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Cramér-Rao Bound for Circular and Noncircular

Complex Independent Component Analysis
Benedikt Loesch∗, Student Member, IEEE, and Bin Yang, Senior Member, IEEE,

Abstract—Despite an increased interest in complex indepen-
dent component analysis (ICA) during the last two decades, a
closed form expression for the Cramér-Rao bound (CRB) for the
demixing matrix is not known yet. In this paper, we fill this gap
by deriving a closed-form expression for the CRB of the demixing
matrix for instantaneous noncircular complex ICA. It contains
the CRB for circular complex ICA and noncircular complex
Gaussian ICA as two special cases. We also study the CRB
numerically for the family of noncircular complex generalized
Gaussian distributions and compare it to simulation results of
two ICA estimators. Furthermore, we show how to extend the
CRB to the case where the source signals are not temporally
independent and identically distributed.

Index Terms—Independent component analysis, Cramér-Rao
bound, noncircular complex, generalized Gaussian distribution

I. INTRODUCTION

Independent Component Analysis (ICA) is a signal pro-

cessing method (see [1]–[3]) to extract unobservable source

signals or independent components from their observable

linear mixtures. We assume an instantaneous complex linear

square noiseless mixing model

x = As (1)

where x ∈ C
N are N linear combinations of the N source

signals s ∈ CN . We make the following assumptions:

A1) The mixing matrix A ∈ CN×N is deterministic and

invertible.

A2) s = [s1, · · · , sN ]T ∈ CN are N independent random

variables with zero mean, unit variance E
[

|si|
2
]

= 1
and second-order noncircularity index γi = E[s2i ] ∈
[0, 1] (after scaling the columns of A suitably). Since

γi ∈ R, the real and imaginary part of si are uncor-

related. γi 6= 0 if and only if the variances of the

real and imaginary part of si differ. The probability

density functions (pdfs) pi(si) of different source signals

si can be identical or different. pi(si) is continuously

differentiable with respect to si and s∗i in the sense of

Wirtinger derivatives [4] which will be shortly reviewed

in Sec. II. All required expectations exist.

The task of ICA is to demix the signals x by a linear demixing

matrix W ∈ CN×N

y = Wx = WAs (2)
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such that y is ”as close to s” as possible according to some

metric. General conditions regarding identifiability, uniqueness

and separability can be found in [5]. The ideal solution for W

is A−1, neglecting scaling, phase and permutation ambiguity

[5]. If we know the pdfs pi(si) perfectly, there is no scaling

ambiguity. Due to the “working” assumption γi ∈ [0, 1] (see

A2), there is no phase ambiguity for noncircular sources

(γi > 0). A phase ambiguity occurs only for circular sources

(γi = 0). Noncircular sources which do not comply with the

assumption γi ∈ [0, 1] would be reconstructed subject to a

phase shift such that γi ∈ [0, 1]. [6]–[8] provide a neural

network view for the theory of complex ICA and illustrate

a number of applications. While [6]–[8] and many other

publications focus on circular complex signals (as traditionally

assumed in signal processing), [9] provides a good overview

of applications with noncircular complex signals and discusses

how to properly deal with noncircularity.

In general, a complex source signal s can be described by

the following statistical properties:

• non-Gaussianity

• noncircularity

• nonwhiteness, i.e. s(t1) and s(t2) are dependent for some

different time instants t1 6= t2
• nonstationarity, i.e. the statistical properties of s(t)

change over time

In this paper, we will mainly focus on noncircular complex

source signals with independent and identically distributed

(iid) time samples. However, we also show how to extend

our results to temporally non-iid sources, i.e. to incorporate

nonstationarity and nonwhiteness of the sources.

Two temporally iid sources can be separated by ICA

• if at least one of the two sources is non-Gaussian or

• if both sources are Gaussian but differ in noncircularity

[5].

For the performance analysis of ICA algorithms, it is useful

to have a lower bound for the covariance matrix of estimators

for the demixing matrix W. The Cramér-Rao bound (CRB)

is a lower bound on the covariance matrix of any unbiased

estimator of a parameter vector. A closed-form expression for

the CRB of the demixing matrix for real instantaneous ICA

has been derived recently in [10], [11]. However, in many

practical applications such as audio processing in frequency

domain or telecommunication, the signals are complex and

hence we need a complex ICA algorithm. Although many

different algorithms for complex ICA have been proposed

[7], [12]–[20], the CRB for the complex demixing matrix has

not been derived yet. [21] provides a performance analysis
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for the Strong Uncorrelating Transform (SUT) in terms of

the interference-to-signal ratio matrix. However, since the

SUT uses only second-order statistics, the results from [21]

do not apply for ICA algorithms exploiting also the non-

Gaussianity of the sources. As discussed in [22] and [9], many

ICA approaches exploiting non-Gaussianity of the sources are

intimately related and can be studied under the umbrella of

a maximum likelihood framework. In [23], we derived the

CRB for the non-Gaussian circular complex case. In this paper,

we extend the derivation to the noncircular complex case and

provide a more thorough performance study.

The paper is organized as follows: In Sec. II we briefly

review complex random vectors, complex gradient and the

CRB for a complex parameter vector. In Sec. III we derive the

CRB for the complex demixing matrix W = A−1 and Sec. IV

discusses the circular complex case and noncircular complex

Gaussian case as two special cases of the CRB derived

in Sec. III. Sec. V considers again the general noncircular

complex case and shows numerical results for the CRB as well

as simulation results of two ICA algorithms to verify the CRB.

Sec. VI shows how to extend our results to temporally non-iid

sources. Finally, concluding remarks are given in Sect. VII.

II. COMPLEX NOTATIONS

A. Complex random vector

Let x = xR + jxI ∈ CN be a complex random vector with

a corresponding probability density function (pdf) defined as

the pdf p̃(xR,xI) of the real part xR and imaginary part xI of

x. Since xR = x+x
∗

2 and xI = x−x
∗

2j , we can rewrite the pdf

p̃(xR,xI) as a function of x and x∗, i.e. p̃(xR,xI) = p(x,x∗).
In the following, we will use p(x) as a short notation for

p(x,x∗). The covariance matrix of x is

cov(x) = E
[

(x− E[x])(x − E[x])H
]

. (3)

The pseudo-covariance matrix of x is

pcov(x) = E
[

(x− E[x])(x − E[x])T
]

. (4)

The augmented covariance matrix of x is the covariance matrix

of the augmented vector x =
[

xT xH
]T

:

cov(x) =

[

cov(x) pcov(x)
pcov(x)∗ cov(x)∗

]

. (5)

x is called circular if p(xejα) = p(x) ∀α ∈ R. Otherwise

it is called noncircular. Actually, for a random variable s, the

circularity definition p(sejα) = p(s) ∀α ∈ R is much stronger

than the second-order circularity given by γ = E
[

s2
]

= 0.

Indeed there exist noncircular complex random variables with

γ = 0. For simplicity, however, we use the second-order

noncircularity index γ = E
[

s2
]

to quantify noncircularity in

the remainder of the paper.

B. Complex gradient

Let a complex column parameter vector θ = θR + jθI ∈
CM , its real and imaginary part θR, θI ∈ RM , and a real

scalar cost function f(θ, θ∗) = f̃(θR, θI) ∈ R be given.

For ease of notation, we will also use the simplified notation

f(θ) instead of f(θ, θ∗). Instead of calculating the derivatives

of f̃(·) with respect to θR and θI , the Wirtinger calculus

computes the partial derivatives of f(θ, θ∗) with respect to θ

and θ∗, treating θ and θ∗ as two independent variables [24],

[25]. The partial derivatives of f(·) with respect to θ and θ∗

and the complex gradient vectors ∇θf and ∇θ∗f are

∇θf =
∂f

∂θ
=

1

2

(

∂f̃

∂θR
− j

∂f̃

∂θI

)

∈ C
M ,

∇θ∗f =
∂f

∂θ∗
=

1

2

(

∂f̃

∂θR
+ j

∂f̃

∂θI

)

∈ C
M . (6)

The stationary point of f(·) and f̃(·) is given by ∂f̃
∂θR

= 0

and ∂f̃
∂θI

= 0 or ∂f
∂θ = 0 or ∂f

∂θ∗ = 0. The direction of steepest

descent of a real function f(θ, θ∗) is given by − ∂f
∂θ∗ and not

−∂f
∂θ [26]. Note that − ∂f

∂θ∗ is the direction of steepest descent

for θ and not for θ∗.

