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Abstract. This paper focuses on the estimation of the
direction-of-arrival (DOA) of signals impinging on a sensor
array. A novel method of array geometry optimization is pre-
sented that improves the DOA estimation performance com-
pared to the standard uniform linear array (ULA) with half
wavelength element spacing. Typically, array optimization
only affects the beam pattern of a specific steering direction.
In this work, the proposed objective function incorporates, on
the one hand, a priori knowledge about the signal’s DOA in
terms of a probability density function. By this means, the ar-
ray can be adjusted to external conditions. On the other hand,
a modified beam pattern expression that is valid for all possi-
ble signal directions is taken into account. By controlling the
side lobe level and the beam width of this new function, DOA
ambiguities, which lead to large DOA estimation errors, can
be avoided. In addition, the DOA fine error variance is min-
imized. Using a globally convergent evolution strategy, the
geometry optimization provides array geometries that signif-
icantly outperform the standard ULA with respect to DOA
estimation performance. To show the quality of the algo-
rithm, four optimum geometries are presented. Their DOA
mean squared error is evaluated using the well known de-
terministic Maximum Likelihood estimator and compared to
the standard ULA and theoretical lower bounds.

1 Introduction

This paper deals with the problem of estimating the
direction-of-arrival (DOA) of signals impinging on an array
of spatially distributed sensors. There exists a vast amount
of DOA estimators, whose performance and accuracy com-
pared to theoretical lower bounds like the Cramér-Rao lower
bound have been intensively investigated. A good introduc-
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Fig. 1. Typical MSE curve of DOA estimation with three different
regions of operation. In addition, two likelihood functions are plot-
ted corresponding to the asymptotic and the no information region,
respectively.

tion to array signal processing and DOA estimation can be
found in (Krim and Viberg, 1996) and the references therein.
In this work, we focus on the deterministic Maximum Like-
lihood (DML) DOA estimator, which is asymptotically con-
sistent and statistically efficient under certain regularity con-
ditions (Stoica and Nehorai, 1989). Nevertheless, any other
estimator that works with an arbitrary array geometry can be
applied to the results of this work, as well.
Given a fixed number of sensor elements, the question of an
optimum sensor placement with respect to DOA estimation
performance naturally arises. In this context, it is intuitively
clear that no "globally optimal" geometry for DOA estima-
tion exists. Instead, an array geometry is always optimal with
respect to certain presuppositions like the number of signals
(Gershman and Böhme, 1997), the statistical properties of
the DOA or the probability of large DOA estimation errors,
etc.
Although there exist many different approaches to achieving
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an optimum geometry, basically all of them can be attributed
directly or indirectly to the array beam pattern in terms of the
side lobe level (SLL) and the shape of the main lobe. Because
shape is a quantity that is difficult to characterize mathemat-
ically, the half power beam width (HPBW) is often used as
a feature instead. It corresponds to the accuracy of the DOA
estimates, i.e. the narrower the main beam, the lower the
variance of the DOA estimates. Thus, the main beam width
is directly related to the Cramér-Rao lower bound, which rep-
resents the minimum variance of an unbiased estimator (van
Trees, 2002). Furthermore, a narrow beam width increases
the possibility of angular signal separability in the multiple
signal case.
It is well known in DOA estimation, that the mean squared
error (MSE) departs from the Cramér-Rao lower bound when
the signal-to-noise (SNR) ratio (or the sample size) falls be-
low a specific limit. Beginning at this threshold, DOA es-
timates are dominated by large estimation errors, outliers
whose probability of occurrence depends on the SLL of the
beam pattern (Athley, 2005). Moreover, in the multiple sig-
nal case, a low SLL prevents high SNR signals from overlap-
ping low SNR signals.
By further reducing the SNR (or the sample size), the MSE
goes to saturation, which can be approximated by the vari-
ance of a uniform distribution over the DOA search space
(Richmond, 2006). Figure 1 quantitatively illustrates this
typical DOA MSE curve and presents three regions of op-
eration:

1. The asymptotic region is influenced by the shape of the
main lobe, i.e. the HPBW; it can be approximated by the
Cramér-Rao lower bound or the equivalent asymptotic
variance of the estimator, respectively.

