∂θ ∂f/∂θ∗

∂f∗/∂θ ∂f∗/∂θ∗

]

=

[

1 −1
−1 1

]

and find an orthonormal 2× 1 matrix U

in the null-space of F(θ), i.e. FU = 0. We choose U = 1/
√
2
[

1 1
]T

. The CRB
for the constrained parameter θ = Gii then yields
[

var(θ) pvar(θ)
pvar∗(θ) var(θ)

]

≥ 1

L
U

(

UH

[

Iθ Pθ

P∗
θ Iθ

]

U

)−1

UH =
1

4L(ηi − 1)

[

1 1
1 1

]

(12)

where Iθ = ηi − 1 = Pθ and ηi = E
[

|si|2|ϕi(si)|2
]

. The CRB in (12) is valid for
a phase-corrected Gii such that Gii ∈ R. Eq. (12) matches the real case [3, 4],
where var(Ĝij) ≥ L−1(η̄i − 1)−1 since ηi is defined using Wirtinger derivatives
instead of real derivatives and hence for the real case 4(ηi − 1) = η̄i − 1.

Performance of ICA is often measured using Ĝ and hence it can be directly
compared to (11), (12). The absolute values of the diagonal elements |Ĝii| should
be close to 1. They reflect how well we can estimate the power of each component.
The absolute values of the off-diagonal elements |Ĝij | should be close to 0 and
reflect how well we can suppress interfering components.

3.2 CRB for W

It holds vec(WT ) = θ = (I ⊗ AT )−1ϑ = (I ⊗ WT )ϑ since W = A−1. We
can estimate the rows of W only up to an arbitrary phase for each row. We
can derive a CRB for the phase-constrained W, for which [WA]ii ∈ R: We
use the CRB for the constrained Gii (12) together with the CRB for Gij (11)

to form the inverse FIM for the constrained G as R−1
ϑ =

∑N
i=1

1
4(ηi−1)Lii +

∑N
i=1

∑N
j=1

j 6=i

(

κiκj−1
κj

)

Lii ⊗ Ljj . The CRB for constrained W is then given by

R−1
θ = (I⊗WT )R−1

ϑ (I⊗W∗) and cov(θ̂) ≥ L−1R−1
θ .

4 Results for Generalized Gaussian Distribution (GGD)

A circular complex GGD with zero mean and variance E[|s|2] = 1 is given by
the pdf p(s, s∗) = cα

πΓ (1/c)exp (− [αss∗]
c
) [14], with α = (Γ (2/c))/(Γ (1/c)). Γ (·)
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(a) Varying shape parameter c, L = 1000
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(b) Varying sample size L, c = 0.5

Fig. 1: Comparison of performance of three ICA estimators with CRB

denotes the Gamma function. The shape parameter c > 0 varies the form of the
pdf from super-Gaussian (c < 1) to sub-Gaussian (c > 1). For c = 1, the pdf is
Gaussian. By integration in polar coordinates, we find κ, η and β in (15) and

(20) as κ = c2Γ (2/c)
Γ 2(1/c) , η = β = c+1. For the simulation study, we consider N = 3

identically distributed sources with random mixing matricesA with independent
uniform distributions for the real and imaginary parts of each entry (between -1
and 1). We conduct 100 experiments with different A and different realizations of
the source signals and consider the following different ICA estimators: Complex
ML-ICA [7], adaptable complex maximization of nongaussianity (ACMN) [9]
and complex ICA by entropy bound minimization (ICA-EBM) [8]. We correct
for permutation ambiguity and then calculate the signal-to-interference ratio

(SIR) averaged over all N sources: SIR = 1
N

∑

i

(

E
[

|Gii|2
]

/
∑

j 6=i E
[

|Gij |2
]

)

.

Fig. 1 (a) compares the SIR given by the CRB with the empirical SIR of the
different ICA estimators for varying shape parameter c and a sample size of
L = 1000. Since all sources are identically distributed, CRB(Gij) → ∞ and
SIR → 0 for c → 1 (Gaussian). In this case, ICA fails to separate the sources.
Clearly, the performance of complex ML-ICA is close to the CRB for a wide range
of the shape parameter c. ACMN outperforms ICA-EBM in most cases except for
strongly super-Gaussian sources: ACMN uses a GGD model and hence is better
suited for separating circular GGD sources. However, ACMN uses prewhitening
and then constrains the demixing matrix to be unitary which ICA-EBM does
not. Fig. 1 (b) studies the influence of sample size L on ICA performance for
c = 0.5. Again, complex ML-ICA performs the best as expected. Except for
small sample sizes, all algorithms come quite close to the CRB.

5 Conclusion

In this paper, we have derived the CRB for the noiseless ICA problem with cir-
cular complex sources. Due to the phase ambiguity in circular complex ICA, the
CRB for the diagonal elements of the demixing-mixing-matrix-productG = WA
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does not exist, but a constrained CRB with Gii ∈ R can be derived. Simulation
results with sources following a circular complex generalized Gaussian distribu-
tion have shown that for large enough sample size some ICA estimators can
achieve a signal-to-interference ratio close to that given by the CRB.

