
A graph-based approach to assist TDOA based
localization

Bin Yang and Martin Kreißig
Institute of Signal Processing and System Theory, University of Stuttgart, Germany

Email: {bin.yang, martin.kreissig}@iss.uni-stuttgart.de

Abstract—In multidimensional source localization based on
time difference of arrival (TDOA), it is difficult to identify the
direct-path TDOA among all TDOA estimates of one sensor
pair and to find the corresponding TDOA values belonging to
the same source among different sensor pairs. In this paper,
we present a graph based approach to solve this problem. It
relies on the concept of consistent graph whose sum of edge
weights along all loops is zero. We introduce the concept of
consistent graph and reformulate the above TDOA matching task
as a synthesis of consistent graphs. We prove the feasibility of a
bottom-up synthesis of consistent graphs by using fundamental
loops. Finally, we present an efficient synthesis algorithm by
exploiting a search in a compatibility-conflict graph.

I. TDOA based localization

In multidimensional source localization, one is interested to
estimate the position of one or multiple sources in space from
the temporal measurements of several sensors which sample
the time-space wave field induced by the sources [1]. Typically,
Ks sources at the positionsq

k
∈ R3 transmit the source signals

sk(t),1 ≤ k ≤ Ks which induce the multidimensional wave
field x(t, p) at time t and positionp ∈ R3. An array of M
sensors at the positionsp

m
sample this wave field spatially

and collectM sensor signalsxm(t) = x(t, p
m
),1 ≤ m ≤ M.

In an ideal reflection-free environment, the source signalsk(t)
arrives atmth sensor after a delay oftmk,0 = ‖pm

−q
k
‖/c where

c is the speed of propagation. A real environment causesQmk
additional reflections ofsk(t) also arriving atmth sensor . This
results in the signal model

xm(t) =
Ks
∑

k=1

Qmk
∑

µ=0

amk,µsk(t − tmk,µ) + nm(t), (1)

wheretmk,µ andamk,µ denote the delay and amplitude loss along
µth path from kth source tomth sensor.nm(t) denotes the
sensor noise. The task of localization is to estimate the source
positionsq

k
from the measured signalsxm(t) and the known

sensor positionsp
m
.

If the source signalssk(t) are known like in the global
positioning system (GPS), a cross-correlation betweenxm(t)
andsk(t) returns an estimate for the time of arrival (TOA)tmk,0.
If the source signalssk(t) are unknown as in acoustic source
localization, there is no way to estimate the TOA. Instead,
one estimates the time difference of arrival (TDOA)τlm,k,00 =

tlk,0− tmk,0 between the direct paths fromkth source tolth and
mth sensor by a cross-correlation ofxl(t) and xm(t) [2]. In the
literature, the so called generalized cross-correlation with the
phase transform GCC-PHAT [3], [4] is widely used for this
purpose. The source positionsq

k
are then estimated from the

TDOA estimates of different sensor pairs (l,m) and the source
positionsp

m
[5], [6]. The two solid line boxes in Fig. 1 show

the two major steps of TDOA based source localization: TDOA
estimation and position estimation.

...
...

...
...

T
D

O
A

es
tim

at
io

n

T
D

O
A

m
at

ch
in

g

po
si

tio
n

es
tim

at
io

n

x1(t)

xM(t)

q̂1

q̂Ks

τ̂lm,k Ĝw
k

(V, E) p
m

Fig. 1. Major steps of TDOA based localization

One serious problem of this approach is the ambiguity of
TDOA estimation. According to Eq. (1), a cross-correlationof
xl(t) andxm(t) yields a number of TDOA estimates attlk,µ−tmk,ν
for one sensor pair (l,m). For the purpose of localization, only
the direct path TDOAτlm,k,00 = tlk,0 − tmk,0 is of interest and
has to be identified among all TDOA estimates. In addition,
in the multiple source case, one needs to know which TDOA
estimates from different sensor pairs (l,m) belong to the same
source. Using a set of TDOA estimates from different sources
would lead to a wrong position estimate.

