
Copyright 2013 IEEE. Published in the IEEE 2013 Interna-

tional Conference on Acoustics, Speech, and Signal Processing

(ICASSP 2013), scheduled for 26-31 May 2013 in Vancouver,

British Columbia, Canada. Personal use of this material is permitted.

However, permission to reprint/republish this material for advertis-

ing or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works, must be obtained from

the IEEE. Contact: Manager, Copyrights and Permissions / IEEE

Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ

08855-1331, USA. Telephone: + Intl. 908-562-3966.

FAST AND RELIABLE TDOA ASSIGNMENT IN MULTI-SOURCE REVERBERANT
ENVIRONMENTS

Martin Kreißig and Bin Yang

Institute of Signal Processing and System Theory, University of Stuttgart
email: {martin.kreissig, bin.yang}@iss.uni-stuttgart.de

ABSTRACT

The localization of acoustic sources based on Time Difference of

Arrivals (TDOA) is very vulnerable in reverberant environments. In

this paper, we propose a method to synthesize fully and partially con-

sistent TDOA combinations. They fulfill the zero cyclic sum condi-

tion along all loops, which is a necessary condition for assigning

TDOAs to an acoustic source. Our method is based on an efficient

search of all sets of maximally connected compatible fundamental

loops in a compatibility-conflict graph. We both prove the correct-

ness of our algorithm and show some experimental results.

Index Terms— acoustic source localization, TDOA assignment,

synthesis of consistent graph, compatibility-conflict graph

1. INTRODUCTION

Acoustic source localization is widely performed by using time dif-

ference measures obtained from the cross-correlation of two micro-

phone signals. This is necessary in applications where the time of

emission is unknown. More precisely, the TDOAs are obtained from

the peaks in the Generalized Cross-Correlation (GCC) that is quite

robust in moderate reverberant environments [1, 2]. Especially the

GCC-PHAT variant [3] allows TDOA peaks to be detected at low

SNR due to its pre-whitening filter.

Nevertheless, this filter also increases the noisy part of the spec-

trum and hence adds erroneous candidates to our TDOA estimates.

Moreover, the periodicity of the speech signal, reflections and mea-

surement errors increase the number of spurious TDOAs. To over-

come this ambiguity, many approaches have been proposed that ap-

ply either a special cost function to improve the TDOA estimation

[4] or apply even more complex algorithms like SRP-PHAT [2] or

BSS [5, 6]. Even though these approaches reach quite good de-

tection rates, they are restricted to less speakers than microphones

(BSS, ICA) and limited by their high computational complexity for

real-time applications.

In this paper, we present a new improved algorithm that exam-

ines all TDOA candidates of all microphone pairs and finds TDOA

sets that stem from the same source and same propagation paths.

These sets can be full (containing all sensor pairs) or partial. This

algorithm can be downloaded from [7].

This paper is structured as follows: Sec. 2 addresses the am-

biguity problem of TDOA and describes different disambiguation

approaches. Sec. 3 gives an overview of our synthesis approach. In

Sec. 4 we show how to reformulate the last step of our synthesis ap-

proach as a new compatibility-conflict graph problem and present a

new algorithm to find its solutions. Finally, we show some measure-

ment results in Sec. 5.

2. TDOA DISAMBIGUATION

2.1. Ambiguity of TDOA assignment

The TDOA candidates τ̂ are computed as positions of peaks in the

GCC-PHAT function Rij(τ) for the microphone pair (i, j). As dis-
cussed in [8] and [9], the peak detection is not unique due to mul-

tiple sound sources, reflection paths and periodicities in the source

signals. In order to obtain all direct path TDOAs, one has to take sev-

eral TDOA candidates per microphone pair. With M microphones

there are at maximum N =
(

M

2

)

such pairs with Kn TDOA candi-

dates each (n = 1, . . . , N).

For a successfull localization, one has to pick for each source the

correct direct path TDOAs at each micropohone pair and combine

them. These TDOA sets are hard to find as there are
∏N

n=1
Kn

possible sets.

2.2. Disambiguation techniques

In [9] a speed estimate criterion was proposed to decide whether a

given TDOA set stems from direct path Time of Arrival (TOA). The

criterion is promising as the results in Sec. 5 show.

The disambiguation considered in this paper was initiated in [8].