2. The threshold region is dominated by outliers, whose
probability of occurrence is proportional to the SLL.

3. In the no information region, the SNR (or the sample
size) is very low which leads to DOA estimates that are
uniformly distributed over the search space.

All attempts of array geometry optimization that aim at DOA
performance improvement have to take this MSE character-
istic, which is based on a trade-off between SLL and beam
width of the beam pattern, into account. In doing so, it should
also be noted, that the beam pattern has to be unambigu-
ous for all steering directions, where targets are to be ex-
pected. Ambiguities and high side lobes in this region should
be avoided, as they lead to outliers in DOA estimation, even
in high SNR regimes. As the usual beam pattern only rep-
resents the array response to a unit wave from a certain di-
rection, we introduce a modified beam pattern (MBP), using
a simple parameter transformation. By this means, the MBP
allows for control of the HPBW and the SLL simultaneously
for all valid steering directions.
To take "real world" external conditions into account, we

Fig. 2. Array geometry withN elements on the x-axis with nonuni-
form inter element spacings and one far field source at azimuth an-
gle Θ.

further incorporate a probability density function (PDF), de-
fined for all valid steering directions. It is affected, for in-
stance, by the angular a priori distribution of the target’s
DOA, the element factor of the sensors, the transmit beam
pattern and the effect of blinds or radomes. This a priori
PDF is applied as an angular dependent weighting factor to
the MBP. By this means, we expand an approach by Oktel
and Moses (2005), how previous knowledge about the DOA
and hardware characteristics can easily be transferred into
the array design process.
Using a globally convergent optimization routine, the HPBW
and the SLL of the weighted MBP can now be controlled re-
sulting in array geometries that outperform the standard uni-
form linear array (ULA) with half wavelength element spac-
ing in terms of DOA estimation accuracy.
This paper is organized as follows. The data model and
the MBP are introduced in Section 2. We also derive the
weighted MBP, which additionally uses a priori knowledge
in terms of a beta distributed PDF. Furthermore, we intro-
duce the deterministic Maximum Likelihood DOA estimator
and show, how prior knowledge can improve DOA estima-
tion. In Section 3, the objective function for array geometry
optimization is defined. Some examples for optimum array
geometries are presented and their DOA estimation perfor-
mance is compared to the standard ULA using Monte Carlo
simulations and the Cramér-Rao lower bound.

2 Data model and modified beam pattern

We consider a planar array geometry withN identical, omni-
directional sensors placed on a straight line, e.g. the x-axis
(see Fig. 2). Q far-field sources that are orientated coplanar
to the array are impinging on the array from azimuth direc-
tions Θ0 = [Θ0,1,...,Θ0,Q]. The narrow band assumption is
assumed to hold so that the complex baseband array output
vector can be modeled by (van Trees, 2002)

x(k) = A(u0)s(k)+n(k), k= 1,...,K (1)
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Fig. 3. ULA beam pattern R(u,u0) for varying target directions
u0 =−1,...,1. For |u0|> 1

3
, DOA estimates are ambiguous due to

grating lobes in the beam pattern.

where A(u0) = [a(u0,1),...,a(u0,Q)] is the (N ×Q) ar-
ray steering matrix with u0,q = sinΘ0,q , q = 1,...,Q. The
complex baseband source signals are denoted by s(k) =
[s1(k),...,sQ(k)]T where (·)T means transpose, n(k) is the
additive noise vector based on a Gaussian random process
with zero mean and variance σ2

n. The number of snapshots
is denoted by K. The SNR of the q-th signal at each of the
sensors is defined as

SNRq =
1
K

∑K
k=1 |sq(k)|2

σ2
n

, q= 1,...,Q. (2)

The steering matrix A(u0) consists of Q steering vectors
a(u0) whose n-th element is defined by

an(u0) = ej 2πλ px,nu0 , n= 1,...,N. (3)

Here, the element positions are denoted by px,n and λ is the
wavelength.