As long as the real and imaginary part of a complex function

g(θ, θ∗) = gR(θR, θI) + jgI(θR, θI) are differentiable, the

Wirtinger derivatives ∂g
∂θ = ∂gR

∂θ +j ∂gI
∂θ and ∂g

∂θ∗ = ∂gR
∂θ∗ +j ∂gI

∂θ∗

also exist [27].

C. Cramér-Rao bound for a complex parameter vector

Assume that L complex observations of x are iid with the

pdf p(x; θ) where θ is an N -dimensional complex param-

eter vector. In principle, it would be possible to derive the

CRB for complex parameter θ = θR + jθI by considering

the real CRB of the 2N -dimensional real composite vector

θ̄ =
[

θTR θTI
]T

:

cov(θ̄) =

[

cov(θR) cov(θR, θI)
cov(θI , θR) cov(θI)

]

≥ L−1J−1
θ̄

, (7)

where cov(x,y) = E
[

(x − E[x])(y − E[y])T
]

is the covari-

ance of x and y, J
θ̄
=E

[

{

∇
θ̄
ln p(x; θ̄)

} {

∇
θ̄
ln p(x; θ̄)

}T
]

is the real Fisher Information matrix (FIM) and ∇
θ̄
ln p(x; θ̄)

is the real gradient vector of ln p(x; θ̄).
However, it is often more convenient to directly work with

the complex CRB introduced in this section: The complex FIM

of θ is defined as

Jθ =

[

Iθ Pθ

P∗
θ

I∗
θ

]

, (8)

where Iθ = E
[

{∇θ∗ ln p(x; θ)} {∇θ∗ ln p(x; θ)}
H
]

and

Pθ = E
[

{∇θ∗ ln p(x; θ)} {∇θ∗ ln p(x; θ)}T
]

are called the

information matrix and pseudo-information matrix.

The inverse of the FIM of θ gives, under some regularity

conditions, a lower bound for the augmented covariance matrix

of an unbiased estimator θ̂ of θ [25], [28]
[

cov(θ̂) pcov(θ̂)

pcov(θ̂)∗ cov(θ̂)∗

]

≥ (LJθ)
−1=L−1

[

Iθ Pθ

P∗
θ

I∗
θ

]−1

. (9)

Note that the complex CRB (9) can be transformed to the

corresponding real CRB (7) by using the transform J−1
θ̄

=

1
2TJ −1

θ
T−1 [28], where T = 1

2

[

I I

−jI jI

]

is a 2N × 2N

matrix and I is the N ×N identity matrix.
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By using the block matrix inversion lemma [29], we get

from (9)
[

cov(θ̂) pcov(θ̂)

pcov(θ̂)∗ cov(θ̂)∗

]

≥ L−1

[

R−1
θ

−R−1
θ

Qθ

−QH
θ
R−1

θ
R−∗

θ

]

(10)

with Rθ = Iθ−PθI
−∗
θ

P∗
θ

and Qθ = PθI
−∗
θ

. A−∗ is a short

notation for
(

A−1
)∗

= (A∗)−1
. Often we are interested in

the bound for cov(θ̂) only, which can be obtained from (10)

as

cov(θ̂) ≥ L−1R−1
θ

= L−1(Iθ − PθI
−∗
θ

P∗
θ
)−1. (11)

Note that (11) gives a bound solely on the covariance matrix of

an unbiased estimator. If an estimator reaches that bound, i.e.

cov(θ̂) = L−1R−1
θ

, it does not imply that it also reaches the

general CRB defined in (9). Only if the pseudo-information

matrix Pθ vanishes, cov(θ̂) = L−1R−1
θ

implies that θ̂ reaches

the CRB (9).

Sometimes, we are interested in introducing constraints on

some or all of the complex parameters. The constrained CRB

can be derived by following the steps in [28] or [30]. If the

unconstrained Fisher information matrix is singular, we have to

use the constrained CRB from [30] which is briefly reviewed

in Appendix D.

III. DERIVATION OF CRAMÉR-RAO BOUND

We form the parameter vector

θ = vec(WT ) = [wT
1 , · · · ,w

T
N ]T ∈ C

N2

(12)

where wT
i denotes the i-th row vector of W. The vec(·)

operator stacks the columns of its argument into one long

column vector. Given the pdfs pi(si) of the complex source

signals si and the complex linear transform x = As, it is easy

to derive the pdf of x as p(x; θ) = | det(W)|2
∏N

i=1 pi(w
T
i x).

Here, in the derivation of the CRB, W is a short notation

for A−1 and not the demixing matrix which would contain

permutation, scaling and phase ambiguity. By using matrix

derivatives [22], [24], [31], we obtain

∂

∂WH
ln p(x; θ) = A∗ − x∗ϕT (Wx) = A∗(I− sϕH(s))∗

(13)

where ϕ(s) = [ϕ1(s1), · · · , ϕN (sN )]T and ϕi(si) is defined

as

ϕi(si) = −
∂

∂s∗i
ln pi(si) = −

1

2

1

pi(si)

[

∂pi(si)

∂si,R
+ j

∂pi(si)

∂si,I

]

.

(14)

Since θ = vec(WT ), we get ∇θ∗ ln p(x; θ) =
vec
(

∂
∂WH ln p(x; θ)

)

=
[

(I⊗A) vec
(

I− sϕ(s)H
)]∗

, where

A⊗B = [aijB] denotes the Kronecker product of A and B.

Hence, the information and pseudo-information matrix in (8)

become

Iθ =
(

(I⊗A) E
[

vec{I− sϕH(s)} vec{I− sϕH(s)}H
]

·(I⊗AH)
)∗

=
(

(I⊗A)M1(I⊗AH)
)∗

, (15)

Pθ =
(

(I⊗A) E
[

vec{I− sϕH(s)} vec{I− sϕH(s)}T
]

·(I⊗AT )
)∗

=
(

(I⊗A)M2(I⊗AT )
)∗

, (16)

where

M1 = E
[

vec{I− sϕH(s)} vec{I− sϕH(s)}H
]

and M2 = E
[

vec{I− sϕH(s)} vec{I− sϕH(s)}T
]

. (17)

A. Induced CRB for the gain matrix G = WA

Since the so-called gain matrix G = WA is a linear

function of W, the CRB for W “induces“ a bound for G.

For simplicity, we first derive this induced CRB (iCRB) for

G = WA = A−1A = I which is independent of the mixing

matrix A. Later we will obtain the CRB for W from the iCRB

for G1. When Ĝ = ŴA denotes the estimated gain matrix,

the diagonal elements Ĝii should be close to 1. They reflect

how well we can estimate the power of each source signal. The

off-diagonal elements Ĝij should be close to 0 and reflect how

well we can suppress interfering components. We define the

corresponding stacked parameter vector

ϑ = vec(GT ) = vec(ATWT ) = (I⊗AT ) vec(WT )

= (I⊗AT )θ. (18)

The covariance matrix of ϑ̂ = vec((ŴA)T ) is given by

cov(ϑ̂) = (I⊗AT ) cov(θ̂)(I⊗A∗) where θ̂ = vec(ŴT ). By

combining (11) with (15) and (16), we get

cov(ϑ̂) ≥ L−1(I⊗AT )(Iθ − PθI
−∗
θ

P∗
θ)

−1(I⊗A∗)

= L−1R−1
ϑ

(19)

with

Rϑ = (M1 −M2M
−∗
1 M∗

2)
∗. (20)

As shown in Appendix C, Rϑ can be calculated as

Rϑ =

N
∑

i=1

diLii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

aijLii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

bijLij ⊗ Lji (21)

where di =
(ηi−1)2−|βi−1|2

ηi−1 ∈ R, aij = κi−
|γjξi|2

κi
− 1

κj
∈ R

and bij = −
(

γ∗

j ξ
∗

i

κi
+

γiξj
κj

)

= b∗ji ∈ C. Lij in (21) denotes an

N×N matrix with a 1 at the (i, j) position and 0’s elsewhere.

