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Abstract—In multidimensional source localization based on  TDOA estimates of dferent sensor pairg, ) and the source
time difference of arrival (TDOA), it is difficult to identify the positionsp [5], [6]. The two solid line boxes in Fig. 1 show

direct-path TDOA among all TDOA estimates of one sensor  the two major steps of TDOA based source localization: TDOA
pair and to find the corresponding TDOA values belonging to  octimation and position estimation.

the same source among ferent sensor pairs. In this paper,

we present a graph based approach to solve this problem. It l(\/, E) lEm

relies on the concept of consistent graph whose sum of edge ~ L A

weights along all loops is zero. We introduce the concept of S | TImk : o! Gk - o o
consistent graph and reformulate the above TDOA matching task xa(t) 7l < = 1 << E | o= th
as a synthesis of consistent graphs. We prove the feasibility of a : 8 £ | 8 O | 5 e

bottom-u_p synthesis of consistent graphs by using fun_damental i (0) 3 = g I S % ik
loops. Finally, we present an fficient synthesis algorithm by o I : o s

exploiting a search in a compatibility-conflict graph.
Fig. 1. Major steps of TDOA based localization
. TDOA BASED LOCALIZATION
| ltidi ional localizati is interdste One serious problem of this approach is the ambiguity of
n muiidimensional Source localization, one IS inter TDOA estimation. According to Eq. (1), a cross-correlatadn

estimate the position of one or multiple sources in space fro (t) andxm(t) yields a number of TDOA estimatestat, —tm.
. Y LV
the temporal measurements of several sensors which samé@ar one sensor paiil(m). For the purpose of localization, only

the time-space wave field induced by the sources [1]. TWgical o direct path TDOATmkoo = tio — tmko IS Of interest and

Ks sources at the positiorgg e R® transmit the source signals 55 15 be identified among all TDOA estimates. In addition,
(0.1 < k < Ks which induce the multidimensional wave in the multiple source case, one needs to know which TDOA
field x(t, p) at time t and positionp € R®. An array of M egtimates from dierent sensor paird, ) belong to the same
sensors at the positions sample this wave field spatially source. Using a set of TDOA estimates fronffelient sources
and collectM sensor sighals,(t) = x(t,_pm),l <m< M. would lead to a wrong position estimate.

In an ideal reflection-free environment, the source sigRé)
arrives atmth sensor after a delay tfxo = ||pm—qk||/c where
c is the speed of propagation. A real environment ca@gs
additional reflections o$(t) also arriving atmth sensor . This
results in the signal model

Fig. 2 shows the GCC-PHAT of two microphone sig-
nals recorded in a small room with the reverberation time
tso ~# 300ms where two speakers were talking simultaneously
[7]. Ideally, one expects to see two peaks at the position
of true TDOA values of the two sources (dashed lines). In

Ks Qmk practice, the cross-correlation shows many local maxima du
Xm(t) = Z Z Ak Skt — tmk ) + Nin(t), (1)  to multipath propagation._ One may sel_ect for each sensor pai
k=1 1=0 the K(> Kg) largest maxima resulting ik TDOA estimates

Timk» 1L < k < K; but it is hard to identify the desired direct-
path TDOA among them and to find the set of corresponding
. A . TDOA estimates from dierent sensor pairs belonging to the
sensor noise. The task of localization is to estimate theceou o, o 56\ rce. Without this so called TDOA matching (dashed
posﬂmnsgk-f‘rom the measured signal(t) and the known line box in Fig. 1), there will be an exponentially increasin
sensor positiony, . number of possible TDOA combinations though we only need

If the source signals(t) are known like in the global Ks sets of TDOA estimates for position estimation.
positioning system (GPS), a cross-correlation betwrg(t) |
ands(t) returns an estimate for the time of arrival (TO#\)o. ﬂ

f )