Fig. 2 shows the GCC-PHAT of two microphone sig-
nals recorded in a small room with the reverberation time
t60 ≈ 300ms where two speakers were talking simultaneously
[7]. Ideally, one expects to see two peaks at the position
of true TDOA values of the two sources (dashed lines). In
practice, the cross-correlation shows many local maxima due
to multipath propagation. One may select for each sensor pair
the K(≫ Ks) largest maxima resulting inK TDOA estimates
τ̂lm,k,1 ≤ k ≤ K; but it is hard to identify the desired direct-
path TDOA among them and to find the set of corresponding
TDOA estimates from different sensor pairs belonging to the
same source. Without this so called TDOA matching (dashed
line box in Fig. 1), there will be an exponentially increasing
number of possible TDOA combinations though we only need
Ks sets of TDOA estimates for position estimation.

Fig. 2. GCC-PHAT of two microphone signals for two speakers ina room

Up to now, no efficient solutions are known for the TDOA
matching. In this paper, we present a graph based approach to



solve this problem. It relies on the concept of consistent graph
[7], [8]. Each vertex (node) of the graph represents one sensor
m and each edge of the graph denotes one sensor pair (l,m).
In the ideal case, each edge has one associated edge weight
corresponding to the TDOAτlm = tl− tm of exactly one source
for that sensor pair. Since all edge weights (TDOA values)
stem from the same source and same direct paths, their cyclic
sum along any loop in the graph is zero by definition

τi j + τ jk + . . . + τli = (ti − t j) + (t j − tk) + . . . + (tl − ti) = 0. (2)

This is equivalent to the 2. Kirchhoff law for electrical circuits
where the sum of voltages along any loop in the circuit is zero.
If the TDOA values in Eq. (2) stem from different sources
and/or different paths, Eq. (2) does not hold with probability
one. This simple observation is the basic idea for TDOA
matching. It reduces a vast number of possible combinations
of τ̂lm,k to only a few solutionsĜw

k satisfying Eq. (2). Note
that this idea is not only valid for difference of time arrival,
but also for any other difference measurements between two
sensors like difference of position, velocity, electrical potential
etc. Hence it is widely applicable for a large number of sensor
fusion applications [8].

II. Consistent graph

In this section, we review the concept of consistent graph
introduced in [7], [8]. It is a mathematical abstraction of the
TDOA matching problem.

We consider a directed graphG = (V, E). V = {v1, . . . , vM}
is the set ofM vertices andE = {e1, . . . , eN} is the set ofN
directed edges. Since we need to check the zero sum condition
(2) along all loops of the graph, we only consider connected
graphs where each pair of vertices is connected by at least
one path of the graph. One necessary condition for this is
N ≥ M − 1 [9]. If the graph is complete, i.e. each pair of
vertices is connected by an edge,N = M(M−1)

2 . Fig. 3 shows
a complete graph with 4 vertices, 6 edges, and all 7 directed
loops l1, . . . , l7.

•v1 •v2

•v3•v4

e1

e2
e3 e4

e5

e6

l1 l2 l3 l4

l5 l6 l7

Fig. 3. A complete graph with 4 vertices, 6 edges, and 7 loops

In a weighted graphGw = (G,w) = (V, E,w), a weight
wn ∈ R is assigned to each edgeen and w = [w1, . . . ,wN ]T .
The sum of edge weights along a loop is calculated by taking
the loop and edge direction into account. If an edge shows
the opposite direction as the loop, its weight is negated before
entering into the sum. For example, the sum of edge weights
for loop l1 in Fig. 3 is w1 + w4 − w2. The graphGw is said to
be consistent if the sum of edge weights along all loops inG
is zero.

