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Abstract

The estimation of time difference of arrival (TDOA) plays
an important role in acoustic source localization, blind
source separation, acoustic sound control, and improved
speech communication. However, when multiple sources
are active in a reverberant environment, the TDOA esti-
mates are known to suffer from the multipath and multiple
source ambiguity, and hence are less reliable. In a previ-
ous work [1], we introduced the idea of consistent graphs
to combat these TDOA ambiguities. In this paper, we go
one step further and present a graph theoretical framework
to study this consistency problem. It turns out that many
concepts from the graph theory are useful for this purpose.

1 Introduction

In a variety of acoustic signal processing applications, one
needs to estimate the TDOA between a source and a pair
of microphones from the microphone signals [2]. Differ-
ent families of methods like generalized cross-correlation
(GCC), adaptive eigenvalue decomposition, and blind
source separation exist for this purpose. A common prob-
lem is, however, that these methods often return sev-
eral TDOA estimates for one pair of microphones. They
can stem from the direct or echo path and can originate
from different sources. The matching of these ambiguous
TDOA estimates among different microphone pairs is thus
an important and challenging problem.

In [1, 3], we made a simple observation that the match-
ing TDOA values, i.e. these from the same source and the
same propagation paths, satisfy the so called zero cyclic
sum condition: the sum of them is zero for any closed path
over a number of microphones. These matching TDOA
values are said to be consistent. In addition, we proposed
the DATEMM algorithm, an ad hoc bottom-up synthesis
approach, to find consistent TDOA values from sets of
TDOA candidates for different microphone pairs. This al-
gorithm worked pretty well in experiments.

The goal of this work is to provide a theoretically more
rigorous, graph oriented framework to analyze the consis-
tency problem. We discover a parallel between TDOA es-
timation and circuit analysis, discuss general properties of
consistent graphs, present some novel approaches for their
synthesis, and address open questions.

2 Basics of graph theory

Below we briefly summarize some basic definitions from
the graph theory we need in this paper [4, 5].

A graph G(V,E) is defined as a set of M vertices (or
nodes) V = {v1, . . . ,vM} and a set of N edges (or lines,
branches, arcs) E = {e1, . . . ,eN}. We consider only sim-
ple graphs in which there is at most one edge between two
vertices and there are no loops involving only one vertex.
Hence, the number of edges is limited by N ≤ Nmax =
(

M
2

)

= M(M−1)
2

. The graph is complete if N = Nmax, i.e.
each disjoint pair of vertices is connected by an edge. The
graph is connected if each pair of disjoint vertices is con-
nected by at least one path. A path is a sequence of neigh-

boured edges, that share the same terminal vertices. A nec-
essary condition for a graph to be connected is N ≥M−1.
A loop (or cycle) in a graph is a closed path whose start
and end vertex coincide.

We consider directed graphs in which each edge has a
direction (shown by an arrow) pointing from the start ver-
tex to the end vertex. Similarly, we define a direction for
each loop. We also consider weighted graphs in which one
weightwn ∈R is assigned to each edge en (1≤ n≤N). The
weight is defined such that it changes its sign if we change
the direction of the edge. A graph is said to be consistent
if the sum of edge weights along any loop, taking the edge
direction into account, is zero.

Fig. 1 shows a simple, directed, weighted graph con-
sisting ofM = 5 vertices and N = 8 edges. It is connected,
but not complete because of two missing edges (v3,v4) and
(v4,v5). The arrows of the edges show their direction. It
is easy to verify that the given edge weights we in Fig. 1
form a consistent graph, e.g. w1+w5−w2 = 0.

v4 v3

v2

v1

v5

e1

e2e3

e4

e5e6

e7

e8



















w1

w2

w3

w4

w5

w6

w7

w8



















=



















3
1
4
1

−2
1

−2
3



















Figure 1: Example of a consistent graph containing 5 ver-
tices and 8 edges

Such a graph representation has been successively ap-
plied to the analysis of electrical circuits by the Kirchhoff
laws. It is also a useful description of TDOA based source
localization. Table 1 shows the parallels between these dif-
ferent topics.

graph theory electrical circuit TDOA based
localization

vertex node microphone
vertex value elec. potential TOA
edge branch pair of microph.
edge weight voltage, diff. TDOA, diff.

of potentials of TOA

consistent graph Kirchhoff 2nd zero cyclic
law sum of TDOA

Table 1: Parallels between consistent graphs, analysis of
electrical circuits and TDOA based localization