It exploits the property that the sum of TDOAs from the same source

and propagation paths along a loop is zero: τij+τjk+ . . .+τli = 0.
A set of TDOA estimates from different microphone pairs which

fulfills this condition along all loops is called consistent. In [8] the

synthesis of consistent graphs is performed by combining consistent

triples (loops of length 3). This approach, however, is restricted to

the existence of consistent triples which is not always the case in

practice.

This restriction is relaxed in [10] where a set of fundamental

loop (FL) is used to represent all loops in a TDOA graph. A FL

whose TDOAs satisfy the zero cyclic sum condition is called a con-

sistent fundamental loop (cFL). However, these cFLs are combined

together by a synthesis algorithm resulting in fully consistent graphs.

If a microphone pair measures only spurious TDOAs, it can happen

that no consistent graphs are found at all by the algorithm in [10]

though partially consistent TDOA sets (i.e. with some missing pairs)

do exist.

In this paper we propose an improved algorithm to combine

cFLs to fully or partially consistent TDOA sets.

3. SYNTHESIS OF CONSISTENT GRAPHS

The microphone set is represented by a graphG(V,E) with the ver-
tex set V = {m1, . . . ,mM} representing the microphones and the

edge set E = {e1, . . . , eN} representing the microphone pairs. The

TDOA candidates define the search space W = W1 × · · · × WN

where Wn = {τn,1, . . . , τn,Kn
} are the TDOAs of the nth micro-

phone pair.

The synthesis of consistent graphs is performed in several steps

as shown in Fig. 1. They are discussed in the subsequent sections.

generate spanning tree and FLs

compute cFLs

combine cFLs to all maximal (sub)graphs

Fig. 1. Overview of the synthesis of all maximal consistent sub-

graphs.

3.1. Generation of cFLs

We determine the cFLs according to the proposed method in [11, 10,

12]. The spanning tree of the graph is generated first. Then each

of the unused edges that define the complementary tree closes a FL

when attached to the spanning tree. For a connected graph with M

vertices and N edges, there is a total number of N − M + 1 FLs.

For our purpose, we choose the Breadth-First Search (BFS) spanning

tree [13] as it produces shorter FLs.

For each FL which typically consists of a small number (≥ 3) of
edges we check all TDOA combinations. The FLs are represented as

column vectors li ∈ {−1, 0, 1}N , where ”1” represents an equally

directed edge and loop and a ”−1” counterwise. Thus the zero-cyclic
sum condition can be written as lTi w = 0 for i = 1, . . . , N−M+1.
Due to quantization errors, noise and smoothing effects of overlap-

ping peaks in the GCC-PHAT, we check the approximate consis-

tency

|lTi w| ≤ ǫ ·
√

||li||0, (1)

where ǫ is a threshold in the unit of sampling interval like the TDOA

values τij and || · ||0 denotes the l0-norm that enumerates the number

of non-zero elements, i.e. the number of edges in the FL li. The

number of cFLs per topological FL li is assumed to be K̃i. Next, we

combine those cFLs that have the same TDOA values at the common

edges.

3.2. Combination of cFLs

When two consistent subgraphs have the same TDOAs on common

edges, they are called compatible and we can combine them together

to a larger graph containing both subgraphs. If the TDOAs on com-

mon edges are different, the two subgraphs are in conflict and we are

not allowed to combine them. The same applies when the two sub-

graphs have no common edges at all. This bottom-up synthesis, i.e.

a successive combination of compatible consistent subgraphs, start-

ing with the cFLs from Sec. 3.1, always returns a larger graph that

is consistent as well. In Sec. 4 we propose a combination algorithm

that finds all, maximal combinations of compatible cFLs and thus all

consistent TDOA graphs based on the particular set of FLs.

4. FINDING ALL POSSIBLE COMPATIBLE

COMBINATIONS OF CFLS

4.1. cc-graph

The problem of combining all compatible cFLs is not trivial, as all

combinations have to be taken into account. Moreover, no redun-

dant solutions, i.e. combinations that are subsets of other combina-

tions, are allowed. Therefore, we represent the cFLs as vertices in

a compatibility-conflict graph (cc-graph). Each pair of vertices in a

cc-graph has three possible relations. They can be compatible or in

conflict or unrelated because the underlying two cFLs are compatible

(same TDOAs for common edges) or in conflict (different TDOAs

for common edges) or have no common edges at all.