2.1 Derivation of the modified beam pattern

The normalized array beam patternR(u,u0) is defined as the
squared magnitude of the response to a unit wave (s(k) =
1 ∀k) from direction u0 in the case of no noise, i.e.

R(u,u0) =
∣∣∣∣ 1
N

aH(u)a(u0)
∣∣∣∣2

=

∣∣∣∣∣ 1
N

N∑
n=1

e−j 2πλ px,n(u−u0)

∣∣∣∣∣
2

,

(4)

where the superscript (·)H denotes conjugate transpose. Fig-
ure 3 exemplarily shows the beam patterns corresponding to
an 8-element ULA with element spacing 3

4λ. The steering
direction is varied from u0 =−1,...,1. Due to violation of

Fig. 4. Modified beam pattern (MBP) for an ULA with inter ele-
ment spacing of 3

4
λ.

the spatial sampling theorem (van Trees, 2002), the region
for unambiguous DOA estimates is limited to |u0|< 1

3 as in-
dicated in Fig. 3.
It can be clearly seen from Fig. 3, that knowledge of

r(ũ) =R(ũ,u0 =−ũ) =

∣∣∣∣∣ 1
N

N∑
n=1

e−j 2πλ px,n2ũ

∣∣∣∣∣
2

(5)

with −1≤ ũ≤ 1, which represents the diagonal u0 =−u in
Fig. 3, allows for perfect reconstruction of all beam patterns1

R(u,u0) = r(ũ)|
ũ=

u−u0
2
. (6)

This means, that R(u,u0) can be reduced to r(ũ) without
any loss of information. Note that (6) is only valid for omni-
directional sensor elements. Non uniform element charac-
teristics are taken into account in the next subsection where
prior knowledge is considered.
The function r(ũ) from (5) is denoted as the modified beam
pattern (MBP), because it can be obtained from the beam
pattern by a simple rearrangement of the arguments u and
u0. Figure 4 plots the MBP for the same parameters as in
Fig. 3. Note that the region of unambiguous DOA estimates
can be identified as − 2

3 < ũ= u−u0
2 < 2

3 which leads to the
prior result |u0|< 1

3 for −1≤u≤ 1.

2.2 Definition of the a priori PDF

In many array signal processing applications, restrictive as-
sumptions can be made concerning the statistical properties
of the target’s DOA. Hence, the probability of appearance
or detection of a target at a certain direction u0 is not uni-
form for all possible target directions −1≤ u≤ 1. Often, a
target is more likely to appear near the array boresight than
laterally. Or there might be a certain region, e.g. in surveil-
lance applications, where the possibility of occurrence of a

1To distinguish between R(u,u0) and r(ũ), we use ũ instead of
u for notational convenience.
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Fig. 5. Different beta probability densities, transformed to u space,
from (8) with b= a for several values of ub and a.

target is near zero. In addition, incoming signals from certain
DOA’s can be damped by the use of hardware constraints like
blinds or radomes or by the influence of the array element
factor. Furthermore, there are applications like automotive
radar, where targets are actively illuminated by a transmit an-
tenna. Neglecting the influence of multi path scattering, the
DOA angular distribution directly corresponds to the beam
shape of the transmit antenna.
Thus, the mentioned characteristics directly or indirectly af-
fect the statistical properties of the target’s DOA. To account
for the mentioned effects, we introduce the the PDF pu0(u)
which represents the angular a priori information. In this
work, we focus (without loss of generality) on the beta dis-
tribution

p(v) =

{
1

B(a,b)v
a−1(1−v)b−1 0≤ v≤ 1

0 elsewise,
(7)

where B(a,b) =
∫ 1

0
va−1(1−v)b−1dv is the beta function.