3 Incidence and loop matrix

The topology of a graph can be represented by the inci-
dence matrix A. It is an N×M matrix containing the val-
ues 1, -1, and 0. It shows the relation between the edges
and their start and end vertices where vertices are shown in
the columns and edges in rows. A start vertex of an edge
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is marked with 1, the end vertex is marked with -1, and all
other matrix elements are zero. The incidence matrix for
the graph in Fig. 1 is

A=



























vertices→ v1 v2 v3 v4 v5
edges ↓
e1 1 −1 0 0 0
e2 1 0 −1 0 0
e3 1 0 0 −1 0
e4 1 0 0 0 −1
e5 0 1 −1 0 0
e6 0 1 0 −1 0
e7 0 1 0 0 −1
e8 0 0 1 −1 0



























(1)

Another useful matrix describing the relationship be-
tween loops and edges is the loop (or cycle) matrix B. It
shows the N edges in rows and all loops in columns. If an
edge contributes to a loop, the corresponding element inB
is marked with 1 if the edge and loop direction coincide or
-1 otherwise. A zero element inB indicates that the edge is
not contained in the corresponding loop. The loop matrix
for the graph in Fig. 1 is

B= [B f . . .],B f =



























loops→ l1 l2 l3 l4
edges ↓
e1 1 1 1 0
e2 −1 0 0 1
e3 0 −1 0 −1
e4 0 0 −1 0
e5 1 0 0 0
e6 0 1 0 0
e7 0 0 1 0
e8 0 0 0 1



























(2)
where only four (fundamental) loops l1, . . . , l4 are shown
for simplicity. Fig. 2 shows the loops of Eq. (2).
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Figure 2: Four fundamental loops l1, . . . , l4 of the graph in
Fig. 1

Both the incidence and loop matrix are determined by
the graph topology only. They are independent of the edge
weights and have been shown to be useful in the analysis
of electrical networks. For a connected graph (i.e. N ≥
M−1), the following rank properties ofA and B are well
known [6]:

rank(A) =M−1, rank(B) = N−M+1. (3)

In addition,BTA= 0. This implies, the column vectors of

A span an (M− 1)-dimensional subspace in R
N , the col-

umn space or range R(A) of A, while the column vectors

of B span the (N−M+ 1)-dimensional orthogonal com-
plement of R(A).

The rank properties of B implies that only N−M+ 1
columns in B are linearly independent. Each such column
represents a so called fundamental loop. Let B f be the

N× (N−M+ 1) loop matrix of these fundamental loops.

Clearly, R(B f ) = R(B) and BT
f A= 0.

These two rank properties have a graphical interpreta-
tion. Any set of M− 1 linearly independent rows of A
represents a subgraph with a minimal set of M− 1 edges
that connect all vertices in G. Such a graph has no loop
and is called spanning tree of G. For the graph in Fig. 1, a
possible spanning tree is given by the solid lines in Fig. 2,
namely e1,e2,e3 and e4. The remaining N−M+ 1 edges
of G compose the complementary tree (cotree), denoted
as dotted lines in Fig. 2. As seen in Fig. 2, any edge
of the cotree, when added to the spanning tree, closes one
fundamental loop. Hence R(B) = R(B f ) is spanned by
the N−M+1 fundamental loops. While the cotree is im-
plicitly given by the spanning tree, the latter is comletely
arbitrary.

4 Properties of a consistent graph

Now we consider a graph with the edge weight vectorw=
[w1, . . . ,wN ]

T . The consistency of w implies BTw = 0,
i.e. the cyclic sum of edge weights along all loops is zero.
However, the total number of loops in a graph can be very
large. Fortunately, it is only necessary to check the consis-
tency of w along the N−M+ 1 fundamental loops since
all columns of B can be written as a linear combination of
the columns of B f . A necessary and sufficient condition
for w being consistent is therefore

BT
f w = 0. (4)

An equivalent consistency condition is that w is from the
column space R(A) of the incidence matrixA.

In the following, we discuss some general properties
of a consistent TDOA weight vector w for a given inci-
dence matrix A and loop marix B f , as well as their phys-
ical interpretations in the context of TDOA based source
localization.

If w is consistent in the sense of Eq. (4) and ai is the

ith column vector of the incidence matrixA, then

P1) αw is also consistent ∀α ∈ R.

P2) w+αai is also consistent ∀α ∈ R.

P3) w+∑
M
i=1 αiai is also consistent ∀αi ∈ R.

P4) Each consistent edge weight vector w can be repre-
sented as a unique linear combination of any M − 1

columns ofA, e.g. w = ∑
M−1
i=1 αi ·ai.

P5) If wi are consistent, then ∑i αiwi is consistent as well
∀αi ∈ R.