The parameters ηi, κi, βi, ξi and γj are defined as

ηi = E
[

|si|
2|ϕi(si)|

2
]

> 1, (22)

κi = E
[

|ϕi(si)|
2
]

≥ 1, (23)

βi = E
[

s2i (ϕ
∗
i (si))

2
]

∈ C, (24)

1Some authors [32]–[34] prefer the so-called interference-to-source ratio
(ISR) matrix whose elements ISRij are defined (for i 6= j and unit variance

sources) as ISRij = E

[

|Gij |
2

|Gii|
2

]

, where Gii denotes the diagonal elements

and Gij the off-diagonal elements of G. To compute ISRij , usually Gii ≈ 1
(i.e. var(Gii) ≪ 1) is assumed such that ISRij ≈ var(Gij ). In this paper,
we do not use the ISR matrix but instead directly derive the iCRB for G.
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ξi = E
[

(ϕ∗
i (si))

2
]

∈ C, (25)

γj = E
[

s2j
]

∈ R, (26)

Appendix B shows some properties and other equivalent forms

of these parameters. All of them depend on the pdf pi(si)
of the i-th source signal. κi is a measure of non-Gaussianity

and noncircularity. As shown in [19], κi ≥ 1 with equality

if and only if si is circular complex Gaussian. In addition,

ηi > 1 (see Corollary 3). If the pdf of si is symmetric in the

real or imaginary part of si, i.e. p(−sR, sI) = p(sR, sI) or

p(sR,−sI) = p(sR, sI), βi and ξi become real (see Lemma

2). γj is real due to assumption A2 in Sec. I.

Rϑ has a special sparse structure which is illustrated in

Fig. 1 for N = 3. The i-th diagonal element of the i-th

Rϑ =





























d1 0 0 0 0 0 0 0 0
0 a12 0 b12 0 0 0 0 0
0 0 a13 0 0 0 b13 0 0
0 b21 0 a21 0 0 0 0 0
0 0 0 0 d2 0 0 0 0
0 0 0 0 0 a23 0 b23 0
0 0 b31 0 0 0 a31 0 0
0 0 0 0 0 b32 0 a32 0
0 0 0 0 0 0 0 0 d3





























Fig. 1: Structure of Rϑ for N = 3

diagonal block is Rϑ[i, i](i,i) = di. The j-th diagonal element

of the i-th diagonal block is Rϑ[i, i](j,j) = aij . The (j, i)
element of the [i, j] block is Rϑ[i, j](j,i) = bij . All remaining

elements are 0. By permuting rows and columns of Rϑ, it can

be brought into block-diagonal form. Then it consists only of

1 × 1 blocks with elements di and 2 × 2 blocks

[

aij bij
bji aji

]

.

Hence, Rϑ can be easily inverted resulting in a block-diagonal

matrix where all 1 × 1 and 2 × 2 blocks are individuallay

inverted as long as di 6= 0 and aijaji − bijbji 6= 0. The result

is

R−1
ϑ

=
N
∑

i=1

1

di
Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

aji
aijaji − bijbji

Lii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

−bij
aijaji − bijbji

Lij ⊗ Lji (27)

=

N
∑

i=1

fiLii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

(gijLii ⊗ Ljj + hijLij ⊗ Lji)

(28)

with

fi =
1

di
=

ηi − 1

(ηi − 1)2 − |βi − 1|2
, (29)

gij =
aji

aijaji − bijbji
=

κj(κiκj − 1)− |γiξj |
2κi

uij
, (30)

hij =
−bij

aijaji − bijbji
=

γ∗
j ξ

∗
i κj + γiξjκi

uij
. (31)

where uij = (κiκj − 1)2 + |γiγjξiξj − 1|2 − 1− κ2
i |γiξj |

2 −
κ2
j |γjξi|

2. This means that var(Ĝii) and var(Ĝij) of Ĝ =

ŴA are lower bounded by the (i, i)-th and (j, j)-th element

of the (i, i)-th block of L−1R−1
ϑ

:

var(Ĝii) ≥
1

L
fi,=

1

L

ηi − 1

(ηi − 1)2 − |βi − 1|2
, (32)

var(Ĝij) ≥
1

L
gij =

1

L

κj(κiκj − 1)− |γiξj |
2κi

uij
. (33)

Note that L−1R−1
ϑ

is the iCRB for ϑ as in (11). In order to

get the complete iCRB for

[

ϑ

ϑ∗

]

as in (10), we also calculate

Pϑ = −R−1
ϑ

Qϑ = −R−1
ϑ

M∗
2M

−1
1 . It can be shown in a

similar way

Pϑ =

N
∑

i=1

f̃iLii ⊗ Lii

+

N
∑

i=1

N
∑

j=1

j 6=i

(

g̃ijLii ⊗ Ljj + h̃ijLij ⊗ Lji

)

(34)

with

f̃i = −
fi(βi − 1)∗

ηi − 1
= −

(βi − 1)∗

(ηi − 1)2 − |βi − 1|2
, (35)

g̃ij = −
gijγ

∗
j ξ

∗
i + hij

κi
= −

(κ2
j − |γiξj |

2)γ∗
j ξ

∗
i γiξj

uij
, (36)

h̃ij = −
gij + γ∗

i ξ
∗
j hij

κj
= −

κiκj − 1 + (γjξiγiξj)
∗

uij
. (37)

Note that according to (28) and (34) the iCRB for G = WA

has a nice decoupling property: the iCRB for Gii only depends

on the distribution of source i and the iCRB for Gij only

depends on the distribution of sources i and j and not on

other sources. Note that (32) and (33) cannot be used as a

bound for real ICA since the FIM would be singular.

B. CRB for the demixing matrix W

Starting with the iCRB L−1R−1
ϑ

for the stacked gain

matrix ϑ = vec((WA)T ) = (I ⊗ AT ) vec(WT ), it is now

straightforward to derive the CRB for the stacked demixing

matrix θ = vec(WT ) = (I ⊗AT )−1ϑ = (I⊗WT )ϑ. Since

θ is a linear function of ϑ,

cov(θ̂) ≥ L−1R−1
θ

= L−1(I⊗WT )R−1
ϑ

(I⊗W∗) (38)

holds for any unbiased estimator θ̂ for θ.

Using the properties of the Kronecker product in (65), we

obtain

R−1
θ

=

N
∑

i=1

fiLii ⊗WTLiiW
∗

+

N
∑

i=1

N
∑

j=1

j 6=i

gijLii ⊗WTLjjW
∗

+
N
∑

i=1

N
∑

j=1

j 6=i

hijLij ⊗WTLjiW
∗ (39)
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both circular both noncircular,
identical
noncircularities

different
noncircularities

γi = γj = 0 γi = γj 6= 0 γi 6= γj
both Gaussian Sec. IV-A Sec. IV-B Sec. IV-B

both non-Gaussian,
identical
non-Gaussianities

Sec. IV-A Sec. V-A Sec. V-B

different
non-Gaussianities

Sec. IV-A Sec. V-C Sec. V-C

TABLE I: Different combinations of the distribution of two

sources i and j

R−1
θ

is a block-matrix whose (i, j) block is given by

R−1
θ

[i, j] =

{

fiwiw
H
i +

∑N
l=1

l 6=i
gilwlw

H
l i = j

hijwjw
H
i i 6= j.

(40)

Pθ = −R−1
θ

Qθ can be calculated in a similar way.

IV. SPECIAL CASES OF THE ICRB

In the previous section, we derived the iCRB for the gain

matrix G = WA for the general complex case. Below,

we study some special cases of the iCRB. For reasons of

completeness, the iCRB for real ICA from [3], [10], [11] is

summarized in Appendix F. Due to the decoupling property of

the iCRB mentioned in the previous section, the iCRB for Gii

and Gij depends only on the distribution of the sources i and j.

Both sources can be Gaussian or non-Gaussian, with identical

or different non-Gaussianities. Both sources can be circular

complex or noncircular complex, with identical or different

noncircularity indices. Table 1 summarizes these 9 cases and

shows which of them are discussed in which section.

A. All sources are circular complex

If all sources are circular complex, γi = 0 and βi = ηi (see

Lemma 3). Due to the phase ambiguity in circular complex

ICA, the Fisher information for the diagonal elements Gii

is 0 and hence their iCRB does not exist. However, we can

constrain Gii to be real and derive the constrained CRB

[30] (see also Appendix D) for Gii: As noted at the end of

Sec. III-A, Gii is decoupled from Gij and Gjj and hence it

is sufficient to consider the constrained CRB for Gii alone.