The parameters a and b are real positive constants. A trans-
formation of the random variable v ∈ [0,1] to u space with
u∈ [−ub,ub], 0<ub≤ 1, results in

pu0(u) =

 1
2ubB(a,a)

[
u2
b−u

2

4u2
b

]a−1

−ub≤u≤ub
0 elsewise,

(8)

where a = b is chosen to assure a symmetric distribution
with mean µu0 = 0 and variance σ2

u0
= 1

4(2a+1) . Figure 5
plots the PDF from (8) for several values of ub and a. For
a= 1, the PDF is uniform, i.e., there is no prior information
about the DOA u0, except its restriction to the interval
[−ub,ub]. As a increases, the PDF becomes narrower.
To be consistent with the standard parameter estimation
theory, we still consider the target’s DOA u0 as a deter-
ministic parameter. Namely, we regard it as a realization
of a stochastic process with the PDF from (8). This
is an important assumption if theoretical bounds like the
Cramér-Rao lower bound on DOA estimation are considered.

Fig. 6. Criterion functions for deterministic Maximum Likelihood
(DML) and weighted deterministic Maximum Likelihood (WDML)
DOA estimation with the normalized beta distribution from (8)
(ub = 1, a= 3), which represents a priori knowledge about the tar-
get’s DOA.

2.3 Advantage of prior knowledge for DOA estimation:
weighted deterministic Maximum Likelihood esti-
mator

The derivation of the deterministic Maximum Likelihood
(DML) DOA estimator can be found, for instance, in (van
Trees, 2002). In this work, we focus on the single signal
case, i.e. the estimation of u0. Hence, the DML estimate of
u0 is given by

û0,DML = argmin
u
{L(u)}= argmax

u

{
L−1(u)

}
(9)

with the likelihood function

L(u) = tr
[
P⊥AR̂x

]
, u∈ [−1,1] (10)

where tr[·] is the trace operator and P⊥A is the projection
matrix P⊥A = I−A(u)

[
AH(u)A(u)

]−1
AH(u) onto the or-

thogonal complement of the column space of the steering
matrix A(u). Furthermore,

R̂x =
1
N

K∑
k=1

x(k)xH(k) (11)

is the estimated spatial correlation matrix.
Any prior knowledge about the target’s DOA statistical

properties can improve the DML DOA estimation. By sim-
ply weighting the likelihood function from (10) with the a
priori PDF from (8), we obtain the weighted deterministic
Maximum Likelihood (WDML) estimate

û0,WDML = argmax
u

{
L−α(u)pu0(u)

}
. (12)

Here, the real valued parameter α≥ 0 is used to control the
ratio of the prior and the data: the larger the value of α, the
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lower the influence of the prior on the estimate. Note that
(12) is the Maximum a posteriori estimator, if α represents
the amount of collected data, i.e. the product of snapshots
and channels α=KN (van Trees and Bell, 2007).
We will demonstrate this advantageous behavior with a quan-
titative example (see Fig. 6 for a graphical interpretation).
Again, we refer to the 8-element ULA with element spac-
ing 3

4λ and assume one impinging source from u0 = 1
2 . Due

to the ambiguity at u=− 5
6 , the DML estimator (see dashed

curve in Fig. 6) will probably provide a large estimation er-
ror. If, in addition, we assume, that the target’s DOA follows
a beta distribution as in (8) with a= 3, the WDML estimator
(see solid curves in Fig. 6) reduces the effect of the ambigu-
ity and provides the correct DOA estimate û0,WDML = 1

2 .