If the source signals(t) are unknown as in acoustic source J\f | i m ,-’\M } i 1 ﬂ‘ %W\ Al
localization, there is no way to estimate the TOA. Instead, MH‘MWWMWAM gl w \M/VUMN!\J \IW\W i } MFU U\JM-\{\JW'
one estimates the timeftkrence of arrival (TDOA)mk00 = ' ‘u | ‘

tiko — tmko between the direct paths frokth source tdth and
mth sensor by a cross-correlation xft) and Xy (t) [2]. In the
literature, the so called generalized cross-correlatiith e
phase transform GCC-PHAT [3], [4] is widely used for this  Up to now, no @icient solutions are known for the TDOA
purpose. The source positiog& are then estimated from the matching. In this paper, we present a graph based approach t

wheretyy,, andan, denote the delay and amplitude loss along
uth path fromkth source tomth sensor.ny(t) denotes the

Fig. 2. GCC-PHAT of two microphone signals for two speakers iroom



solve this problem. It relies on the concept of consisteapgr the loop matrixB. It is given by
[7], [8]. Each vertex (node) of the graph represents onemens , I I | | | | I
m and each edge of the graph denotes one sensor Ipay. ( S S A S A

. ; . 1 1 0 o0 1 1 o
In the ideal case, each edge has one associated edge weight 1 0 1 0 0-1 1
corresponding to the TDOA, = t; —t,, of exactly one source _O 1 -1 0 -1 _0 1 3
for that sensor pair. Since all edge weights (TDOA values) 1 0 0 1 1 0 -1 )
stem from the same source and same direct paths, their cyclic
0

. ! " 0O 1 0-1 0 1 1
sum along any loop in the graph is zero by definition 0 1 1 1-1 0]

Tij+Tjk+...+mi=C-t)+{t -t +...+{t-t)=0. (2) for the graph in Fig. 3. It describes the relationship betwee
all loops in columns and alN edges in rows. If an edge is

This is equivalent to the 2. Kirchffitlaw for electrical circuits contained in a loop, the corresponding elemer iis marked
where the sum of voltages along any loop in the circuit is zerowith 1 if the edge and loop direction coincide et otherwise.

If the TDOA values in Eq. (2) stem from flierent sources A zero element irB indicates that the edge is not contained
andor different paths, Eq. (2) does not hold with probability in that loop. By using the loop matrix, a consistent graph is
one. This simple observation is the basic idea for TDOAeasily defined by

matching. It reduces a vast number of possible combinations B'w=0. (4)
of Timk to only a few solutionsG)’ satisfying Eq. (2). Note . . .
that this idea is not only valid for ierence of time arrival, The inner product ofv with each column oB is the sum of
but also for any other dierence measurements between two€d9€ weights along that loop.

sensors like dference of pOSition, VelOCity, electrical potential Unfortunate|y’ even a medium-size graph has a huge num-
etc. Hence it is widely applicable for a large number of sensoper of loops. For a complete graph with vertices, the total
fusion applications [8]. number of loops is

KU R

M
N =Y M (m—l)!’ 5
Il.  CONSISTENT GRAPH - rTb3(m) 2 ®)
jpee Appendix A for a proof. Table | lists the number of edges
and loops for a complete graph witfi vertices. Obviously,
checking the consistency @f along all loops is not practical.

In this section, we review the concept of consistent grap
introduced in [7], [8]. It is a mathematical abstraction bét
TDOA matching problem.