Let θ = Gii. The constraint θ ∈ R can be formulated as

f(θ) = θ − θ∗ = 0. We then need to calculate the Jacobian

matrix F(θ) =

[

∂f/∂θ ∂f/∂θ∗

∂f∗/∂θ ∂f∗/∂θ∗

]

=

[

1 −1
−1 1

]

and find

an unit-length vector U in the null space of F(θ), i.e. FU = 0.

We choose U = 1√
2

[

1 1
]T

. The CRB for the constrained

parameter θ = Gii ∈ R is then
[

var(θ) pvar(θ)
pvar∗(θ) var(θ)

]

≥
1

L
U

(

UH

[

Iθ Pθ

P∗
θ Iθ

]

U

)−1

UH

=
1

4L(ηi − 1)

[

1 1
1 1

]

(41)

where Iθ = ηi − 1 = Pθ and ηi = E
[

|si|
2|ϕi(si)|

2
]

. This

means

var(Ĝii) ≥
1

4L(ηi − 1)
. (42)

The bound in (42) is valid for a phase-constrained Gii such

that Gii ∈ R. Eq. (42) looks similar to the real case (97)

except for a factor of 4 since ηi is defined using Wirtinger

derivatives instead of real derivatives.

For var(Ĝij) we get from (33)

var(Ĝij) ≥
1

L

κj

κiκj − 1
, (43)

which again looks the same as in the real case (98). How-

ever, in the complex case, κi is defined using the Wirtinger

derivative instead of real derivative. Furthermore, in the com-

plex case κ measures the non-Gaussianity and noncircularity

whereas in the real case κ measures only the non-Gaussianity.

If source i and j are both circular Gaussian, κi = κj =
1 and var(Ĝij) → ∞. This corresponds to the known fact

that circular complex Gaussian sources cannot be separated

by ICA.

B. All sources are noncircular complex Gaussian

If all sources are noncircular Gaussian with different γi ∈ R,

it can be shown using the expressions for κ, ξ, η and β from

Appendix E, (93)-(96) with c = 1 that

var(Ĝii) ≥
1

L

1

4γ2
i

, (44)

var(Ĝij) ≥
1

L

γ2
i + γ2

j − 2γ2
i γ

2
j

(γ2
j − γ2

i )
2

(1 − γ2
i )

=
1− γ2

i

2L

[

1− γiγj
(γi − γj)2

+
1 + γiγj
(γi + γj)2

]

. (45)

Note that (45) is exactly the same result as obtained by Yeredor

in [21] for the performance analysis of the SUT, i.e. our result

shows that for noncircular Gaussian sources the SUT is indeed

asymptotically optimal.

If all sources are noncircular Gaussian with identical γi, it

can be shown that the iCRB for Gij does not exist because

γ2
j − γ2

i → 0. This confirms the result obtained in [5], [19]

which showed that ICA fails for two or more noncircular

Gaussian signals with same γi.

V. RESULTS FOR GENERALIZED GAUSSIAN DISTRIBUTION

In order to verify the CRB derived in the previous sections,

we now study complex ICA with noncircular complex general-

ized Gaussian distributed (GGD) sources. We choose this fam-

ily of parametric pdf since it enables an analytical calculation

of the CRB. The pdf of such a noncircular complex source s
with zero mean, variance E[|s|2] = 1 and noncircularity index

γ ∈ [0, 1] can be written as [35]

p(s, s∗) =
cα · exp

(

−
[

α/2
γ2−1

(

γs2 + γs∗2 − 2ss∗
)

]c)

πΓ(1/c)(1− γ2)1/2
,

where α = Γ(2/c)/Γ(1/c) and Γ(·) is the Gamma function.

The shape parameter c > 0 varies the form of the pdf

from super-Gaussian (c < 1) to sub-Gaussian (c > 1). For

c = 1, the pdf is Gaussian. 0 ≤ γ ≤ 1 controls the

noncircularity of the pdf. The four parameters κ, β, η, ξ
required to calculate the CRB are derived in Appendix E.
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For the simulation study, we consider N = 3 sources with

random mixing matrices A. The real and imaginary part of all

elements of A are independent and uniformly distributed in

[−1, 1]. We conducted 100 experiments with different random

matrices A and considered two different ICA estimators2:

Complex ML-ICA [19] and complex ICA by entropy bound

minimization (ICA-EBM) [20]. Complex ML-ICA finds the

demixing matrix W by maximizing the likelihood p(x;W)
and hence requires knowledge of the pdf pi(si) of each

source i. In the simulations, ML-ICA uses for each source

i a separate, fixed noncircular complex GGD with the known

shape parameter ci and noncircularity index γi. Optimization

is performed using natural-gradient ascent [36] with a nor-

malized step-size for each source. Complex ICA-EBM, on the

other hand, is based on a flexible entropy estimator which

can adapt to a wide range of distributions and hence can

be employed without prior knowledge of the source pdfs.

[20] provides a performance comparison of eight different

complex ICA algorithms in terms of percentage of failures,

average interference-to-signal ratio and average CPU time. It

was shown that ICA-EBM provides a good tradeoff between

separation performance and computational complexity. We

additionally consider complex ML-ICA, since per definition

it reaches the CRB asymptotically.

In this paper, we want to compare the separation perfor-

mance of ICA with respect to the iCRB and hence we define

the performance metric as in [10]: After running an ICA algo-

rithm, we correct the permutation ambiguity of the estimated

demixing matrix and calculate the signal-to-interference ratio

(SIR) averaged over all N sources:

SIR=
1

N

N
∑

i=1

E
[

|Gii|
2
]

∑

j 6=i E[|Gij |2]
=

1

N

N
∑

i=1

1+var(Gii)
∑

j 6=i var(Gij)
. (46)

In this definition, the averaging over simulation trials takes

place before taking the ratio.

In practice, the accuracy of the estimated demixing ma-

trix depends not only on the optimization cost function

but also on the optimization algorithm used to implement

the estimator: In some rare cases, complex ML-ICA based

on natural-gradient ascent converges to a local maximum

of the likelihood and yields a lower SIR value than ICA-

EBM. To overcome this problem, we initialized ML-ICA

from the solution obtained by ICA-EBM which is close to

the optimal solution. MATLAB code for the simulations is

available at http://www.iss.uni-stuttgart.de/institut/mitarbeiter

alt/loesch/complex ICA CRB/index.html.

A quite general optimization algorithm for learning in Lie

groups was recently introduced in [37]. Furthermore, a way to

average several ICA solutions in order to modify the variance

has been described in [38]. The different solutions can either

be obtained by running the same algorithm more than once or

by running different algorithms on the same dataset. However,

algorithmic improvements are beyond the scope of this paper.

2Note that many alternative ICA estimators such as [7], [12]–[18] exist.

A. All sources are identically distributed

First, we study the performance when all sources are

identically distributed with the same shape parameter c and

the same noncircularity index γ. Fig. 2 shows the results:

The SIR given by the iCRB increases with increasing non-

Gaussianity (c → ∞ or c → 0). For c ≈ 1, SIR is low

since (nearly) Gaussian sources with the same noncircularity

index γ cannot be separated by ICA. For c 6= 1, the SIR also

increases with increasing noncircularity γ, but much slower

since all sources have the same noncircularity γ. Clearly,

both ICA algorithms work quite well except for c ≈ 1
(Gaussian). Their SIR comes quite close to the CRB and ML-

ICA slightly outperforms ICA-EBM, especially for strongly

sub-Gaussian sources (c > 1). This is due to the fact that ML-

ICA uses nonlinearities matched to the source distributions

while ICA-EBM uses a linear combination of prespecified

nonlinear functions. Note that ICA-EBM allows one to select

nonlinearities for approximating the source entropy. Hence if

prior knowledge about the source distributions is available,

it can be incorporated into ICA-EBM thus improving its

performance.