A useful matrix representation of all loops in a graph is

the loop matrixB. It is given by

B =























































l1 l2 l3 l4 l5 l6 l7
e1 1 1 0 0 1 1 0
e2 −1 0 1 0 0 −1 1
e3 0 −1 −1 0 −1 0 −1
e4 1 0 0 1 1 0 −1
e5 0 1 0 −1 0 1 1
e6 0 0 1 1 1 −1 0























































(3)

for the graph in Fig. 3. It describes the relationship between
all loops in columns and allN edges in rows. If an edge is
contained in a loop, the corresponding element inB is marked
with 1 if the edge and loop direction coincide or−1 otherwise.
A zero element inB indicates that the edge is not contained
in that loop. By using the loop matrix, a consistent graph is
easily defined by

BT w = 0. (4)

The inner product ofw with each column ofB is the sum of
edge weights along that loop.

Unfortunately, even a medium-size graph has a huge num-
ber of loops. For a complete graph withM vertices, the total
number of loops is

NL =
M
∑

m=3

(

M
m

)

(m−1)!
2 , (5)

see Appendix A for a proof. Table I lists the number of edges
and loops for a complete graph withM vertices. Obviously,
checking the consistency ofw along all loops is not practical.

M = ♯ vertices 3 4 5 10 20
N = ♯ edges 3 6 10 45 190
NL = ♯ loops 1 7 37 556014 1.7 · 1017

NIL = ♯ ILs 1 3 6 36 171
TABLE I. Number of edges, loops, and independent loops for a complete

graph with M vertices

Fortunately, all loops (columns) of the loop matrixB can
be written as linear combinations of a small set of linearly
independent loops (IL) ofB. According to [10], the number
of linearly independent loops or the rank ofB for a connected
graph withM vertices andN edges isN −M +1. This means,
we can always find a subset ofNIL = N − M + 1 columns in
B which span the complete column space ofB. Let BIL be
an N × (N − M + 1) submatrix ofB containing a set of ILs.
A necessary and sufficient condition forw being consistent is
then

BT
IL w = 0. (6)

If the edge weightsw (TDOA estimates) suffer from estimation
errors or noise, the sum of edge weights along a loop is not
exactly zero. In this case, the condition (6) is replaced by
‖BT

IL w‖ ≤ δ where ‖ · ‖ is a suitable vector norm andδ >
0 is a small threshold value. SinceNIL ≪ NL , see Table I,
the computational complexity of (6) is significantly reduced in
comparison to (4). For the graph in Fig. 3, the rank ofB is 3.

Note that for a given loop matrixB, there are many
different possibilities to choose a set of ILs. A special case
of ILs is a set of fundamental loops (FL). While the ILs are
defined as linearly independent columns of the loop matrixB,
the FLs are typically defined in a geometrical way by using
the concept of spanning tree and cotree [9]. A spanning tree



Gs = (Vs, Es) of a given connected graphG = (V, E) is a
subgraph withVs = V and Es ⊂ E. It has M − 1 edges
connecting all vertices inG without closing any loop. The
subgraph ofG containing the remainingN − M + 1 edges is
called the cotreeGc = (Vc, Ec) of G with Ec = E\Es. By
adding each edge of the cotree to the spanning tree, one FL
is closed. Since the cotree hasN − M + 1 edges, a connected
graph with M vertices andN edges has exactlyN − M + 1
FLs. The number of FLs is identical to the rank ofB and the
number of ILs.

Fig. 4 shows the spanning tree (solid line), cotree (dashed
line) and the corresponding FLs for the graph in Fig. 3. Note
that there are different choices for the spanning tree, resulting
in different cotrees and different sets of FLs. In Fig. 4, the
breadth-first-search (BFS) spanning tree [9] is shown top and
the depth-first-search (DFS) spanning tree is shown bottom.
The corresponding set of FLs is{l1, l2, l3} for BFS and{l1, l4, l5}
for DFS.