We consider a directed gragh= (V,E). V = {v1,...,vu} ,':l";fggéicses T L
is the set ofM vertices andE = {ey,....en} is the set ofN N =floops | 1| 7 | 37 | 556014 | 17107
directed edges. Since we need to check the zero sum condition Ny =H#1Ls I3[ 6 36 71
(2) a|0ng all Ioops of the graph we only consider connectedTAB'-E . NUMBER OF EDGES, LOOPS, AND INDEPENDENT LOOPS FOR A COMPLETE

! We Qg M
graphs where each pair of vertices is connected by at least CRAPHWITH T VERTICES

one path of the graph. One necessary condition for this is
N > M -1 [9]. If the graph is complete, i.e. each pair of  Fortunately, all loops (columns) of the loop matixcan
vertices is connected by an edg¢,= M- Fig. 3 shows be written as linear combinations of a small set of linearly
a complete graph with 4 vertices, 6 edges, and all 7 directethdependent loops (IL) oB. According to [10], the number
loopsly,...,ls. of linearly independent loops or the rank Bffor a connected
graph withM vertices andN edges iSN — M + 1. This means,
I we can always find a subset df. = N—- M + 1 columns in

P I3 l4
Vie< S5 ovg B which span the complete column spaceBflLet B, be
>e< / B l; ; an N x (N - M + 1) submatrix ofB containing a set of ILs.
53

& €4 A necessary and flicient condition forw being consistent is
Is -

then

Vi

lg I7
o2 X X Bl =0 ©)

If the edge weightsv (TDOA estimates) dftier from estimation

errors or noise, the sum of edge weights along a loop is not

) ) exactly zero. In this case, the condition (6) is replaced by
In a weighted grapfG” = (G,w) = (V,E,w), a weight BT wj| < & where|| - | is a suitable vector norm andl >

Wy € R is assigned to each edgs andw = [wi,...,wn]". 0 is a small threshold value. Sindé, < N, see Table I,

The sum of edge weights along a loop is calculated by takinghe computational complexity of (6) is significantly reddda

the loop and edge direction into account. If an edge showgomparison to (4). For the graph in Fig. 3, the rankBois 3.
the opposite direction as the loop, its weight is negatedrbef

entering into the sum. For example, the sum of edge weights  Note that for a given loop matrixB, there are many
for loop I1 in Fig. 3 iswy + W4 — W,. The graphGY is said to dlfferent possibilities to choose a set of ILs. A special case
be consistent if the sum of edge weights along all loop&in Of ILs is a set of fundamental loops (FL). While the ILs are
is zero. defined as linearly independent columns of the loop magrix
the FLs are typically defined in a geometrical way by using
A useful matrix representation of all loops in a graph isthe concept of spanning tree and cotree [9]. A spanning tree

Fig. 3. A complete graph with 4 vertices, 6 edges, and 7 loops



Gs = (Vs, E5) of a given connected grap8 = (V,E) is a Given the setdW,...,Wy of edge weights, the TDOA
subgraph withVs = V and Es ¢ E. It has M — 1 edges matching problem is to find matching combinations of edge
connecting all vertices G without closing any loop. The weightsw € Wy x ... x Wy in the sense of (6). This is a
subgraph ofG containing the remainingl — M + 1 edges is combinatorial problem. We call it the synthesis of consiste
called the cotreez. = (V. Ec;) of G with E. = E\Es. By graphs because, starting wity,..., Wy, a number of con-
adding each edge of the cotree to the spanning tree, one Histent graph$s)’ = (V,E,w,) are synthesized where eawh

is closed. Since the cotree hhls- M + 1 edges, a connected satisfies the consistency condition (6). Each consisteaplgr
graph with M vertices andN edges has exactlid - M +1 G/ is the input to estimate the position of one source.

FLs. The number of FLs is identical to the rankB®fand the

number of ILs. A brute force approach for the synthesis of consistent

graphs is to examine a[l'[,’;‘:l Kn (or KN if K, = K) weight

Fig. 4 shows the spanning tree (solid line), cotree (dashedombinations fow. The number of possible combinations in-
line) and the corresponding FLs for the graph in Fig. 3. Notecreases exponentially witd, making this approach intractable.
that there are dierent choices for the spanning tree, resultingFor a small array oM = 5 sensors andl = 10 sensor pairs,
in different cotrees and fiierent sets of FLs. In Fig. 4, the if one chooses th&, = K = 10 largest maxima of each cross-
breadth-first-search (BFS) spanning tree [9] is shown tap ancorrelation,KN = 10'° possible weight combinations have to
the depth-first-search (DFS) spanning tree is shown bottonie examined in order to localize a few sources.