B. All sources have the same shape parameter but different

noncircularities

Now we study the performance when all sources follow a

GGD with the same shape parameter ci = c but have different

noncircularity indices γi = (i − 1)∆γ. Fig. 3 shows that the

SIR given by the iCRB increases both with increasing non-

Gaussianity as well as increasing difference in noncircularity

indices ∆γ even for c = 1. This is due to the fact that Gaussian

sources with distinct noncircularity indices γ can be separated

by ICA. In the previous subsection, all sources had the same

noncircularity γ and hence a separation was not possible for

c = 1. Fig. 3 shows that ML-ICA again outperforms ICA-

EBM which is again due to the fact that ML-ICA uses for

each source si a nonlinearity ϕi(si) matched to its pdf pi(si).
Since ML-ICA and ICA-EBM use both non-Gaussianity and

noncircularity for separation, the contour lines in Fig. 3 (b)

and Fig. 3 (c) stay close to those of the iCRB in Fig. 3 (a).

C. All sources have different shape parameters

Now we study the performance when the sources follow a

GGD with different shape parameters c1 = 1, c2 = c, c3 =
1/c. Fig. 4 shows the result when all sources have the same

noncircularity indices γi = γ while in Fig. 5 sources have

different noncircularity indices γi = (i− 1)∆γ. In both cases

ML-ICA and ICA-EBM come quite close to the CRB but ML-

ICA slightly outperforms ICA-EBM. The reason is again that

ML-ICA uses for each source si a nonlinearity ϕi(si) matched

to its pdf pi(si) whereas the nonlinearities used in ICA-EBM

are fixed a priori. When sources differ in shape parameter

and noncircularity (see Fig. 5) the SIR increases both with

increasing non-Gaussianity of source 2 and 3 (i.e. c < 1) as

well as increasing difference in noncircularity indices ∆γ.
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(c) ICA-EBM

Fig. 2: Comparison of signal-to-interference ratio [dB] of different ICA estimators with CRB, sample size L = 1000, all

sources follow a generalized Gaussian distribution with ci = c and γi = γ
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Fig. 3: Comparison of signal-to-interference ratio [dB] of different ICA estimators with CRB, sample size L = 1000, all

sources follow a generalized Gaussian distribution with ci = c, γi = (i− 1)∆γ
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Fig. 4: Comparison of signal-to-interference ratio [dB] of different ICA estimators with iCRB, sample size L = 1000, all

sources follow a generalized Gaussian distribution with c1 = 1, c2 = c, c3 = 1/c, γi = γ
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sources follow a generalized Gaussian distribution with c1 = 1, c2 = c, c3 = 1/c, γi = (i− 1)∆γ
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Fig. 6: Performance as a function of sample size L, circular GGD sources
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Fig. 7: Performance as a function of sample size L, noncircular GGD sources with ci = c and γi = (i− 1)∆γ
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D. Performance as a function of the sample size

Here we study the performance of ICA algorithms as a

function of the sample size L. Fig. 6 shows that for circular

non-Gaussian sources and a limited sample size L < 1000,

ML-ICA outperforms ICA-EBM. Fig. 7(a)-(c) shows that also

for noncircular signals with distinct noncircularity indices and

small sample size, ML-ICA outperforms ICA-EBM. However,

for a large sample size (L ≥ 1000), ICA-EBM comes close to

the performance of ML-ICA except for strongly sub-Gaussian

sources (see Fig. 6 (b), Fig. 7 (c) and also Sec. V-A).

VI. EXTENSION OF ICRB TO NONWHITE OR

NONSTATIONARY SOURCES

Here, we extend the iCRB to the case where source signals

are not temporally iid. Our derivation follows the derivation for

the real case by Cardoso in chapter 4 of [3]. The real iCRB for

general temporally non-iid sources as well as Gaussian tempo-

rally non-iid sources is briefly summarized in Appendix F. We

collect L temporally non-iid samples of the source signals in

an N×L matrix S. The mixing model (1) becomes X = AS,

where X is an N × L matrix. Let si denote the i-th row

vector of S and si(l) the (i, l)-th element of S. Since different

source signals (rows of S) are independent, the pdf of S is

given as pS(S) =
∏N

i=1 psi(si). The pdf of X is then given

by p(X; θ) = | det(W)|2L
∏N

i=1 psi(w
T
i X). By using matrix

derivatives [22], [24], [31], we obtain

∂

∂WH
ln p(X; θ) = LA∗ −X∗ψT (WX)

= LA∗
(

I−
1

L
SψH(S)

)∗
(47)

where the i-th row of ψ depends only on si and is given by

[ψ]i = ϕi(si). The l-th element of the row vector ϕi(si) is

given by

[ϕi(si)]l = −
∂

∂s∗i (l)
ln psi(si). (48)

To derive the iCRB for G = WA, we calculate M1 and

M2 in a similar way as in the iid case:

M1=L2E

[

vec

{

I−
1

L
SψH(S)

}

vec

{

I−
1

L
SψH(S)

}H
]

,

M2=L2E

[

vec

{

I−
1

L
SψH(S)

}

vec

{

I−
1

L
SψH(S)

}T
]

.

(49)

A convenient notation is also M1 = cov(L vec{I −
1
LSψ

H(S)}) and M2 = pcov(L vec{I− 1
LSψ

H(S)}).
Due to the source independence, M1 and M2 have a sparse

decoupled structure as in the iid case: They consist of N 1×1
blocks important for the iCRB of Gii and

N(N−1)
2 2×2 blocks

important for the iCRB of Gij . All the remaining elements are

zero. We define

ηi − 1=L var

(

1−
1

L
siϕ

H
i (si)

)

=LE

[

∣

∣

∣

∣

1

L
siϕ

H
i (si)

∣

∣

∣

∣

2

−1

]

,

βi − 1=L pvar

(

1−
1

L
siϕ

H
i (si)

)

=LE

[

(

1

L
siϕ

H
i (si)

)2

−1

]

,

ρij =
1

L
E
[

∣

∣sjϕ
H
i (si)

∣

∣

2
]

=
1

L
E tr

(

sjϕ
H
i (si)ϕi(si)s

H
j

)

=
1

L
tr
(

E
[

sHj sj
]

E
[

ϕH
i (si)ϕi(si)

])

=
1

L
tr (Rjκi) ,

χij =
1

L
E
[

(

sjϕ
H
i (si)

)2
]

=
1

L
E tr

(

sjϕ
H
i (si)ϕ

∗
i (si)s

T
j

)

,

=
1

L
tr
(

E
[

sTj sj
]

E
[

ϕH
i (si)ϕ

∗
i (si)

])

=
1

L
tr (Pjξi) ,

(50)

with

Rj = E
[

sHj sj
]

, Pj = E
[

sTj sj
]

,

κi = E
[

ϕH
i (si)ϕi(si)

]

, ξi = E
[

ϕH
i (si)ϕ

∗
i (si)

]

. (51)

Furthermore, it holds

1

L
E
[

sjϕ
H
i (si)

(

siϕ
H
j (sj)

)∗]
=

1

L
E tr

(

sjϕ
H
i (si)s

∗
iϕ

T
j (sj)

)

=
1

L
tr
(

E
[

ϕT
j (sj)sj

]

E
[

ϕH
i (si)s

∗
i

])

= 0,

1

L
E
[

sjϕ
H
i (si)

(

siϕ
H
j (sj)

)]

=
1

L
E tr

(

sjϕ
H
i (si)siϕ

H
j (sj)

)

=
1

L
tr
(

E
[

ϕH
j (sj)sj

]

E
[

ϕH
i (si)si

])

= 1.

(52)

Hence, it can be shown that M1 and M2 are given by

M1 = L







N
∑

i=1

(ηi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

ρijLii ⊗ Ljj






,

M2 = L







N
∑

i=1

(βi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

χijLii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji






. (53)

The remaining steps in the derivation of the iCRB for the non-

iid case are the same as in the iid case except for scaling of

the FIM by the number of samples L: In the iid case M1 and

M2 in (82) and (87) were defined for a single sample and

hence need to be scaled by L, whereas in the non-iid case the

definition of M1 and M2 in (53) already contains this factor.