A Useful Matrix Algebra

Similarly to [4], we make use of some matrix algebra in the derivation of the
CRB. We briefly review the required properties here: Let Lij denote a N × N
matrix with a 1 at the (i, j) position and 0’s elsewhere. It is useful to note that

ALijA
T = aia

T
j , LijLkl = 0 for j 6= k, LijLjl = Lil (13)

where ⊗ denotes the Kronecker product. We also note that any N2 ×N2 block
matrix A can be written using its N × N diagonal blocks A[i, i] and N × N
off-diagonal blocks A[i, j], i 6= j as follows:

A =

N
∑

i=1

Lii ⊗A[i, i] +

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗A[i, j]. (14)

B Some Steps in the Derivation of the CRB for G

The derivation of the CRB for G, proceeds in three steps: First, we calculate
M1 and M2. Then, we obtain Rϑ = (M1−M2M

−∗
1 M∗

2)
∗ and finally invert Rϑ.

Using E[sϕH(s)] = I, we can simplify M1 as

M1 = E
[

vec{I− sϕH(s)}vec{I− sϕH(s)}H
]

= Ω1 − vec{I}vec{I}H ,

where Ω1 = E
[

vec{sϕH(s)}vec{sϕH(s)}H
]

is a N2 × N2 block matrix. The

(i, i) block Ω1[i, i] = E
[

ssH |ϕi(si)|2
]

is diagonal since the components of s are
independent and zero mean. The diagonal elements Ω1[i, i](j,j) are given by

Ω1[i, i](j,j) =

{

E
[

|si|2|ϕi(si)|2
]

=: ηi i = j

E
[

|sj |2|ϕi(si)|2
]

= E
[

|ϕi(si)|2
]

=: κi i 6= j
. (15)

κi and ηi are real since E[g(s)] with g(s) ∈ R is real. The (i, j) block Ω1[i, j] (i 6=
j) can be calculated as Ω1[i, j] = E

[

ssHϕ∗
i (si)ϕj(sj)

]

. It has 1 at entry (i, j)
and 0 at entry (j, i), since

Ω1[i, j](i,j) = E
[

sis
∗
jϕ

∗
i (si)ϕj(sj)

]

= E [siϕ
∗
i (si)]E

[

s∗jϕj(sj)
]

= 1, (16)

Ω1[i, j](j,i) = E [s∗i sjϕ
∗
i (si)ϕj(sj)] = E [s∗iϕ

∗
i (si)]E [sjϕj(sj)] = 0. (17)

All other entries of Ω1[i, j] are zero since the components of s are independent
and zero mean. Using the matrix algebra from appendix A, we can write Ω1 as

Ω1 =

N
∑

i=1

ηiLii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

κiLii ⊗ Ljj +

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lij . (18)
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Using vec{I}vec{I}H =
∑N

i=1

∑N
j=1

j 6=i
Lij ⊗ Lij +

∑N
i=1 Lii ⊗ Lii, we get M1 as

M1 =

N
∑

i=1

(ηi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

κiLii ⊗ Ljj . (19)

We note that M1 is a real diagonal matrix.
M2 can be calculated similarly. It holds:

M2 = E
[

vec{I− sϕH(s)}vec{I− sϕH(s)}T
]

= Ω2 − vec{I}vec{I}T ,

where Ω2 = E
[

vec{sϕH(s)}vec{sϕH(s)}T
]

is a N2 × N2 block matrix. The

(i, i) block Ω2[i, i] = E
[

ssT (ϕ∗
i (si))

2
]

is diagonal since the components of s are
independent and zero mean. The diagonal elements Ω2[i, i](j,j) are given by

Ω2[i, i](j,j) =

{

E
[

s2i (ϕ
∗
i (si))

2
]

=: βi i = j

E
[

s2j (ϕ
∗
i (si)|2

]

= E
[

s2j
]

E
[

(ϕ∗
i (si))

2
]

= 0 i 6= j,
. (20)

since E
[

s2j
]

= 0. If si is circular, it can be shown that βi = ηi: For circular
s = sR + jsI , p(−sR, sI) = p(sR, sI), p(sR,−sI) = p(sR, sI) and p(sR, sI) =
g(s2R + s2I). Let f(r

2) = f(s2R + s2I) = log p(sR, sI). It holds

η =
1

4
E

[

(

s2R + s2I
)

(

(

∂f

∂sR

)2

+

(

∂f

∂sI

)2
)]

,

β =
1

4
E

[

(

s2R − s2I
)

(

(

∂f

∂sR

)2

−
(

∂f

∂sI

)2
)

+ 4sRsI

(

∂f

∂sR

)(

∂f

∂sI

)

]

,

4(η − β) = 2E

[

s2R

(

∂f

∂sI

)2

+ s2I

(

∂f

∂sR

)2

− 2sRsI

(

∂f

∂sR

)(

∂f

∂sI

)

]

= 0,

where we used E

[

sRsI

(

(

∂f
∂sR

)2

−
(

∂f
∂sI

)2
)]

=0 and E
[

(

s2R − s2I
)

(

∂f
∂sR

)(

∂f
∂sI

)]

=0

in the third line and ∂f
∂sR

= 2sR
∂f(r2)
∂r2 and ∂f

∂sI
= 2sI

∂f(r2)
∂r2 in the last line.