3 Optimization of the array geometry

In array geometry optimization, the objective function in
general exhibits a multi modal character, i.e., local optimiza-
tion routines might get stuck in local minima. Therefore, the
optimization of the array geometry in this work uses the evo-
lution strategy. A good survey of global optimization can
be found in (Weise, 2007). Evolution strategy belongs to
the family of evolutionary algorithms, which are based on
biology-inspired methods like mutation, crossover, selection
and survival of the fittest. In contrast to bit-encoded genetic
algorithms, evolution strategies explore a real valued param-
eter space.
The aim of this array geometry optimization is to identify
a better array geometry concerning DOA estimation for one
target, underlying a given a priori DOA PDF, compared to
the standard ULA with half wavelength element spacing.

3.1 Definition of the objective function

In the array geometry optimization task, an objective func-
tion f(px) : RN →R has to be identified. For this purpose,
we refer to the MBP (5) and the target’s DOA PDF (8). We
denote their product

g(px,ũ) = r(px,ũ)pu0(ũ) (13)

as weighted modified beam pattern (WMBP). To reduce the
fine error variance, i.e. the Cramér-Rao lower bound, the
main beam width has to be minimized. Therefore, the asso-
ciated objective function f(px) calculates the HPBW of the
WMBP from (13):

f(px) = HPBW[g(px,ũ)], (14)

which is evaluated numerically. To avoid an increased pos-
sibility of gross errors, care is taken to keep the SLL of the
WMBP below a threshold SLLthr. Thus, the array geometry
optimization results in the constrained minimization problem

min
px

f(px), s.t. SLL[g(px,ũ)]≤SLLthr. (15)

Fig. 7. Modified beam pattern (MBP) r(px,ũ), beta PDF pu0(ũ)
(ub = 0.5, a = 1), weighted modified beam pattern (WMBP)
g(px,ũ) with marked half-power beam width, which is used as ob-
jective function f(px) for array geometry optimization.

Figure 7 exemplarily illustrates the calculation of the objec-
tive function for the already mentioned 8-element ULA with
sensor spacing 3

4λ. At first, the product of the MBP and the
PDF provides the WMBP, following (13). Here, we use the
beta PDF from (8) with ub = 0.5 and a= 1. Note that the
SLL of the WMBP (SLL =−12.8 dB) is below the thresh-
old SLLthr =−10 dB. Therefore, the HPBW of the WMBP
is calculated using equation (14) with f(px) = ũ0,r− ũ0,l.

3.2 Optimization results

Three exemplary results of the geometry optimization will
now be presented in order to illustrate the accuracy of the
proposed objective function in conjunction with the evolu-
tion strategy. The DOA estimation performance for one sig-
nal in terms of the mean squared error (MSE) is evaluated
for each generated geometry and compared to the standard
ULA. The target’s DOA u0 is chosen to underlie the beta
PDF, whose parameters are specified in the respective exam-
ple. For DOA estimation, we use the WDML estimator from
(12) with α= 5, i.e., a high influence of the prior compared
to the Maximum a posteriori estimator is considered. Each
of the MSE curves is based on 6 ·104 Monte Carlo runs per
SNR simulation point. The number of snapshots is K = 10
and we consider array geometries with N = 8 sensor ele-
ments. The respective optimized array geometries, including
the standard ULA, are shown in Fig. 8.
In addition, the MSE performance plots also include the
asymptotic variance

σ2
DML =

1
2π2NU

1
SNR

(
1+

1
N

1
SNR

)
(16)

of the DML estimation error with the signal-to-noise ratio
defined in (2) and the variance of the element positions

U =
1
N

N∑
n=1

(
px,n−

1
N

N∑
m=1

px,m

)2

(17)
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Fig. 8. ULA a) and optimized array geometries with respect to b)
example 1, c) and d) example 2 and e) example 3.

(Athley, 2005) and (van Trees, 2002). Note that in the single
signal case, (16) is identical to the Cramér-Rao lower bound
for a stochastic signal s(k) (Stoica and Nehorai, 1990).