The corresponding set of FLsfig, I, I3} for BFS and{l4, 14,15} To avoid this huge complexity, we propose to use a

for DFS. bottom-up synthesis approach. Starting with some snad-si
o< — —o o o o ——o connected subgraphs &, we first look for consistent weight
BFS: & AN FLs: A ‘\\ I3 combinations for each subgraph by checking all possible
N i |12~ weight combinations. The complexity of this exhaustiverclea
—> o> /> is small because each subgraph has a small number of edge
sz 2 et e Then the consistent subgraphs are successively combine
DFS: T v FLs: ~ a T Is together to larger consistent graphs. Here two importaasgu
VN R AN tions have to be answered: a) What kind of subgraphs should
o ——0 o——> o ——»0

we choose to start with? They should be easy to find for any
Fig. 4. Spanning tree (solid line), cotree (dashed line)fandamental loops ~ given graphG, should have a small nhumber of edges, and
for the graph in Fig. 3 should enable a bottom-up synthesis of consistent graphs. b
How can we ensure that a combination of consistent subgraph:
It is well known that each set of FLs is also a set of ILsautomatically leads to a larger consistent graph? The answe
[10]. This means, each set of FLs can also be used in EOr both questions is the use of FLs.
(6) to chec_k the consistency of a given edge we_|ght vewtor Let G¥ = (V,, E;,w) (i = 1,2) be two weighted subgraphs.
The op?olésll_te, _rll_(ﬁwever, Is not Lrue.r,lb\ SIEE th”‘s IS not alwaySr oy are said to be compatible if they have at least one
aseto s. The reason is that the FLs have some speci E
eometrical properties not shared by all ILs. By constoucti 8 mmon edge and all common edges @f and Gy have
9 hEL h prop " dae (f yth : y i r?m q identical edge weights imv, andw,. A combination of two
eac as exactly one edge (from the cotree) not share t%mpaﬁble weighted subgraphs results in a larger weighted
the other FLs. .The 3 Ipop{:tl,le,h} in Eq. (3) and Fig. 3, for raph GY, = (Viz, E1o,W,,). It is defined mathematically by
example, are linearly independent and thus form a set of IL Jnion oflzsetsvlz T Vl’U_\l/Zz Eyp = E UE, andw,, = w, Uw.
. - ’ - =12 — 1 =2
Fu;Itsze)(l)cacrEr:?rtia :ﬁé&leL?hﬁgcﬁzzen:a@g ecgglﬁo‘:f ﬁtgg EQ%. the union grapl&", contains all vertices, edges and edge
1 6 7 ’ 1 W W W W
spanning tree and cotree resulting in the set of Lk, I-. weights fromGy’ and G;. It Gy and G5 do not have any
7 common edges or at least one of their common edges has

In the next section, we will see that thisfldrence between - - -
: ’ . diff h h .
FLs and ILs will play a key role for the bottom-up synthesis different weights inw; andw,, they cannot not be combined

of consistent graphs. Fig. 5 shows two examples for the union of compatible
graphs. Clearly, a union of graphs introduces new loops not
present previously, e.g. those in dashed line. Thus thealent
[Il. B OTTOM-UP SYNTHESIS OF CONSISTENT GRAPHS guestion is whether the union gra@y, is consistent if both

. . : . GY andGY are consistent.
The previous section showed affigent way to examine 1 2

the consistency of a given edge weight veatowith respect Gw GV Gv

to a graphG = (V,E). w contains exactly one weight, for L « Z o« 2,
each edge,. But this is not the problem we want to solve. In 3 h ¢‘4\ 374
TDOA based localization, not a single TDOA value or weight a) | 2 U | 34N 2 v
wn, but a large set oK,, edge weight3\V, = (W1, ..., Wnk,} o—1i> —12—» VT;J.