Hence, we can directly use the results for the iid case from

(32) and (33). We only have to replace κi by ρij and γjξi by

χij to obtain

var(Ĝii) ≥
1

L

ηi − 1

(ηi − 1)2 − |βi − 1|2
, (54)

var(Ĝij) ≥
1

L

ρji(ρijρji − 1)− |χji|
2ρij

uij
. (55)

where uij = (ρijρji − 1)2 + |χijχji − 1|2 − 1 − ρ2ij |χji|
2 −

ρ2ji|χij |
2 and ηi, βi, ρij and χij are defined in (50).
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A. Temporally non-iid Gaussian sources

The pdf of a multivariate complex Gaussian column random

vector s can be written as [39]

p(s) =
exp

(

−sHC−1s+ ℜ
{

sTi R
−∗P∗C−1s

})

πL [det(R ·C∗)]1/2
(56)

with R = E[ssH ], P = E[ssT ] and C = R − PR−∗P∗.

Correspondingly, the pdf p(si) for the row vector si containing

L temporally non-iid samples of the noncircular complex

Gaussian source i can be written as

p(si) =
exp

(

−siC
−1
i sHi + ℜ

{

siR
−1
i P∗

iC
−∗
i sTi

})

πL [det(Ri ·C∗
i )]

1/2
(57)

where now Ri = E[sHi si], Pi = E[sTi si] and Ci = Ri −
P∗

iR
−∗
i Pi.

It can be shown that ϕi(si) is given by

ϕi(si) = (si − s∗iR
−∗
i Pi)C

−1. (58)

Using a multivariate version of Lemma 1 from Appendix B

we obtain from (50)

ηi − 1 =
1

L
tr
(

E
[

sHi siϕ
H
i (si)ϕi(si)

])

− L

=
1

L
tr

(

E

[

∂ sHi siϕ
H
i (si)

∂s∗i

])

− L =
1

L
tr
(

RiC
−1
i

)

,

βi − 1 =
1

L
tr
(

E
[

sTi siϕ
H
i (si)ϕ

∗
i (si)

])

− L

=
1

L
tr

(

E

[

∂ sTi siϕ
H
i (si)

∂si

])

− L

= 1−
1

L
tr
(

PiC
−1
i P∗

iR
−∗
i

)

. (59)

For var(Ĝij) we calculate using (58)

κi = E
[

ϕH
i (si)ϕi(si)

]

= C−H
i = C−1

i , (60)

ξi = E
[

ϕH
i (si)ϕ

∗
i (si)

]

= −C−1
i P∗

iR
−∗
i (61)

and

ρij =
1

L
tr(Rjκi) =

1

L
tr(RjC

−1
i ), (62)

χij =
1

L
tr(Pjξi) = −

1

L
tr(PjC

−1
i P∗

iR
−∗
i ). (63)

It can be shown that the FIM for Gij becomes singular, i.e.

var(Ĝij) → ∞ in (55) if Rj = αRi and Pj = ±αPi with the

same α > 0. If we assume that all sources si are rotated such

that E[s2i (1)] ≥ 0, this reduces to Rj = αRi and Pj = αPi

with the same α > 0. Compared to the case of real temporally

non-iid Gaussian sources [3], [34] where the FIM becomes

singular if Rj = E[sTj sj ] = αRi = αE[sTi si], we obtain a

more complicated condition in the noncircular complex case.

For the special case of circular complex sources, Pi =
Pj = 0 and Ci = Ri. Hence ηi = βi = 2, χij = χji = 0
and ρij = L−1 tr(RjR

−1
i ). As a consequence, the Fisher

information for Gii becomes singular and var(Ĝii) → ∞ in

(54) as in the temporally iid case. Then we could obtain a

constrained CRB as in Sec. IV-A. Furthermore, (55) can be

simplified to var(Gij) ≥ L−1ρji · (ρijρji − 1)−1. The FIM

for Gij becomes singular, i.e. var(Gij) → ∞ if Rj = αRi

which is similar to the real case except that Ri and Rj are

defined with (·)H instead of (·)T .

A different special case is stationarity of the sources for

which Ri and Pi are Toeplitz matrices completely character-

ized by the correlation function ri(k) = E[si(l + k)s∗i (l)]
and pseudo-correlation function γi(k) = E[si(l + k)si(l)]
of each source i with k ∈ [0, L − 1]. Under the above

rotation convention, the FIM for Gij becomes singular if, for

two source i and j, rj(k) = αri(k) and γj(k) = αγi(k)
∀k ∈ [0, L − 1] with the same α > 0. [40] proposed a

joint diagonalization approach for the separation of noncircular

complex stationary sources and showed that the demixing

matrix is identifiable, i.e. sources are separable as long as

the vectors ri = [ri(0), · · · , ri(L− 1), γi(0), · · · , γi(L− 1)]T

are distinct for all sources i. If we reverse this condition, i.e.

rj = αri for some source j 6= i and α > 0, the FIM for Gij

becomes singular and source i and j are nonseparable. Note

that rj = αri is equivalent to our condition rj(k) = αri(k)
and γj(k) = αγi(k) ∀k ∈ [0, L− 1].

Finally, for temporally uncorrelated but nonstationary

sources, Ri = diag
(

σ2
i (1), · · · , σ

2
i (L)

)

and Pi =
diag (γi(1), · · · , γi(L)) where now σ2

i (l) and γi(l) denote

the time-variant variance and pseudo-variance of each source

i. The FIM then becomes singular if σ2
j (l) = ασ2

i (l) and

γj(l) = αγi(l) ∀l ∈ [1, L] with the same α > 0.

VII. CONCLUSION

In this paper, we have derived the CRB for the noncircu-

lar complex ICA problem with temporally iid sources. The

induced CRB (iCRB) for the gain matrix, i.e. the demixing-

mixing-matrix product, depends on the distribution of the

sources through five parameters, which can be easily calcu-

lated. The derived bound is valid for the general noncircular

complex case and contains the circular complex and the

noncircular complex Gaussian case as two special cases. The

iCRB reflects the phase ambiguity in circular complex ICA.

In that case, we derived a constrained CRB for a phase-

constrained demixing matrix. Simulation results using two

ICA algorithms have shown that for sources following a

noncircular complex generalized Gaussian distribution, these

algorithms can achieve a signal-to-interference ratio (SIR)

close to that of the iCRB. The complex ML-ICA algorithm,

which uses for each source a nonlinearity matched to its

pdf, outperforms ICA-EBM especially for small sample sizes.

However, for ML-ICA the pdfs of the sources must be known

whereas no such knowledge is required for ICA-EBM. Hence,

for practical applications where the pdfs of the sources might

be unknown ICA-EBM is an adequate algorithm whose per-

formance comes quite close to the iCRB for large enough

sample size L. Finally, we have also shown how to extend

the iCRB from the temporally iid case to the general non-iid

case, considered the special case of complex non-iid Gaussian

sources and discussed the differences to the real case.

APPENDIX A

USEFUL MATRIX ALGEBRA

As in [11], we make use of some matrix algebra in the

derivation of the CRB. Let Lij = eie
T
j denote an N × N
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matrix with a 1 at the (i, j) position and 0’s elsewhere. ei is a

length-N vector with a 1 at the i-th position and 0’s elsewhere.

It is useful to note that

ALijA
T = aia

T
j , LijLkl = 0 for j 6= k, LijLjl = Lil.

(64)

A useful rule for the Kronecker product ⊗ is

(A⊗B)(C⊗D) = (AC)⊗ (BD), (65)

where all matrices are such that the operation is properly

defined. We also note that any N2 × N2 block matrix A

containing N × N blocks A[i, j] can be written using its

N×N diagonal blocks A[i, i] and N×N off-diagonal blocks

A[i, j], i 6= j as follows:

A =

N
∑

i=1

Lii ⊗A[i, i] +

N
∑

i=1

N
∑

j=1, j 6=i

Lij ⊗A[i, j]. (66)

By combining the properties (64) and (65), we obtain (67).

APPENDIX B

SOME ADDITIONAL LEMMAS USED IN THE DERIVATION OF

THE CRB

For the Lemmas and Corollaries in this section, we use the

definition of ϕ(s) from (14) and the definitions of η, κ, β and

ξ from (22)-(25). The following Lemma provides a very useful

property of the function ϕ(s).

Lemma 1. For any real differentiable function g(s), it holds

E [g(s)ϕ∗(s)] = E
[

∂g
∂s

]

and E [g(s)ϕ(s)] = E
[

∂g
∂s∗

]

as long

as g(s)p(s) → 0 for sR → ±∞ or sI → ±∞.