BFS:

• •

••
FLs:

l1• •

•

l2• •

•
l3

•

••

DFS:

• •

••
FLs:

l1• •

•
l4

•

••
l5

• •

••

Fig. 4. Spanning tree (solid line), cotree (dashed line) andfundamental loops
for the graph in Fig. 3

It is well known that each set of FLs is also a set of ILs
[10]. This means, each set of FLs can also be used in Eq.
(6) to check the consistency of a given edge weight vectorw.
The opposite, however, is not true. A set of ILs is not always
a set of FLs. The reason is that the FLs have some special
geometrical properties not shared by all ILs. By construction,
each FL has exactly one edge (from the cotree) not shared by
the other FLs. The 3 loops{l1, l6, l7} in Eq. (3) and Fig. 3, for
example, are linearly independent and thus form a set of ILs.
But they are not a set of FLs because each edge of the loop
l1 also occurs inl6 and/or l7. This means, we cannot find a
spanning tree and cotree resulting in the set of FLsl1, l6, l7.
In the next section, we will see that this difference between
FLs and ILs will play a key role for the bottom-up synthesis
of consistent graphs.

III. Bottom-up synthesis of consistent graphs

The previous section showed an efficient way to examine
the consistency of a given edge weight vectorw with respect
to a graphG = (V, E). w contains exactly one weightwn for
each edgeen. But this is not the problem we want to solve. In
TDOA based localization, not a single TDOA value or weight
wn, but a large set ofKn edge weightsWn = {wn,1, . . . ,wn,Kn }
is generated for each edgeen. They correspond to the TDOA
estimates or positions of peaks in the cross-correlation oftwo
sensor signals, see section I. The numberKn of selected peaks
is usually chosen large enough to ensure thatWn contains
the Ks desired direct-path TDOA values of theKs sources.
The remaining TDOA values inWn originate from multipath
propagation and should be discarded.

Given the setsW1, . . . ,WN of edge weights, the TDOA
matching problem is to find matching combinations of edge
weights w ∈ W1 × . . . × WN in the sense of (6). This is a
combinatorial problem. We call it the synthesis of consistent
graphs because, starting withW1, . . . ,WN , a number of con-
sistent graphsĜw

k = (V, E,wk) are synthesized where eachwk
satisfies the consistency condition (6). Each consistent graph
Ĝw

k is the input to estimate the position of one source.

A brute force approach for the synthesis of consistent
graphs is to examine all

∏N
n=1 Kn (or KN if Kn = K) weight

combinations forw. The number of possible combinations in-
creases exponentially withN, making this approach intractable.
For a small array ofM = 5 sensors andN = 10 sensor pairs,
if one chooses theKn = K = 10 largest maxima of each cross-
correlation,KN = 1010 possible weight combinations have to
be examined in order to localize a few sources.

To avoid this huge complexity, we propose to use a
bottom-up synthesis approach. Starting with some small-size
connected subgraphs ofG, we first look for consistent weight
combinations for each subgraph by checking all possible
weight combinations. The complexity of this exhaustive search
is small because each subgraph has a small number of edges.
Then the consistent subgraphs are successively combined
together to larger consistent graphs. Here two important ques-
tions have to be answered: a) What kind of subgraphs should
we choose to start with? They should be easy to find for any
given graphG, should have a small number of edges, and
should enable a bottom-up synthesis of consistent graphs. b)
How can we ensure that a combination of consistent subgraphs
automatically leads to a larger consistent graph? The answer
for both questions is the use of FLs.

Let Gw
i = (Vi, Ei,wi) (i = 1,2) be two weighted subgraphs.

They are said to be compatible if they have at least one
common edge and all common edges ofGw

1 and Gw
2 have

identical edge weights inw1 and w2. A combination of two
compatible weighted subgraphs results in a larger weighted
graph Gw

12 = (V12, E12,w12). It is defined mathematically by
union of sets:V12 = V1∪V2, E12 = E1∪E2 andw12 = w1∪w2,
i.e. the union graphGw

12 contains all vertices, edges and edge
weights from Gw

1 and Gw
2 . If Gw

1 and Gw
2 do not have any

common edges or at least one of their common edges has
different weights inw1 andw2, they cannot not be combined.