3.2.1 Example 1

We choose the beta PDF with ub = 1 and a= 1, i.e., the
DOA estimation should be unambiguous for the half space
−1≤u≤ 1. In addition, the SLL threshold is set to SLLthr =
−10 dB. The optimized geometry is shown in Fig. 8b). Fig-
ure 9 plots the WMBP of the standard ULA and the opti-
mized array. It can be seen that the ULA provides (near)
ambiguous DOA estimates for |ũ|> 0.9. The optimized ar-
ray, however, is unambiguous for the complete half space
and exhibits a reduced HPBW at the expense of a slightly in-
creased SLL. The associated DOA MSE curve is presented
in the bottom of Fig. 9. It can be clearly seen, that in the
case of ub = 1, i.e. a uniform distributed DOA u0 ∈ [−1,1],
the optimized array significantly outperforms the ULA due
to the effect of outliers. If the ULA’s ambiguous regions are
not taken into account, i.e. ub = 0.9, its asymptotic MSE im-
proves, but still does not reach the optimized array due to the
marginal difference of the beam widths. Furthermore, Fig.
9 also shows, that the WDML estimator asymptotically ap-
proaches the asymptotic variance of the DML estimator, as it
has been defined in (16).

3.2.2 Example 2

In this example, we assume that the signal’s DOA is limited
to −0.5≤u0≤ 0.5. Therefore, we choose the beta PDF with
ub = 0.5 and a= 1 (see Fig. 5). To avoid ambiguities inside
this region, the SLL is bounded above to SLLthr =−12 dB
and SLLthr =−8 dB, respectively. The optimized geometries
are shown in Fig. 8c) and d). Figure 10 plots the WMBP’s
for the ULA and the two optimized arrays. Due to the re-
duced DOA region, ambiguities outside of −0.5≤ u0 ≤ 0.5
can now be accepted, as they have no impact on DOA esti-

Fig. 9. Top: WMBP for example 1 for the standard ULA and the
optimized array. Bottom: DOA MSE performance of the WDML
estimator for example 1 for a single signal. The DOA u0 follows
the PDF from (8) with ub = 1 and ub = 0.9, respectively, and a= 1.

mation. This allows for an increased array aperture which
leads to a smaller HPBW. The MSE curves in Fig. 10 show
an improvement in terms of the SNR in the asymptotic re-
gion of 5 dB and 10 dB, respectively, compared to the ULA.

3.2.3 Example 3

Here, we assume a non-flat PDF with ub = 0.75 and a= 1.2,
which has already been plotted in Fig. 5. Thus, in con-
trast to the other examples, the distribution of the DOA
u0 ∈ [−ub,ub] is no longer uniform. Again, the optimized
array (see Fig. 8e) achieves a smaller HPBW at the expense
of an increased SLL (see Fig. 11). Thus, the asymptotic MSE
of the optimized array is reduced by 5.5 dB.

4 Conclusion

In this paper, a novel method of array geometry optimization
with the aim of DOA estimation improvement has been pre-
sented. Based on a modification of the standard beam pattern
and an angular a priori density function, an objective function
has been derived. By controlling the beam width and the SLL
of the modified beam pattern, the MSE curve of DOA esti-
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Fig. 10. Top: WMBP for example 2 for the standard ULA and the
optimized arrays. Bottom: DOA MSE performance of the WDML
estimator for example 2 for a single signal. The DOA u0 follows
the PDF from (8) with ub = 0.5 and a= 1.

mation is affected, while ambiguities are avoided. By the use
of the a priori PDF, we have demonstrated, how effects from
the "real world" like the DOA’s statistical properties, antenna
characteristics like the element factor and the transmit beam
pattern or hardware constraints like radomes or blinds can
easily be taken into account in the optimization process. Us-
ing an evolution strategy, we have presented four optimum
array geometries and evaluated their DOA estimation perfor-
mance. Compared to the standard ULA, it has been shown,
that the MSE can be significantly improved.
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