The (i, j) blockΩ2[i, j] (i 6= j) can be calculated asΩ2[i, j]=E
[

ssTϕ∗
i (si)ϕ

∗
j (sj)

]

.
It has 1 at entry (i, j) and (j, i), since

Ω2[i, j](i,j) = Ω2[i, j](j,i) = E [siϕ
∗
i (si)]E

[

sjϕ
∗
j (sj)

]

= 1. (21)

All other entries of Ω2[i, j] are zero since the components of s are independent
and zero mean. Hence, we can calculate M2 = Ω2 − vec{I}vec{I}T as

M2 =

N
∑

i=1

(βi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

(Lij ⊗ Lji). (22)

We note that M2 is a real diagonal matrix.
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Since M1 and M2 are real matrices, it holds Rϑ = (M1 −M2M
−∗
1 M∗

2)
∗ =

M1 −M2M
−1
1 M2. After some calculations, we get

Rϑ =

N
∑

i=1

(ηi − 1)2 − (βi − 1)2

ηi − 1
Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

(

κiκj − 1

κj

)

Lii ⊗ Ljj (23)

which simplifies to Rϑ =
∑N

i=1

∑N
j=1

j 6=i

(

κiκj−1
κj

)

Lii ⊗ Ljj due to βi = ηi.

References

1. W. Wirtinger, “Zur formalen Theorie der Funktionen von mehr komplexen
Veränderlichen,” Mathematische Annalen, vol. 97, no. 1, pp. 357–375, 1927.

2. J. Eriksson and V. Koivunen, “Complex random vectors and ica models: identifia-
bility, uniqueness, and separability,” Information Theory, IEEE Transactions on,
vol. 52, no. 3, pp. 1017 –1029, March 2006.

3. P. Tichavsky, Z. Koldovsky, and E. Oja, “Performance analysis of the FastICA
algorithm and Cramér-Rao bounds for linear independent component analysis,”
IEEE Trans. on Sig. Proc., vol. 54, no. 4, 2006.

4. E. Ollila, H.-J. Kim, and V. Koivunen, “Compact Cramér-Rao bound expression
for independent component analysis,” IEEE Trans. on Sig. Proc., vol. 56, no. 4,
2008.

5. L. De Lathauwer and B. De Moor, “On the blind separation of non-circular
sources,” in EUSIPCO-02, Toulouse, France, sept. 2002.

6. Scott C. Douglas, “Fixed-point algorithms for the blind separation of arbitrary
complex-valued non-gaussian signal mixtures,” EURASIP J. Appl. Signal Process.,
vol. 2007, no. 1, January 2007.

7. H. Li and T. Adali, “Algorithms for complex ML ICA and their stability analysis
using Wirtinger calculus,” IEEE Trans. on Sig. Proc., vol. 58, no. 12, pp. 6156–
6167, Dec. 2010.

8. Xi-Lin Li and T. Adali and, “Complex independent component analysis by entropy
bound minimization,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 57, no. 7, pp. 1417 –1430, july 2010.

9. M. Novey and T. Adali, “Adaptable nonlinearity for complex maximization of
nongaussianity and a fixed-point algorithm,” Proc. IEEE Workshop on Machine
Learning for Signal Processing, Sept. 2006.

10. R. Remmert, Theory of complex functions, Graduate texts in mathematics.
Springer-Verlag, 1991.

11. D. H. Brandwood, “A complex gradient operator and its application in adaptive
array theory,” IEE Proc., vol. 130, pp. 11–16, 1983.

12. E. Ollila, V. Koivunen, and J. Eriksson, “On the Cramér-Rao bound for the
constrained and unconstrained complex parameters,” Proc. IEEE Sensor Array
and Multichannel Signal Processing Workshop (SAM), 2008.

13. A.K. Jagannatham and B.D. Rao, “Cramér-Rao lower bound for constrained com-
plex parameters,” IEEE Sig. Proc. Letters, vol. 11, no. 11, nov. 2004.

14. M. Novey, T. Adali, and A. Roy, “A complex generalized gaussian distribution –
characterization, generation, and estimation,” IEEE Trans. on Sig. Proc., vol. 58,
no. 3, pp. 1427 –1433, March 2010.