Fig. 5 shows two examples for the union of compatible
graphs. Clearly, a union of graphs introduces new loops not
present previously, e.g. those in dashed line. Thus the central
question is whether the union graphGw

12 is consistent if both
Gw

1 andGw
2 are consistent.

a) ∪ → √
Gw

1

l1• •

•

1

3
2

Gw
2

l2• •

•

1

5 4

Gw
12

• •

••

1

3
5 24

b) ∪ → ×
l6• •

••

1

3
4

2

l7• •

••
3

4 34

• •

••

1

3
4 34

2

Fig. 5. a) a union of two consistent FLs is again consistent; b) a union of
two consistent ILs is not always consistent



Fig. 5a shows the union of two loopsl1 and l2 which
are members of the set of FLs{l1, l2, l3} in Fig. 4. They are
consistent and compatible because the common edge ofl1 and
l2 share the same weight 1. It is easy to see that the union
graphGw

12 including the new dashed loop is consistent again.
Fig. 5b shows the union of two other loopsl6 and l7. They
are ILs, but not FLs as explained at the end of the previous
section. They are consistent and compatible because the two
common diagonal edges ofl6 and l7 have the same weights 3
and 4. Interestingly, the new dashed loop in the union graph
Gw

12 is not consistent.

This example illustrates one important difference between
ILs and FLs. A union of compatible and consistent FLs
seems to result automatically in a larger consistent graph.The
following theorem states that this is indeed generally true. By
combining all compatible and consistent FLs of a given graph,
a largest possible consistent graph can be synthesized. This
bottom-up synthesis is not possible by combining compatible
and consistent ILs.

Theorem 1: Given a connected graphG and a set of FLs
L = {l1, · · · , lNIL }. Let Li (i = 1,2) be two disjoint subsets ofL
andGi = ∪l∈Li l be the union of FLs fromLi. If G1 andG2 are
connected and have at least one common edge, then a)G1∪G2
is connected as well; b) all common edges inG1 andG2 are
connected; c)L1∪L2 forms a set of FLs forG1∪G2; d) If Gw

1
and Gw

2 are consistent and compatible, thenGw
1 ∪ Gw

2 is also
consistent.

Proof: see Appendix A.

IV. Compatibility-conflict graph

The previous section proved a theorem which enables
a bottom-up synthesis of consistent graphs by combining
compatible and consistent FLs. But the theorem does not tellus
how to do this combination. This section presents an algorithm
for this purpose. The basic idea of the algorithm is to represent
the relationship between all found consistent FLs in terms of
a new graphical representation, a called compatibility-conflict
graph or simply cc-graph.

Conflict graphs are well known in the graph theory [11],
[12], [13]. They are also known under the name independent
set or stable set [14]. Two vertices in conflict are connected
by an edge and vertices without conflict are disconnected. Our
cc-graph is an extension of conflict graph and introduces a
third new state between two vertices.

For illustration, Fig. 6a shows an incomplete graphG with
M = 6 vertices andN = 9 edges. Each vertex represents a
sensor and each edge represents a sensor pair. The spanning
tree ofG is drawn in solid line and the cotree in dashed line.
By appending one edge of the cotree to the spanning tree,
one FL is closed. In total,G has NIL = N − M + 1 = 4 FLs
l1, . . . , l4, see Fig. 6b. Obviously, each pair of FLs share at
least one common edge except for (l2, l3).

