AN EFFICIENT ALGORITHM FOR THE SYNTHESIS OF FULLY CONSISTEN T GRAPHS

Martin Krei3ig and Bin Yang

Institute of Signal Processing and System Theory, UnityeasiStuttgart

email: {martin.kreissig, bin

ABSTRACT

In this paper we present an efficient algorithm for the sysithef
fully consistent graphs. A consistent graph is a graph witgséc
sum of edge weights along all loops is zero. It plays an ingrt
role in many sensor array processing applications like Tiffer-
ence of Arrival (TDOA) based source localization. By apptythe
concept of fundamental loops, a linearly independent bafstbe
loop space of the graph, our algorithm is able to find all cstesit
sets of edge weights for the full graph efficiently.

Index Terms— synthesis of consistent graphs, TDOA based lo-
calization, difference measurements, sensor fusion

1. INTRODUCTION

We consider sensor array applications where differenges= u; —
u; of sensor measurements andwu; are processed. They inherit
the property that the sum of these difference measureméorg a
any loop is zerow;; + wjx + ... + wi = wi —u; +u; — Uk +
...+ u; —u; = 0. This relation is known as theero cyclic sumWe
can abstract a set of sensors to vertices of a graph and faeedife
measurements to weights of edges between vertices. If sgipha
fulfills the zero cyclic sum condition, we call it@onsistent graph

The concept of consistent graphs can be seen in many applic
tions like electrical network theory, sensor fusion and Folaased
source localization [1]. For the latter example, this cqtd®s been
already exploited by the DisAmbiguation of TDOA Estimation
Multipath, Multisource environments (DATEMM) algorithmhich
synthesizes consistent graphs to reduce the complexiteédtime
speaker localization [2]. In this scenario, the differemeceasure-
ment is the TDOA of the speech signal between a pair of micro
phones. The TDOAs that stem from one speaker create a camtsist
graph. Hence if we find all consistent graphs, we reduce thebeu
of false localizations. DATEMM turned out to be an efficiefda
rithm, but it has two disadvantages. First it starts the lsysis of
consistent graphs by triples (loops containing three edgbih do
not always exist in an incomplete graph. Secondly, it mag B
lutions if multiple sources exist. These restrictions mBREFEMM
unfeasible for general applications.

In this paper, we present a new efficient algorithm for thetsgyn

.yang@iss.uni-stuttgart.de

11 andlz) is zero. The full graph consisting of all vertices and edges
is, however, not consistent because the cyclic sum of edgghtge
along loopis is not zero. Hence the graph in Fig. 1 is only partially
consistent. The synthesis of partially consistent graphs fmuch
more challenging problem and will be addressed in future.

w1 =1
w3 V4
- w.
1)1/ ~ we = —1
Svs _
w1 w2 l I3 w3z = 2
2 - 3
- =
@ - Twr i
V2 YA ws = -2
=~
mm‘/ we = 3
wr = 1

Fig. 1. A graph which is only partially consistent (withous).

In the next section we introduce the concept of consistepitg.
In Sec. 3, we present our efficient algorithm to obtain theohcis-
cuss its complexity. In Sec. 4, we introduce the notationpgfrax-
imate consistency. In Sec. 5, we evaluate the theoretisalidsion
on the complexity given some generated data.

Throughout this paper, we use the following notations: Matr
ces are bold, vectors underlined and unordered sets aatadiby

blackboard bold.
a-

2. CONSISTENT GRAPH

For the subsequent synthesis we denote a graghi(y E) defined
by its vertex seV = {v1, ..., v } which represents the sensors and
the edge seE = {ei,...,en} that indicates whether a value has

been measured between a pair of sensdts.= {wYL), e ,wf,?i

is the weight set for the edgg, containing different measurements.
These weight sets span the complete search SffaceW; x - - - x
Wx from which we aim to find all consistent assignments=
[wi,...,wn]T € W.