is generated for each edgg. They correspond to the TDOA >
estimates or positions of peaks in the cross-correlatiotvof "—2—3 ° s 3 : x* 31
sensor signals, see section I. The nuneof selected peaks by 4 U >< 3 — 4><3 X
is usually chosen large enough to ensure tit contains le I . !

the K desired direct-path TDOA values of tHés sources. 1 1

The remaining TDOA values iV, originate from multipath  Fig. 5. a) a union of two consistent FLs is again consisteng kinion of
propagation and should be discarded. two consistent ILs is not always consistent



Fig. 5a shows the union of two loods and |, which b) \\ e
are members of the set of Flik, I, 13} in Fig. 4. They are a) /';145. Iy o o I
consistent and compatible because the common edbeaotd il M\t
[, share the same weight 1. It is easy to see that the union A2 N o~ .o

Fig. 5b shows the union of two other loopsandl;. They
are ILs, but not FLs as explained at the end of the previous
section. They are consistent and compatible because the two —> o

common diagonal edges &f andl; have the same weights 3 Fig. 6. a) A graph with 6 vertices and 9 edges; b) 4 FLs
and 4. Interestingly, the new dashed loop in the union graph

G}, is not consistent.

graphGY, including the new dashed loop is consistent again. 'c\

Each pair of vertices in5,. can take exactly one of three
This example illustrates one importantidrence between possible states: a) compatibility state: Both consisteln$ F
ILs and FLs. A union of compatible and consistent FLsassociated to the pair of vertices have at least one commor
seems to result automatically in a larger consistent grépb.  edge and all common edges have identical edge weights.
following theorem states that this is indeed generally.tB¥  These two compatible vertices are connected by a solid line
combining all compatible and consistent FLs of a given graphedge, a compatibility edge, and can be combined together,

a largest possible consistent graph can be synthesized. Thi.g. {“ % ). The setE contains all compatibility edges. b)
bottom-up synthesis is not possible by combining competibl conflict state: Both consistent FLs have at least one common

and consistent ILs. edge with diferent edge weights. They are connected by a
Theorem 1: Given a connected grap® and a set of FLs dashed line edge, a conflict edge, and are not allowed for
L={ly,-- Iy, }. Let Li (i = 1,2) be two disjoint subsets df combination at all, e.g.1{,,I5;). The setE. contains all

andG; = U, | be the union of FLs fronk,. If G; andG, are conflict edges. c) open state: Both consistent FLs have no
connected and have at least one common edge, th8pap,  cOmMmon edges. They are not connected in the cc-graph anc
is connected as well; b) all common edgesGpnandG, are  have an open relationship, e.4g£15,) or (13.13;). They can
connected; c); UL, forms a set of FLs fo5; UGy; d) If GY be combined later over other compatible consistent FLs (e.g
andGY are consistent and compatible, thelf U GY is also 15, =131 —135) or not (e.g.I7,.13).

consistent. - -

Proof: see Appendix A.

IV. COMPATIBILITY-CONFLICT GRAPH

The previous section proved a theorem which enables
a bottom-up synthesis of consistent graphs by combining
compatible and consistent FLs. But the theorem does naigell
how to do this combination. This section presents an alyuorit
for this purpose. The basic idea of the algorithm is to regmes
the relationship between all found consistent FLs in terfns o
a new graphical representation, a called compatibilityfiact
graph or simply cc-graph. Fig. 7. The cc-graplG.. for the consistent FLs in Fig. 6

Conflict graphs are well known in the graph theory [11], The cc-graph is a comprehensive graphical description
[12], [13]. They are also known under the name independerdbout which consistent FLs are compatible and combinable,
set or stable set [14]. Two vertices in conflict are connectedvhich ones are in conflict and not combinable, and which
by an edge and vertices without conflict are disconnected. Ownes have disjoint edges. The task now is to find maximally
cc-graph is an extension of conflict graph and introduces @onnected sets of vertices i@, which are connected by
third new state between two vertices. compatibility edges only. Each such solution set is a unibn o