The proof of these properties are trivial using Eq. (4)
and are hence dropped here. For the physical interpreta-
tions, we first consider the initial scenario in Fig. 3 with the
source position p, microphone positions qi, (1 ≤ i ≤ M),

time of arrival (TOA) ti =
1
c
‖qi − p‖ for microphone i,

TDOA wi j = ti − t j for the microphone pair (i, j), and

sound propagation velocity c. Let t = [t1, . . . , tM]
T be the

vector of all TOA values andw be the vector of TDOA val-
ues for all considered microphone pairs. Clearly, w =At
holds whereA is the incidence matrix.
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Figure 3: Initial scenario for TDOA based localization

P1) For α > 0, we can interpret the property P1 either
as a change in the speed of sound from c to c/α due to a
different propagation medium or as a scaling of the source
and microphone positions by α , see Fig. 4. In both cases,
all TOA and TDOA values are scaled by α .
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αq3

αw12

αw23

αw13

Figure 4: Scaling of the source and microphone positions
by α > 0

P2) An interpretation of P2 is a change in the dis-

tance of the ith microphone to the source, which results
in a change of the TOA from the source to microphone
i. This happens frequently in reality and is known as the
effect of mirrored microphone [1]. Fig. 5 illustrates this
phenomenon. The echo path propagation from the source
to microphone 2 due to a sound reflection on a wall en-
hances the TOA value from t2 to t2+α (α > 0). The effect
is the replacement of microphone 2 by its mirror at po-
sition q′

2. The TDOA vector caused by the microphone

array at q1,q
′
2,q3 becomes then w+αa2 where w is the

TDOA vector caused by the original microphone array at
q1,q2,q3.

p

q1

q2

q3

q′
2

t1

t2

t3
t2+α

wall

mirrored
microphone

Figure 5: Change of the distance between one microphone
and the source as caused by echo path propagation or mir-
rored microphone

P3) The property P3 is an extension of P2. In this case,
the TOA from the source to all microphones has changed
from ti to ti +αi. The underlying microphone array con-
tains M mirrored microphones.

P4) Since w = At ∈ R(A) and rank(A) = M− 1, w
can always be written as a linear combination of anyM−1
linearly independent columns ofA. Due to the structure of

A one can easily verify thatA[1, . . . ,1]T = a1+ . . .+aM =
0 and hence aM = −(a1+ . . .+aM−1). This means w =

∑
M
i=1 tiai = ∑

M−1
i=1 tiai− tM ∑

M−1
i=1 ai = ∑

M−1
i=1 (ti− tM)ai. The

physical interpretation of P4 is to move all microphones
about the same distance c ·tM towards the source, assuming
that tM is the smallest TOA value.

P5) Assume that ws is the TDOA vector of a source at
position ps (s= 1,2) and ts is the corresponding TOA vec-
tor, i.e. ws =Ats. Then α1w1+α2w2 =A(α1t1+α2t2)
can be interpreted as a single source with respect to a new
microphone array where the microphone distances to the
source are given by c(α1t1+α2t2). The same apparently
applies for s> 2.

The properties P1 to P5 show that there exist more con-
sistent graphs than given sources. By using a synthesis
algorithm of consistent graphs, we are able to detect and
eliminate wrong TDOA vales in Wn which are never con-
sisten in the sense of Eq. (4). But we cannot distinguish be-
tween true consistent weight vectorsw that originate from
true source and mircrophone positions and those false con-
sistent weight vectors w which satisfy Eq. (4), but arise
due to properties P1 to P5 and thus correspond to a modi-
fied microphone array. This problem is already known and
a good solution to distinguish the true and false consistent
TDOA vectors is the residual TDOA error ‖w− w̃‖ pro-
posed in[1], where w̃ is the TDOA vector computed from
the estimated source position and exact microphone posi-
tions. This measure is small ifw is a true consistent vector,
and large ifw is not.

5 Efficient synthesis of consistent
graphs

5.1 Problem formulation

The ambiguity problem in TDOA estimation described
at the beginning of the paper is only one possible appli-
cation for the synthesis problem of a consistent graph.
There we have a setup of M microphones and obtain N
weight sets Wn per microphone pair. Each weight set
Wn = {wn,1, . . . ,wn,kn} contains kn = |Wn| TDOA values for

the nth microphone pair estimated by GCC or other meth-
ods. This leads to a graph withM vertices andN edges, that
is not necessarily connected and may have partially wrong
weight sets. The goal is to obtain such graphs with single
edge weights w ∈ (W1 × ·· · ×WN) that are consistent in
the sense of Eq. (4). A brute-force approach would require

a check of ∏
N
n=1 |Wn| different possibilities for w what is

computationally too demanding. Hence we introduce here
two different efficient synthesis strategies.