Assume thatK̃i consistent weight combinations or consis-
tent FLs l̂wi,k have been found for thei-th FL li (1 ≤ k ≤
K̃i,1 ≤ i ≤ NIL ). For the 4 FLs in Fig. 6b, we assume
K̃1 = K̃2 = K̃3 = 2 and K̃4 = 1. Each consistent FL̂lwi,k
represents a vertex in the cc-graphGcc = (Vcc, Ecc, Ēcc) and
there is a total number of

∑NIL
i=1 K̃i = 7 vertices, see Fig. 7.

a)

•

•

•

•

•

•
l1l2

l3

l4
b)

•

•
•

l1

•

•

• l2

•

•

•
l3 •

•
• •

l4

Fig. 6. a) A graph with 6 vertices and 9 edges; b) 4 FLs

Each pair of vertices inGcc can take exactly one of three
possible states: a) compatibility state: Both consistent FLs
associated to the pair of vertices have at least one common
edge and all common edges have identical edge weights.
These two compatible vertices are connected by a solid line
edge, a compatibility edge, and can be combined together,
e.g. (̂lw1,1, l̂

w
2,2). The setEcc contains all compatibility edges. b)

conflict state: Both consistent FLs have at least one common
edge with different edge weights. They are connected by a
dashed line edge, a conflict edge, and are not allowed for
combination at all, e.g. (l̂w1,1, l̂

w
2,1). The set Ēcc contains all

conflict edges. c) open state: Both consistent FLs have no
common edges. They are not connected in the cc-graph and
have an open relationship, e.g. (l̂w2,2, l̂

w
3,1) or (l̂w2,2, l̂

w
3,2). They can

be combined later over other compatible consistent FLs (e.g.
l̂w2,2 − l̂w1,1 − l̂w3,2) or not (e.g.l̂w2,2, l̂

w
3,1).

•

•

• •

•

•

•

l̂w1,1

l̂w1,2

l̂w2,1 l̂w2,2

l̂w3,1

l̂w3,2

l̂w4,1

Fig. 7. The cc-graphGcc for the consistent FLs in Fig. 6

The cc-graph is a comprehensive graphical description
about which consistent FLs are compatible and combinable,
which ones are in conflict and not combinable, and which
ones have disjoint edges. The task now is to find maximally
connected sets of vertices inGcc which are connected by
compatibility edges only. Each such solution set is a union of
compatible and consistent FLs and is, according to Theorem
1, a larger consistent grapĥGw

k . It satisfies the consistency
condition (6) and is the input for the source position esti-
mation, see Fig. 1. In Fig. 7, there are two such solution
setsĜw

1 = {l̂
w
1,1, l̂

w
2,2, l̂

w
3,2, l̂

w
4,1} and Ĝw

2 = {l̂
w
1,2, l̂

w
2,1, l̂

w
3,1}. The first

solution setĜw
1 results in a fully consistent graph containing

all 9 edges of the given graph in Fig. 6a. The second solution
set Ĝw

2 leads to a partially consistent graph containing only 8
edges of the graph in Fig. 6a because the top cotree edge of
FL l4 is missing.

To find these solution sets from the cc-graph is again a
non-trivial combinatorial problem. The desired algorithmhas
to fulfill the following requirements:

• The solution setĜw
k should be maximally connected,



i.e. as large as possible. In the ideal case, a solution
set leads to a fully consistent graph containing all
given edges (sensor pairs) ofG. Frequently, a partially
consistent graph is found which contains only a subset
of the edges ofG. Such a partially consistent graph is
also useful for source localization.

• All possible solution sets should be found.

• No redundant solution sets which are part of other
solution sets should be found.

In [15], such an algorithm was presented which is an
extension of the conflict graph algorithm in [16] to a cc-graph.
It is shown as cc-graph search (CCGsearch) in Algorithm 1. It
is a recursive algorithm CCGsearch(Gcc,V, L, X) operating on a
given cc-graphGcc. During any instance of the recursion,V is
the set of currently considered vertices fromGcc (not the set of
vertices of the consistent graph in section II),L is the current
solution set of found compatible vertices, andX is the set of
of vertices already visited which should be skipped now. The
algorithm is initiated with CCGsearch(Gcc,Vcc, ∅, ∅) whereVcc
is the set of all vertices inGcc. The termNV (L) in CCGsearch
denotes the set of vertices fromV which are compatible to at
least one vertex from the solution setL and have no conflict
to any vertices fromL. Similarly, N̄V (L) denotes the set of
vertices fromV which have conflict to at least one vertex in
L. For more details, we refer to [15].