These three states lead to the cc-graph with compatible, con-

flicting and free connections. An example is presented in Fig. 2

where the vertex set V = {vk|k = 1, . . . , 6} represents the dif-

ferent cFLs. Two compatible cFLs are connected by a solid line

and two conflicting cFLs by a dashed line. cFLs with no com-

mon edges are not connected in the cc-graph. The cc-graph in

Fig. 2 has 4 sets of maximally connected compatible vertices:

{v1, v2, v3}, {v1, v2, v4}, {v2, v3, v5, v6} and {v2, v4, v6}.

v1 v6

v3 v4

v2 v5

Fig. 2. A compatibility-conflict graph: compatible vertices are

marked by a solid edge and conflicting vertices by a dashed edge

The adjacency matrix of the cc-graph is given by

Acc =















0 1 0 0 −1 −1
1 0 1 1 0 1
0 1 0 −1 1 0
0 1 −1 0 −1 0

−1 0 1 −1 0 1
−1 1 0 0 1 0















, (2)

where a ”1” indicates a compatible neighbourhood and ”−1” a con-
flicting one.

Based on the cc-graph we want to find all maximally connected

combinations of cFLs. The proposed algorithm is similar to that of

Bron and Kerbosch [14] for finding all sets of completely connected

vertices. While Bron and Kerbosch only consider graphs with two

different neighbourhood states (connected or not connected), our cc-

graph has three different neighbourhood states and is more complex.

4.2. Algorithm

We call our algorithm to find all sets of maximally connected com-

patible vertices in a cc-graph characterized byAcc the Compatibility-

Conflict Graph (CCG) algorithm. First we introduce some notations.

Let V be the set of all vertices in the cc-graph. Let Ṽ be the set of

currently considered vertices. The algorithm is initialized to Ṽ = V

at the beginning and changes during the algorithm because already

visited vertices will be excluded from Ṽ . Let l denote the current

solution, the set of connected compatible vertices. It is initialized to

the empty set ∅ at the beginning. The notation

NṼ (l) = {v ∈ Ṽ |∃u ∈ l : [Acc]vu = 1 ∧ ∄w ∈ l : [Acc]vw = −1}
(3)

denotes the set of vertices from Ṽ that are compatible to at least

one vertex in the solution l and have no conflict to any vertices in l.

[Acc]ij indicates the element at the ith row and jth column of Acc.

Similarly, we define

N̄Ṽ (l) = {v ∈ Ṽ |∃u ∈ l : [Acc]vu = −1} (4)

as the set of vertices from Ṽ that have conflict to at least one ver-

tex in l. In other words, NṼ (l) and N̄Ṽ (l) represent the compatible

and conflicting neighbours of l in Ṽ , respectively. During the ini-

tialization of the algorithm, we use the convention NṼ (∅) = Ṽ and

N̄Ṽ (∅) = ∅. Let X denote the set of vertices which have already

been visited in previous iterations and thus shall be skipped. It is ini-

tiated to ∅ and is extended successively by the visited vertices. The

CCG algorithm is started by the call CombineAll (Acc, V, ∅, ∅)
where the recursive routine CombineAll (Acc, Ṽ , l,X) is sum-

marized below.

1: CombineAll(Acc, Ṽ , l,X)

2: determine NṼ (l) and N̄Ṽ (l)
3: if NṼ (l) = ∅ % no compatible neighbours

then

4: save l % save solution

5: else

6: Ṽ = Ṽ \ N̄Ṽ (l) % remove conflicting neighbours

7: for n ∈ NṼ (l) \ X % compatible neighb. not visited yet

do

8: CombineAll(Acc, Ṽ \ n, l ∪ n,X)

9: X = X ∪ n % mark n as visited

10: end for

11: end if

As an example Tab. 1 shows the complete procedure of CCG

for the cc-graph in Fig. 2. It finds four solutions marked by the box

in the corresponding column. In the first iteration with Ṽ = V

and l = ∅, the neighbour set NṼ (l) = V is considered as the set

of root vertices indicated by the level 0 in Tab. 1. Then in each

iteration, NṼ (l) and N̄Ṽ (l) are determined and N̄Ṽ (l) is removed

from Ṽ . For each compatible neighbour n, we call CombineAll

recursively by removing n from Ṽ and adding it to l. Once there

are no compatible neighbours left we store the solution l. When n is

completely processed, we add it to the set of visited vertices X .