5.2 Efficient synthesis strategies

The combinatorial problem of finding weights that form
a consistent graph can be solved by a top-down (TD)
strategy, that uses sophisticated search procedures on the
whole weight vector w, and a bottom-up (BU) strategy,
that checks the consistency of small subgraphs and merge
them to a full consistent graph. Due to limited space, we
will only briefly sketch both strategies. More details about
the TD approach can be found in [7].

5.2.1 Top-Down strategy

The TD strategy is mainly based on Eq. (4) that provides
an easy test for consistency, once all edges have been as-
signed a value. This approach contains the main steps in
Fig. 6. Here one central step is to find the spanning tree
of a connected graph or a connected partition of a given
graph. To be more precise, a spanning tree is defined as a
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Find the connected partitions of a graph

Obtain their spanning trees

Create the loop matrix B f via the cotree

Obtain assignmentsw that fulfill Eq. (4) and return them

Figure 6: Main steps of the TD approach for synthesing
consistent graphs

subgraph T (V, Ẽ) ofG(V,E)with Ẽ ⊆E. It reaches all ver-
tices of the graph without closing any loop. In 1971 Tarjan
introduced an algorithm called depth-first search (DFS) or
backtracking [8] that searches for the tree with least edges
per vertex. This algorithm starts with a root vertex and
searches for one of its neighbours. Then it starts a search
for neighbours of this adjacent vertex and so on. If there
is a final vertex with no neighbours but not all vertices
have been visited, the algorithm tracks back to the previous
vertex and searches there for further unvisited neighbours.
This leads to the recursive algorithm 1 below. With the
root vertex v ∈V , it finds a spanning tree T .

Algorithm 1 depth-first search

[T , V ] = DFS(V \ v, E, [], v)
if V 6= /0 then
the graph is not connected

end if

function [T , V ] = DFS(V , E, T , v)
for u ∈V do
if {v,u} ∈ E then

T = T ∪{v,u}
[T , V ] = DFS(V \u, E, T , u)

end if
end for

Another algorithm that we want to mention is the
breadth-first search (BFS) by Dijkstra [9]. In a BFS we
visit all neighbours of the root vertex first and then we
search from every neighbour for unvisited vertices. This
leads to a wide spanning tree.

As one can see, algorithm 1 already detects if a given
graph is connected or not. It is easy to apply it recursively
to a given graph to find the spanning trees of its connected
partitions. This accomplishes the first two steps in Fig. 6.
From then we easily follow the theory explained in section
3 to create the loop matrix B f .

The final step to find consistent weight vectors w ∈
(W1×·· ·×WN) is explained in detail in [7].

5.2.2 Bottom-Up strategy

The consistency of subgraphs is a necessary condition for
a consistent graph. This property is exploited by the BU
strategy. Thus the graph is generated by merging the con-
sistent subgraphs, usually triples, to graphs of higher or-
der until most vertices are included. One example of a BU
strategy is the DATEMM algorithm [3], that is summarized
in Fig. 7. More details about the BU strategy will be dis-
cussed in the future due to limited space here.

5.2.3 Comparison and summary

The BU algorithms obtain partial results directly and can
be stopped at every step. Moreover, the synthesis for sev-

Find consistent triples and merge them to quadrupels

Merge quadrupels that share a common triple

Add missing edges by adding remaining triples

Return consistent graphs

Figure 7: Main steps of the DATEMM algorithm

eral sources can be done in parallel. In contrast, the TD
strategy can apply sophisticated search procedures on the
weight sets. They need a preprocessing step to obtain the
spanning tree but thereby one can examine the graph and
exclude elements that do not contribute to the synthesis.
This includes isolated vertices, single edges and partitions
without any loop. Consequently, the combinatorial com-
plexity can be reduced.

One problem for the TD strategy is that all edges need
a valid weight for each consistent graph (source), because
Eq. (4) will never be true for a non-complete, valid assign-
ment. A more general question is what happens to weight
setsWn that have absolutely no valid weights. The BU al-
gorithms also lack a discussion about the reuse of triples or
subgraphs, i.e. if one should reuse triples in the synthesis
procedure in order not to lose any consistent graphs. These
questions well be answered in future research.

In this paper we have presented the connection between
TDOA based source localization and consistent graphs.
We showed how to transform the problem of finding con-
sistent TDOA estimates to an abstract graph problem and
found further properties that can be interpreted as real
world phenomena. Moreover, we sketched two different
synthesis approaches to consistent graphs.
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