Algorithm 1 CCGsearch algorithm
1: CCGsearch(Gcc,V, L, X)
2: determineNV (L) and N̄V (L)
3: if NV (L) = ∅ then
4: saveL % save solutionL
5: else
6: V = V \ N̄V (L) % remove conflict neighbours
7: for n ∈ NV (L) \ X do
8: CCGsearch(Gcc,V \ n, L ∪ n, X)
9: X = X ∪ n % mark vertexn as visited

10: end for
11: end if

Fig. 8 illustrates the steps of synthesis of consistent graphs
for the TDOA matching in Fig. 1. Starting with a given
connected graphG = (V, E) with M vertices andN edges,
a suitable set ofNIL = N − M + 1 FLs li is chosen. For
each FL li,1 ≤ i ≤ NIL , the TDOA estimates ˆτlm,k from the
cross-correlations of different sensor pairs (l,m) are examined
to look for consistent weight combinations or consistent FLs
l̂wi,k,1 ≤ i ≤ NIL ,1 ≤ k ≤ K̃i. All

∑NIL
i=1 K̃i consistent FLs

form the vertices of a cc-graphGcc whose three types of
edges (compatibility, conflict, open) define the relationship
between all consistent FLs. Finally, the CCGsearch algorithm
is applied to find all maximally connected sets of compatible
and consistent FLs. They are the desired consistent graphs
Ĝw

k . Each of them is the input to localize one source. The
complete MATLAB code for synthesis of consistent graphs
can be downloaded from www.iss.uni-stuttgart.de/download/.

Extensive experiments have shown that this graph based
approach for TDOA matching has a low computational com-
plexity and significantly reduces the number of possible TDOA

F
in

d
F

Ls

F
in

d
co

ns
is

-
te

nt
F

Ls

C
re

at
e

th
e

cc
-g

ra
ph

C
C

G
se

ar
ch(V, E)

τ̂lm,k

li
l̂wi,k Gcc Ĝw

k

Fig. 8. Steps of synthesis of consistent graphs

combinations and wrong position estimates. They are, however,
not reported in this paper due to limited space.

V. Conclusions

In this paper, we presented a graph based approach to find
matching TDOA estimates from different sensor pairs to assist
TDOA based source localization. We reviewed the concept of
consistent graphs and fundamental loops. We gave a proof for
the bottom-up synthesis of consistent graphs and presentedan
efficient synthesis algorithm.

Appendix

Proof of Eq. (5)
We consider a loop containingm ≥ 3 vertices. There are
(

M
m

)

different sets ofm from M vertices. For each set ofm
vertices, say{v1, . . . , vm}, there arem! possible permutations.
But many of these permutations result in the same loop: a)m
cyclic permutationsv1v2 . . . vm; v2 . . . vmv1; . . .; vmv1 . . . vm−1
result in the same loop; b) 2 reversed permutationsv1v2 . . . vm
and vmvm−1 . . . v1 also lead to the same loop. Hence there are
m!
2m =

(m−1)!
2 different loops for each set ofm vertices. The

total number of loops is given in Eq. (5).

Proof of Theorem 1
The fact a) is trivial. SinceG1 andG2 are connected and they
share at least on common edge,G1 ∪G2 is connected, too.

The proof of b) is done by a contradiction. Fig. 9 shows
two common edgese1 ande2 (solid line) in two graphsG1 and
G2. We assume thate1 ande2 are not connected. SinceG1 and
G2 are unions of two subsets of the same FLs,e1 ande2 must
originate from the spanning tree ofG. Since the spanning tree
is connected by definition, there must be a pathp as a part of
the spanning tree connectinge1 ande2. If G1 andG2 share the
same pathp, e1 ande2 are connected byp which contradicts
the above assumption. IfG2 has a different pathq from the
spanning tree connectinge1 ande2, then there is a loopp − q
in the spanning tree which contradicts the definition of the
spanning tree. Thuse1 ande2 must be connected.