4.3. Proof

In this section, we prove the correctness of the CCG algorithm. As

previously mentioned, we claim to find all sets of maximally con-

nected compatible vertices.

Lemma 1. Each vertex must be examined once as the root vertex.

Proof. We prove Lemma 1 by contradiction. Given the cc-graph

Acc =





0 1 0
1 0 0
0 0 0



 . (5)

All maximally connected compatible vertex sets are {1, 2} and {3}.
If only one root vertex is chosen, we obtain either {1, 2} or {3}, not
both.

Lemma 2. Given a root vertex n0 from Ṽ , CombineAll (Ṽ \
n0, n0, ∅) finds all solutions containing n0.

Proof. CombineAll searches the whole set of vertices Ṽ for com-

patible neighbours and removes those that have a conflict with n0.

This is correct because, by definition, we only look for compati-

ble combinations with n0. Then we consider each solution pair

l = {n0, n}, n ∈ NṼ (n0), and apply the same combination pro-

cedure recursively to l. Due to the fact that each combination of l

with an n ∈ NṼ (l) initiates a new search branch and we do not re-

move any compatible neighbours, we are sure that all combinations

including l and n are found.

Lemma 3. CombineAll saves a solution, only when it is maximal.

Proof. CombineAll stops at two different stages: Either when

there are no compatible neighbours of the current solution any more

(line 3) or when the remaining neighbours belong toX (line 7). The

former case implies that the solution l is maximal as there are no

neighbours left. In the latter case, the current vertex has already

been combined with a vertex x ∈ X previously. From Lemma 2

we know that CombineAll has found all combinations containing

the vertex x. Thus we can skip a further search and return without

saving.

Theorem 1. CombineAll finds all maximal solutions.

Proof. Based on Lemma 2 and Lemma 3, we know that CombineAll

finds all maximal solutions starting from a root vertex n0. Lemma 1

states that all vertices have to be examined. Hence the algorithm

finds all sets of maximally connected compatible vertices.

As a result, two useful properties of the algorithm follow im-

mediately. First, each solution found by the algorithm is unique.

The algorithm will never find the same solution more than one time.

The reason is the use of the set X of excluded vertices. It indicates

that the same set of compatible vertices has already been found pre-

viously starting from another root vertex. Secondly, it will never

happen that one solution l1 is a subset of another solution l2. In

Fig. 2 and Tab. 1 the algorithm returns the solution {v2, v3, v5, v6},
but never its subsets like {v2, v3, v5}, {v2, v3, v6}, . . . as additional
solutions. The reason is that the algorithm always finds sets of max-

imally connected compatible vertices.

5. MEASUREMENTS

The synthesis of consistent graphs by using the CCG algorithm was

evaluated on real data measured in the LMS audio laboratory at the

University Erlangen-Nuremberg a room of size 5.5× 6.8× 2.6 m3

with T60 ≈ 0.8s. Three sources were modeled by three loudspeakers

playing back noise signals to avoid speech pauses.

5 microphones were positioned in the corners and the centroid

of a tetrahedra with radius of circumsphere of 70cm and recorded

the signals at fs = 48kHz. The loudspeakers were located at a dis-

tance of 1.5 to 4.5m from the centroid. Then GCC-PHAT extracted

Kmax ∈ {5, 10} TDOA candidates per microphone pair on a block

length of 8192 samples (170ms). For each of the Kmax maxima

of GCC-PHAT, a quadratic interpolation is done to obtain TDOA

estimates with an accuracy of fractional sampling interval. The syn-

thesis algorithm in Sec. 3 and 4 was applied to extract consistent

TDOA (sub)graphs. Note that M = 5 microphones lead to maxi-

mally N = 10 microphone pairs (edges). Hence, the synthesized

graphs can have N̄ = 3 to 10 edges. Finally, the localization by

squared-range-difference based LS estimate (SRD-LS) [15] is per-

formed together with the speed estimate criterion of [9] with the rea-

sonable estimated speed of sound range of [340, 344]m/s. Both the

number of found consistent graphs and the localization results are

averaged over 50 blocks (8.5s).

First we present the efficiency of the algorithm. We evaluated

the localization on a standard dual-core PC without and with the

graph synthesis. The computation time was measured in Matlab.