For illustration, Fig. 6a shows an incomplete graphvith compatible and consistent FLs and is, according to Theorem

X " o1 .
M = 6 vertices andN = 9 edges. Each vertex represents al, a larger consistent grapB). It satisfies the consistency

sensor and each edge represents a sensor pair. The spann?ﬁgt?(;ﬂonség) F"’}gd 1'5 ItrrlleFiISle?t f'cc;lre:gearseout:/(\;g gggglc;glﬁtsig;w

tree of G is drawn in solid line and the cotree in dashed line.""2"'% A '
By appending one edge of the cotree to the spanning tre§€SCL = {I11:155. 135,171} and G5 = {175, 17,13, }. The first
one FL is closed. In totals hasNy = N— M +1 =4 FLs  solution setG}’ results in a fully consistent graph containing
l1,....1s, see Fig. 6b. Obviously, each pair of FLs share at@ll 9 edges of the given graph in Fig. 6a. The second solution
least one common edge except fox, Is). setG) leads to a partially consistent graph containing only 8
. ) . o . edges of the graph in Fig. 6a because the top cotree edge o
Assume thaK; consistent weight combinations or consis- F| 7, is missing.

tent FLs f}”k have been found for theth FL I; (1 < k <
Igi,l < i < Ni). For the 4 FLs in Fig. 6b, we assume
Ki = K2 = K3 = 2 andK4 = 1. Each consistent FIJ;”Vk
represents a vertex in the cc-gra@3. = (Vec, Ecc, Eec) and

there is a total number ozi’\':'Ll Ki = 7 vertices, see Fig. 7. e The solution se‘é‘liV should be maximally connected,

To find these solution sets from the cc-graph is again a
non-trivial combinatorial problem. The desired algorittivas
to fulfill the following requirements:



i.e. as large as possible. In the ideal case, a solution (V; E)

T wn R <) %

. L S 2 =Rt @ Aw
set leads to a fully consistent graph containing all L So |i,k 08 | Ge o Gy
given edges (sensor pairs) @f Frequently, a partially © = § =) 8 —
consistent graph is found which contains only a subset — 5 E o S 3 O
of the edges 06. Such a partially consistent graph is ~ TImk L ©

also useful for source localization.
Fig. 8. Steps of synthesis of consistent graphs

e All possible solution sets should be found.

 No redundant solution sets which are part of othercompinations and wrong position estimates. They are, hewev
solution sets should be found. not reported in this paper due to limited space.

In [15], such an algorithm was presented which is an
extension of the conflict graph algorithm in [16] to a cc-drap
Itis shown as cc-graph search (CCGsearch) in Algorithm 1. It | this paper, we presented a graph based approach to finc
is a recursive algorithm CCGsearChy, V, L, X) operating ona  matching TDOA estimates from fiierent sensor pairs to assist
given cc-graphGec. During any instance of the recursiovi,is  TDOA based source localization. We reviewed the concept of
the set of currently considered vertices fr@g (not the set of  consistent graphs and fundamental loops. We gave a proof for

vertices of the consistent graph in section L)is the current  the hottom-up synthesis of consistent graphs and presented
solution set of found compatible vertices, aXds the set of  efficient synthesis algorithm.

of vertices already visited which should be skipped now. The

algorithm is initiated with CCGseardB{, Vg, 0, 0) whereVec

is the set of all vertices iG¢.. The termNy(L) in CCGsearch

denotes the set of vertices frovhwhich are compatible to at Proof of Eq. (5)
least one vertex from the solution setand have no conflict \We consider a loop containingy > 3 vertices. There are

to any vertices fromL. Similarly, Nv(L) denotes the set of m) different sets ofn from M vertices. For each set afi
vertices fromV which have conflict to at least one vertex in yertices. say{Vi, ..., Vm}, there arem! possible permutations.