G1: e1
e2

p
G2: e1

e2

p

q

Fig. 9. Two common edgese1, e2 in two graphsG1,G2

The fact c) follows by counting the number of vertices,
edges, and FLs inG1,G2, andG1 ∪ G2. Assume thatGi has
Mi vertices, Ni edges andNi − Mi + 1 FLs (i = 1,2). We
also assume thatG1 and G2 have c common edges. These
c common edges are connected according to b), but do not
close any loops because they are part of the spanning tree ofG.



Hencec common edges implyc+1 common vertices inG1 and
G2. The union graphG1∪G2 has thusM12 = M1+M2− (c+1)
vertices,N12 = N1 + N2 − c edges, andN12− M12+ 1 = (N1 −
M1 + 1)+ (N2 −M2 + 1)) FLs. The number of FLs inG1 ∪G2
is exactly the sum of the numbers of FLs inG1 and G2. In
other words, the FLs inG1 andG2 also form a set of FLs for
G1 ∪G2.

The fact d) immediately follows from c).

References

[1] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks,”IEEE Signal Processing Magazine, vol. 22, pp. 41–53, 2005.

[2] M. Brandstein and D. Ward, Eds.,Microphone Arrays. Springer, 2001.

[3] W. R. Hahn and S. A. Tretter, “Optimum processing for delay-vector
estimation in passive signal arrays,”IEEE Trans. Information Theory,
vol. 19, pp. 608–614, 1973.

[4] C. H. Knapp and G. C. Carter, “The generalized correlation method for
estimation of time delay,”IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 24, pp. 320–327, 1976.

[5] R. O. Schmidt, “A new approach to geometry of range difference
location,” IEEE Trans. Aerospace and Electronic Systems, vol. 8, pp.
821–835, 1972.

[6] J. O. Smith and J. S. Abel, “Closed-form least-squares source location
estimation from range-difference measurements,”IEEE Trans. Acous-
tics, Speech, and Signal Processing, vol. 35, pp. 1661–1669, 1987.

[7] J. Scheuing and B. Yang, “Disambiguation of TDOA estimation for
multiple sources in reverberant environments,”IEEE Trans. Audio,
Speech, and Language Processing, vol. 16, pp. 1479–1489, 2008.

[8] B. Yang and M. Kreißig, “An introduction to consistent graphs and their
signal processing applications,” inProc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, 2011, pp. 2740–2743.

[9] J. Bang-Jensen and G. Gutin,Digraphs: Theory, algorithms and appli-
cations, 2nd ed. Springer, 2002.

[10] N. Balabanian and T. A. Bickart,Electrical network theory. John
Wiley & Sons, 1969.

[11] U. Pferschy and J. Schauer, “The Knapsack problem with conflict
graphs,”Journal of Graph Algorithms and Applications, vol. 13, pp.
233–249, 2009.

[12] V. Bafna and V. Bansal, “The number of recombination events in
a sample history: Conflict graph and lower bounds,”IEEE Trans.
Computational Biology and Bioinformatics, vol. 1, pp. 78–90, 2004.

[13] F. Eisenbrand, S. Funke, and J. Reichel, “Packing a trunk,” in European
Symposium on Algorithms, 2003.

[14] S. Rebennack, “Stable set problem: Branch & cut algorithms,” in
Encyclopedia of Optimization, C. A. Floudas and P. Pardalos, Eds.
Springer, 2008, pp. 3676–3688.

[15] M. Kreißig and B. Yang, “Reliable simultaneous TDOA assignment in
multi-speaker and reverberant environments,” inProc. IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, 2013.

[16] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,”Communications of the ACM, vol. 16, pp. 575–577,
1973.