Without the graph synthesis, i.e. we do localization for all KN
max ∈

level n l X Ṽ NṼ (l) save l N̄Ṽ (l) Ṽ \ N̄Ṽ (l) NṼ (l) \X
0 ∅ ∅ 1,2,3,4,5,6 1,2,3,4,5,6 ∅ 1,2,3,4,5,6 1,2,3,4,5,6

ia 1 1 ∅ 2,3,4,5,6 2 5,6 2,3,4 2

iia 2 1,2 ∅ 3,4 3,4 ∅ 3,4 3,4

iiia 3 1,2,3 ∅ 4 ∅ yes

iiib 4 1,2,4 3 3 ∅ yes

ib 2 2 1 1,3,4,5,6 1,3,4,6 ∅ 1,3,4,5,6 3,4,6

iia 3 2,3 1 1,4,5,6 1,5,6 4 1,5,6 5,6

iiia 5 2,3,5 1 1,6 6 1 6 6

iva 6 2,3,5,6 1 ∅ ∅ yes

iiib 6 2,3,6 1,5 1,5 5 1 5 ∅
iib 4 2,4 1,3 1,3,5,6 1,6 3,5 1,6 6

iiia 6 2,4,6 1,3 1 ∅ yes

iic 6 2,6 1,3,4 1,3,4,5 3,4,5 1 3,4,5 5

iiia 5 2,5,6 1,3,4 3,4 3 4 3 ∅
ic 3 3 1,2 1,2,4,5,6 2,5 4 1,2,5,6 5

iia 5 3,5 1,2 1,2,6 2,6 1 2,6 6

iiia 6 3,5,6 1,2 2 2 ∅ 2 ∅
id 4 4 1,2,3 1,2,3,5,6 2 3,5 1,2,6 ∅
ie 5 5 1,2,3,4 1,2,3,4,6 3,6 1,4 2,3,6 6

iia 6 5,6 1,2,3,4 2,3 2,3 ∅ 2,3 ∅
if 6 6 1,2,3,4,5 1,2,3,4,5 2,5 1 2,3,4,5 ∅

Table 1. Details of the algorithm for the cc-graph in Fig. 2

[510, 1010] possible TDOA combination, we measured 0.957sec for
Kmax = 5 and 13.952sec for Kmax = 10 in average for one block

of 170ms. With the additional synthesis of consistent graphs and a

dramatically reduced number of TDOA sets, we measured for one

block 0.081sec forKmax = 5 and 0.135sec forKmax = 10 includ-

ing the CCG algorithm. This is a factor of 100.

Tab. 2 shows the number of synthesized consistent graphs aver-

aged over all blocks. Due to space limitations, we only present the

fully consistent graphs (N̄ = 10) and the partially consistent graphs
(N̄ = 9).

Kmax = 5 Kmax = 10
N̄ = 10 N̄ = 9 N̄ = 10 N̄ = 9

ǫ = 1 1.2 1.4 1.8 2.8

ǫ = 2 1.2 1.6 3.5 16.7

Table 2. Average number of consistent TDOA graphs

Obviously, a larger value of Kmax results in a larger number

of TDOA candidates per microphone pair and a larger number of

consistent graphs found. According to [8],Kmax should not be cho-

sen too small because the direct path TDOAs do not necessarily ap-

pear as the largest maxima in GCC-PHAT. Also a larger value of the

threshold ǫ in (1), i.e. a more tolerant check of the zero sum condi-

tion, leads to a larger number of cFLs and a larger number of consis-

tent graphs. Since it is likely that some microphone pairs do not find

the correct TDOAs, the number of partially consistent graphs (e.g.

N̄ = 9) can be larger than that of fully consistent graphs (N̄ = 10).
Finally, we present the localization errors. The position error in

Tab. 3 represents the Euclidean distance in cm from the estimated

position to the closest loudspeaker. It is averaged over all sources

and all blocks. The loudspeakers have a membrane of 15cm diame-

ter.

The small localization errors of fully consistent graphs show that

Kmax = 5 Kmax = 10
N̄ = 10 N̄ = 9 N̄ = 10 N̄ = 9

ǫ = 1 8.5 8.0 8.2 18.3

ǫ = 2 8.5 21.5 12.4 162.2

Table 3. Average position error in cm over all blocks

the estimated positions are more realiable the more TDOAs we use.