V. CONCLUSIONS

APPENDIX

L. For more details, we refer to [15]. But many of these permutations result in the same loopn a)
cyclic permutationsviVs ...V, Vo...VimV1) ... VmVi...Vim1

Algorithm 1 CCGsearch algorithm result in the same loop; b) 2 reversed permutations. . . Vi

1: CCGsearcllbe, V, L, X) andVyVm-1 ... vy also lead to the same loop. Hence there are

2: determineNy (L) and Ny(L) m _ @D different loops for each set oh vertices. The

3. if Ny(L) = 0 then total number of loops is given in Eq. (5).

4. savelL % save solutiorL

5: else J Proof of Theorem 1

. _ o . .

3 ?ér_nve\Nva((LL))\ X do %o remove conflict neighbours The fact a) is trivial. Sinc&; andG; are connected and they

8- CCGsearct®e, V \ n, LU n, X) share at least on common ed@®, U G, is connected, too.

o: X=Xun % mark vertexn as visited The proof of b) is done by a contradiction. Fig. 9 shows
10:  end for two common edges; ande; (solid line) in two graph&s; and

11: end if G,. We assume tha ande, are not connected. Sin€, and

G, are unions of two subsets of the same Fysande, must

Fig. 8 illustrates the steps of synthesis of consistentrgzap Originate from the spanning tree Gi Since the spanning tree
for the TDOA matching in Fig. 1. Starting with a given IS connected by definition, there must be a pptas a part of
connected graplG = (V,E) with M vertices andN edges, he spanning tree connectiegande,. If G, andG; share the
a suitable set oNy, = N — M + 1 FLs |; is chosen. For Same pathp, e; and_ez are connected by which contradicts
each FLI;,1 < i < Ny, the TDOA estimates)jy from the the ab_ove assumptlon_. &, has a diferent pa_thq from the
cross-correlations of fierent sensor pairs, () are examined ~SPanning tree connectirgy ande,, then there is a loop —q
to look for consistent weight combinations or consistens FL In the spanning tree which contradicts the definition of the
r;lvk’l <i< NLl1<k< K. Al ZiNzlLl K. consistent FLs SPanning tree. Thus, ande, must be connected.
form the vertices of a cc-grapBe whose three types of e g\ &
edges (compatibility, conflict, open) define the relatiopsh G e — G2 e : Sem——
between all consistent FLs. Finally, the CCGsearch algarit ~,7p ~,P
is applied to find all maximally connected sets of compatible
and consistent FLs. They are the desired consistent graph®- 9. Two common edges;, &; in two graphsGy, Gz
Gy. Each of them is the input to localize one source. The . .
complete MATLAB code for synthesis of consistent graphs  The fact c) follows by counting the number of vertices,

can be downloaded from www.iss.uni-stuttgartdtevnioag. ~ €d9es, and FLs i1, Gz, and G, U Gz. Assume thal; has
M; vertices, N; edges and\; - M; + 1 FLs ( = 1,2). We

Extensive experiments have shown that this graph basealso assume thaB; and G, have c common edges. These
approach for TDOA matching has a low computational com-c common edges are connected according to b), but do not
plexity and significantly reduces the number of possible FDO close any loops because they are part of the spanning t@e of



Hencec common edges implg+1 common vertices i and
G,. The union grapls; UG, has thusMi, = M+ My —(c+1)
vertices,N;2 = N; + N — ¢ edges, andNijo — Mo+ 1= (N; —
M1 + 1)+ (N2 — Mz + 1)) FLs. The number of FLs i, U G,
is exactly the sum of the numbers of FLs @&y andG,. In
other words, the FLs is; andG, also form a set of FLs for
G, UGs,.
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The fact d) immediately follows from c).
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