Proof: The first part of the lemma, E [g(s)ϕ∗(s)] =

E
[

∂g
∂s

]

, has been proven in [22]. Since ϕ(s) = −∂ ln p(s)
∂s∗ and

ϕ∗(s) =
(

−∂ ln p(s)
∂s∗

)∗
= −∂ ln p(s)

∂s , the second part of the

lemma, E [g(s)ϕ(s)] = E
[

∂g
∂s∗

]

, follows immediately.

Since sources are independent and zero mean, we get the

identities in Corrolaries 1-3 from Lemma 1:

Corollary 1. It holds

E[siϕ
∗
j (sj)] =

{

1 i = j

0 i 6= j
, (68)

E[siϕj(sj)] = 0. (69)

The next corollary provides alternative forms of the param-

eters κ, ξ, η, β which are sometimes easier to calculate than

the ones from (22)-(25):

Corollary 2. It holds

κ = E
[

|ϕ(s)|2
]

= E

[

∂ϕ

∂s

]

= E

[

∂ϕ∗

∂s∗

]

, (70)

ξ = E
[

(ϕ∗(s))2
]

= E

[

∂ϕ∗

∂s

]

, (71)

η = E
[

|s|2|ϕ(s)|2
]

= E

[

|s|2
∂ϕ

∂s

]

+ 1 = E

[

|s|2
∂ϕ∗

∂s∗

]

+ 1

(72)

β = E
[

s2(ϕ∗(s))2
]

= E

[

s2
∂ϕ∗

∂s

]

+ 2. (73)

Corollary 3. Using Corollary 1, η > 1, since

η = E
[

|sϕ∗(s)|2
]

= |E [sϕ∗(s)]|2 + var (sϕ∗(s))

= 1 + var (sϕ∗(s)) > 1. (74)

Now we provide some lemmas for distributions satisfying

certain symmetry properties.

Lemma 2. Both ξi and βi are real if p(−sR, sI) = p(sR, sI)
or p(sR,−sI) = p(sR, sI), i.e. p(sR, sI) is symmetric in sR
or sI .

Proof:

ξ = E
[

(ϕ∗(s))2
]

=

∫ ∫

1

4

(

∂p(sR, sI)

∂sR
− j

∂p(sR, sI)

∂sI

)2
1

p(sR, sI)
dsRdsI

=
1

4

∫ ∫

[

(

∂p(sR, sI)

∂sR

)2

−

(

∂p(sR, sI)

∂sI

)2

−2j
∂p(sR, sI)

∂sR

∂p(sR, sI)

∂sI

]

1

p(sR, sI)
dsRdsI .

(75)

If p(sR, sI) is symmetric in sR or sI , i.e.

p(−sR, sI) = p(sR, sI) or p(sR,−sI) = p(sR, sI),
then h(sR, sI) = ∂p

∂sR

∂p
∂sI

is antisymmetric in sR or sI , i.e.

h(−sR, sI) = −h(sR, sI) or h(sR,−sI) = −h(sR, sI).
Hence

∫∞
−∞

∫∞
−∞ h(sR, sI)

1
p(sR,sI)

dsRdsI = 0 and ξ ∈ R. A

similar proof can be made for β.

Lemma 3. If si is circular complex, βi = ηi.

Proof: For circular s = sR+jsI , p(sR, sI) = g(s2R+s2I).
Let f(r2) = f(s2R + s2I) = ln p(sR, sI). It holds

η =
1

4
E

[

(

s2R + s2I
)

(

(

∂f

∂sR

)2

+

(

∂f

∂sI

)2
)]

,

β =
1

4
E

[

(

s2R − s2I + 2jsRsI
)

(

(

∂f

∂sR

)2

−

(

∂f

∂sI

)2

−2j

(

∂f

∂sR

)(

∂f

∂sI

))]

,

=
1

4
E

[

(

s2R − s2I
)

(

(

∂f

∂sR

)2

−

(

∂f

∂sI

)2
)

+4sRsI

(

∂f

∂sR

)(

∂f

∂sI

)]

,

4(η − β) = 2E

[

s2R

(

∂f

∂sI

)2

+ s2I

(

∂f

∂sR

)2

−2sRsI

(

∂f

∂sR

)(

∂f

∂sI

)]

= 0,

where we used E

[

sRsI

(

(

∂f
∂sR

)2

−
(

∂f
∂sI

)2
)]

= 0 and
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(

N
∑

i=1

Lii ⊗ Lii

)







N
∑

i=1

N
∑

j=1

j 6=i

Lii ⊗ Ljj






= 0,







N
∑

i=1

N
∑

j=1

j 6=i

Lii ⊗ Ljj







(

N
∑

i=1

Lii ⊗ Lii

)

= 0,

(

N
∑

i=1

Lii ⊗ Lii

)







N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji






= 0,







N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji







(

N
∑

i=1

Lii ⊗ Lii

)

= 0,







N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji













N
∑

i=1

N
∑

j=1

j 6=i

cijLii ⊗ Ljj






=

N
∑

i=1

N
∑

j=1

j 6=i

cjiLij ⊗ Lji,







N
∑

i=1

N
∑

j=1

j 6=i

cijLii ⊗ Ljj













N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji






=

N
∑

i=1

N
∑

j=1

j 6=i

cijLij ⊗ Lji,







N
∑

i=1

N
∑

j=1

j 6=i

cijLij ⊗ Lji













N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji






=

N
∑

i=1

N
∑

j=1

j 6=i

cijLii ⊗ Ljj . (67)

E
[

(

s2R − s2I
)

(

∂f
∂sR

)(

∂f
∂sI

)]

= 0 in the third line and ∂f
∂sR

=

2sR
∂f(r2)
∂r2 and ∂f

∂sI
= 2sI

∂f(r2)
∂r2 in the last line.

APPENDIX C

DERIVATION OF THE ICRB FOR THE GAIN MATRIX G

The derivation of the iCRB for the matrix G = WA

proceeds in three steps:

1) Calculate the matrices M1 and M2 in (17)

2) Calculate the matrix Rϑ = (M1 − M2M
−∗
1 M∗

2)
∗ in

(20)

3) Invert Rϑ

Using E[sϕH(s)] = I (see Lemma 1), we can simplify M1

as

M1 = E
[

vec{I− sϕH(s)} vec{I− sϕH(s)}H
]

= E
[

vec{sϕH(s)} vec{sϕH(s)}H
]

− vec{I} vec{I}H

= Ω1 − vec{I} vec{I}H . (76)

Ω1 = E
[

vec{sϕH(s)} vec{sϕH(s)}H
]

is an N2 × N2

block matrix. The (i, i) block Ω1[i, i] = E
[

ssH |ϕi(si)|
2
]

is

diagonal since the components of s are independent and zero

mean. The diagonal elements Ω1[i, i](j,j) are given by

Ω1[i, i](j,j)=

{

E
[

|si|
2|ϕi(si)|

2
]

=ηi i = j

E
[

|sj |
2|ϕi(si)|

2
]

=E
[

|ϕi(si)|
2
]

=κi i 6= j

(77)

according to (22) and (23) and due to the independence of sj
and si. κi and ηi are real. The (i, j) block Ω1[i, j] (i 6= j)
can be calculated as Ω1[i, j] = E

[

ssHϕ∗
i (si)ϕj(sj)

]

. It has

1 at entry (i, j) and 0 at entry (j, i), since

Ω1[i, j](i,j) = E
[

sis
∗
jϕ

∗
i (si)ϕj(sj)

]

= E [siϕ
∗
i (si)] E

[

s∗jϕj(sj)
]

= 1, (78)

Ω1[i, j](j,i) = E [sjs
∗
iϕj(sj)ϕ

∗
i (si)]

= E [s∗iϕ
∗
i (si)] E [sjϕj(sj)] = 0, (79)

due to Corollary 1. All other entries of Ω1[i, j] are zero since

the components of s are independent and zero mean. Using

Appendix A, we can write Ω1[i, i] = ηiLii+κi

∑

j 6=i Ljj and

Ω1[i, j] = Lij . Hence Ω1 can be written as

Ω1 =

N
∑

i=1

ηiLii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

κiLii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lij . (80)

Using

vec{I} vec{I}H =

N
∑

i=1

Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lij , (81)

we can simplify M1 as

M1 =

N
∑

i=1

(ηi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

κiLii ⊗ Ljj . (82)

We note that M1 is a real diagonal matrix.