Due to the loudspeaker size, the correct positions of the sources can-

not be optimally defined and hence the position errors are in a rea-

sonable range. If TDOAs are missing, i.e. partially consistent graphs

are synthesized, we obtain less correct position estimations. As a

consequence of the relaxation of the cyclic sum condition, higher

position errors are observed from larger ǫ values. Thus, one has to

choose Kmax and ǫ carefully in order to keep all consistent graphs

(fully and partially) of the corresponding sources and to obtain small

localization errors.

6. CONCLUSIONS

This paper presents a new algorithm to synthesize fully and partially

consistent graphs, given the TDOA estimates from a microphone ar-

ray. As experiments show, it allows a fast and reliable TDOA as-

signment for some localization in a multi-source reverberant envi-

ronment.

REFERENCES

[1] Carter, G. Clifford, “Coherence and Time Delay Estimation,”

Proceedings of the IEEE, vol. 75, no. 2, pp. 236–255, 1987.

[2] Brandstein, Michael and Ward, Darren, Microphone Arrays:

Signal Processing Techniques and Applications, Springer Ver-

lag, 2001.

[3] Knapp, Charles H. and Carter, G. Clifford, “The General-

ized Correlation Method for Estimation of Time Delay,” IEEE

Trans. on Acoustics, Speech, and Signal Processing, vol. 2, pp.

320–327, 1976.

[4] Nejad, Mohamad Hesam Mahmodi and Mahmoodi, Davood

and Zohroudi, Salehe, “Multiple Speaker Localization in a

Smart Room,” in Int. Conf. on Multimedia and Signal Process-

ing, May 2011, pp. 319–323.

[5] Lombard, Anthony and Buchner, Herbert and Kellermann,

Walter, “Multidimensional Localization of Multiple Sound

Sources using Blind Adaptive MIMO System Identification,”

in Proc. IEEE Int. Conf. on Multisensor Fusion and Integra-

tion for Intelligent Systems, 2006, pp. 7–12.

[6] Loesch, Benedikt and Uhlich, Stefan and Yang, Bin, “Multidi-

mensional Localization of Multiple Sound Sources using Fre-

quency Domain ICA and an Extended State Coherence Trans-

form,” in IEEE Workshop on Statistical Signal Processing,

Aug. 2009, pp. 677–680.

[7] “http://www.iss.uni-stuttgart.de/download,” .

[8] Scheuing, Jan and Yang, Bin, “Disambiguation of TDOA Es-

timation for Multiple Sources in Reverberant Environments,”

IEEE Trans. on Audio, Speech, and Language Processing, vol.

16, no. 8, pp. 1479–1489, Nov. 2008.

[9] Hu, Jwu-Sheng and Yang, Chia-Hsin, “Estimation of Sound

Source Number and Directions under a Multisource Reverber-

ant Environment,” EURASIP Journal on Advances in Signal

Processing, vol. 2010, no. 1, pp. 1–14, 2010.

[10] Kreißig, Martin and Yang, Bin, “An Efficient Algorithm for

the Synthesis of Fully Consistent Graphs,” in IEEE Int. Conf.

on Acoustics, Speech, and Signal Processing, 2012, pp. 2653 –

2656.

[11] Yang, Bin and Kreißig, Martin, “An Introduction to Consistent

Graphs and Their Signal Processing Applications,” in IEEE

Int. Conf. on Acoustics, Speech, and Signal Processing, 2011,

pp. 2740–2743.

[12] Kreißig, Martin and Yang, Bin, “Efficient Synthesis of Consis-

tent Graphs,” in Proc. EURASIP European Signal Processing

Conf., 2010, pp. 1364–1368.

[13] Russell, Stuart and Norvig, Peter, Artificial Intelligence: A

modern approach, Pearson Education, 2003.

[14] Bron, Coen and Kerbosch, Joep, “Algorithm 457: Finding All

Cliques of an Undirected Graph,” Commun. ACM, vol. 16, no.

9, pp. 575–577, Sept. 1973.

[15] Beck, Amir and Stoica, Petre and Li, Jian, “Exact and Ap-

proximate Solutions of Source Localization Problems,” IEEE

Trans. on Signal Processing, vol. 56, no. 5, pp. 1770–1778,

2008.