M2 can be calculated similarly:

M2 = E
[

vec{I− sϕH(s)} vec{I− sϕH(s)}T
]

= E
[

vec{sϕH(s)} vec{sϕH(s)}T
]

− vec{I} vec{I}T

= Ω2 − vec{I} vec{I}T . (83)

Ω2 = E
[

vec{sϕH(s)} vec{sϕH(s)}T
]

is an N2 × N2

block matrix. The (i, i) block Ω2[i, i] = E
[

ssT (ϕ∗
i (si))

2
]

is

diagonal since the components of s are independent and zero
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mean. The diagonal elements Ω2[i, i](j,j) are given by

Ω2[i, i](j,j)=











E
[

s2i (ϕ
∗
i (si))

2
]

=βi i=j

E
[

s2j(ϕ
∗
i (si))

2
]

=E
[

s2j
]

E
[

(ϕ∗
i (si))

2
]

= γjξi i 6=j

(84)

according to (24)-(26) and due to the independence of sj and

si. If p(−sR, sI) = p(sR, sI) and p(sR,−sI) = p(sR, sI), ξi
and βi are real (see Lemma 2). The (i, j) block Ω2[i, j] (i 6=
j) can be calculated as Ω2[i, j] = E

[

ssTϕ∗
i (si)ϕ

∗
j (sj)

]

. It

has 1 at entry (i, j) and (j, i) since

Ω2[i, j](i,j) = Ω2[i, j](j,i) = E [siϕ
∗
i (si)] E

[

s∗jϕj(sj)
]

= 1
(85)

due to Corollary 1. All other entries of Ω2[i, j] are zero since

the components of s are independent and zero mean. Using

Appendix A, we can write Ω2[i, i] = βiLii +
∑

j 6=i γjξiLjj

and Ω2[i, j] = Lij + Lji. Hence Ω2 can be written as

Ω2 =

N
∑

i=1

βiLii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

γjξiLii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

(Lij ⊗ Lij + Lij ⊗ Lji). (86)

Using vec{I} vec{I}T from (81), we can simplify M2 as

M2 =

N
∑

i=1

(βi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

γjξiLii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji. (87)

Since M1 is a real diagonal matrix, we can calculate Rϑ

from (20) as in (88).

After some simple but tedious calculations, we get using

the properties from (67)

Rϑ =

N
∑

i=1

diLii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

aijLii ⊗ Ljj

+

N
∑

i=1

N
∑

j=1

j 6=i

bijLij ⊗ Lji (89)

where di = (ηi−1)2−|βi−1|2
ηi−1 , aij = κi −

|γjξi|2
κi

− 1
κj

and

bij = −
(

γ∗

j ξ
∗

i

κi
+

γiξj
κj

)

.

APPENDIX D

COMPLEX CONSTRAINED CRB

In general, the constrained CRB for an N -dimensional

complex parameter vector θ under K equality constraints

0 = f(θ) ∈ C
K can be derived by using the following steps

[30]:

• Calculate the 2K×2N Jacobian matrix F(θ) of f(θ) with

respect to θ as F(θ) =

[

∂f/∂θ ∂f/∂θ∗

∂f∗/∂θ ∂f∗/∂θ∗

]

, where

∂f/∂θ =
[

∂fi
∂θj

]

1≤i≤K,1≤j≤N
and ∂fi/∂θj is defined

using the Wirtinger derivatives in Sec. II.

• Find a 2N × (2N − K) matrix U with orthonormal

columns which span the null space of F, i.e. FU = 0.

• The constrained CRB is then given as
[

cov(θ) pcov(θ)
pcov∗(θ) cov∗(θ)

]

≥
1

L
U
(

UHJθU
)−1

UH (90)

where (L−1Jθ)
−1 is the unconstrained CRB for estimat-

ing θ from L iid samples.

Intuitively, the transform UHJθU in (90) projects the Fisher

information matrix Jθ =

[

Iθ Pθ

P∗
θ

I∗
θ

]

onto the subspace

allowed by the constraints f(θ) = 0. The result of the inverse

matrix
(

UHJθU
)−1

is then converted back to the original un-

constrained space by the transformation U·
(

UHJθU
)−1

·UH .

APPENDIX E

VALUES OF κ, ξ, β, η FOR COMPLEX GGD

The pdf of a noncircular complex GGD with zero mean,

variance E[|s|2] = 1 and noncircularity index γ ∈ [0, 1] is

given by

p(s, s∗) =
cα · exp

(

−
[

α/2
γ2−1

(

γs2 + γs∗2 − 2ss∗
)

]c)

πΓ(1/c)(1− γ2)1/2
,

(91)

where α = Γ(2/c)/Γ(1/c) and Γ(·) is the Gamma function.

ϕ(s, s∗) = − ∂
∂s∗ ln p(s, s∗) is then given by

ϕ(s, s∗) =
2c(α/2)c

(γ2 − 1)c
(

γs2 + γ(s∗)2 − 2ss∗
)c−1

(γs∗ − s).

(92)

By integration in polar coordinates, it can be shown that κ, ξ,

β and η are given by

κ = E
[

|ϕ(s)|2
]

=
c2Γ(2/c)

(1 − γ2)Γ2(1/c)
, (93)

ξ = E
[

(ϕ∗(s))2
]

= −
c2γΓ(2/c)

(1− γ2)Γ2(1/c)
= −γκ, (94)

η = E
[

|s|2|ϕ(s)|2
]

=
(c+ 1) · (2− γ2)

2(1− γ2)
, (95)

β = E
[

s2(ϕ∗(s))2
]

=
(c+ 1) · (2− 3γ2)

2(1− γ2)
. (96)

APPENDIX F

INDUCED CRB FOR REAL ICA

Here, we briefly review the iCRB for real ICA [3], [10],

[11], [34]. In the following, all real quantities q are denoted

as q̄. In the derivation of the iCRB for the real case and tem-

porally iid sources ϕ̄(s̄) = −∂ ln p(s̄)/∂s̄ and the parameters

κ̄ = E[ϕ̄2(s̄)], η̄ = E[s̄2ϕ̄2(s̄)] = 2+E
[

s̄2 ∂ϕ̄(s̄)
∂s̄

]

are defined

using real derivatives. In [10], [11] it was shown that

var(Ĝii) ≥
1

L(η̄i − 1)
, (97)
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Rϑ = (M1 −M2M
−∗
1 M∗

2)
∗ = (M1 −M∗

2M
−1
1 M2)

=

N
∑

i=1

(ηi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

κiLii ⊗ Ljj−







N
∑

i=1

(βi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

γjξiLii ⊗ Ljj +

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji







∗

·







N
∑

i=1

(ηi − 1)−1Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

κ−1
i Lii ⊗ Ljj













N
∑

i=1

(βi − 1)Lii ⊗ Lii +

N
∑

i=1

N
∑

j=1

j 6=i

γjξiLii ⊗ Ljj +

N
∑

i=1

N
∑

j=1

j 6=i

Lij ⊗ Lji







(88)

var(Ĝij) ≥
1

L

κ̄j

κ̄iκ̄j − 1
. (98)

For temporally non-iid sources, we collect L samples of source

i in a row vector s̄i with pdf p(s̄i). The iCRB for Gij then

changes to

var(Ĝij) ≥
1

L

ρ̄ji
ρ̄ij ρ̄ji − 1

. (99)

η̄i and ρ̄ij are defined as [3]

η̄i − 1 = L

(

E

[

1

L
s̄iϕ̄

T
i (s̄i)

]2

− 1

)

, (100)

ρ̄ij =
1

L
tr(R̄jκ̄i), (101)

where R̄j = E[s̄Tj s̄j] and κ̄i = E[ϕ̄T
i (s̄i)ϕ̄i(s̄i)]. ϕ̄i(si) is a

row vector whose l-th element is defined as

[ϕ̄i(s̄i)]l = −
∂

∂s̄i(l)
ln p(s̄i). (102)

For Gaussian sources, η̄i = 3 and ρ̄ij = 1
L tr(R̄jR̄

−1
i ) [3],

[34].
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