The graph is complete if for each pair of vertices there exast
edge inE. It is connected if there exists at least a path between all
pairs of vertices. A spanning tree is a subgraplahat reaches all
vertices without closing any loop. The edge set of a spantma®is

sis of fully consistengraphs. Based on the concept of fundamentaldenoted byTs. For any spanning tree, we obtain one fundamental

loops, the term fully consistent graphs means that all etiges to
be assigned a consistent edge weight. In real applicatioasatso
has to considepartial consistencywhere only subgraphs are con-
sistent. Fig. 1 shows a graph with 5 vertiegsand 7 edges with the
corresponding edge weighis. It is easy to verify that the subgraph
consisting of the four vertices, , v2, v3, v4 IS consistent because the
cyclic sum of edge weights; along all loops in the subgraph (e.g.

loop (FL) by adding an edge from the complementary ffee=
E \ T, to it. Each FL can be represented by &hx 1 vector,
containingO if the specific edge is not included in the loop,if
the edge and loop point to the same direction anidotherwise.
There areN — M + 1 FLs that are represented by the FL matrix
B, = [;] [1]. For the graph of Fig. 1, one possible spanning tree
is given by the thick edges, thus leading to the complemgntae

T. = {es, es, e7} and to the following FL matrix 3.2. Fundamental loops

M loops — Ll I3] As stated previously, we determine FLs by adding edges afdhe
edges | plementary tredl. to the spanning tre&@s. The loops are closed
o 1 0 0 by an algorithm that searches through all edges of the spanni
es 1 1 1 tree. Thus the complexity for determining the FL maix can be

B; = es 0 -1 1 (1) bounded by® ((N — M)M)

€4 0 0 —1
€s 1 0 0 3.3. Consistent fundamental loops
€6 0 1 0

L er 0 0 1 | Now we search all consistent weight assignments for eaci Fiks.

is done by a simple brute-force search of all weight comimnatfor
From [3] we know that for a given grapf, B, represents a each FL. The consistent solutions for each FL are saved.

linearly independent basis of all loops. This enables uhézk the The number of edges per FL is between 3 ard If a graph is
cyclic sum condition by complete and we use a BFS spanning tree, all FLs will have ®nly

edges. In the worst case, one FL can contain at maximfedges

B?g =0. 2 (all M —1 edges fronT'; and one edge frorfi..) if we choose a DFS

spanning tree. Hence the complexity for determining allststent
solutions of all FLs is betweefiv — M) K> and(N — M) K™ if all

3. AN EFFICIENT SYNTHESIS ALGORITHM edge weight set8V,, have the same cardinaliti{,, = |W,| = K.
We see here that a BFS tree is clearly better than a DFS onewBel

Our algorithm to obtain all consistent solutions for thel fitaph e assume that after this step, thth FL has finallyK; (< K)
G(V,E) with weight setW performs such that we first determine ¢gnsistent solutions. B

a spanning tre&'s. This can be done either by Depth-First Search

(DFS) or Breadth-First Search (BFS). We obtain the FLs byrapd

the edges from the complementary tree to the spanning tree. 3.4. Loop merging
Then we compute the consistent solutions for each FL sep

rately. A FL can contain three or more edges depending onitke g

graph and the choice of the spanning tree. Finally we merggeth

consistent FLs together to fully consistent graphs in tmssef (2).

In the following, we discuss the details of the algorithm.

aStarting with the sets of consistent solutions forél- M + 1 FLs,
we now merge them to fully consistent graphs. The idea iggéira
forward. We start with alf; consistent solutions of the 1st FL and
merge all K, consistent solutions of the 2nd FL to them. So we
have to checki; - K> combinations. One combination is valid if
there is no conflict between the consistent solutions of Bath A
3.1. Spanning tree conflict arises if both FLs share one or several common edges a
the weights of these edges are different in both FLs. The imgrg
In the graph theory, there exist several algorithms to abdagpan- s successful if a) the weights of the common edges are ichriti
ning tree in a connected graph. The most familiar ones ared#S hoth FLs or b) both FLs have no common edges. As a result, we ob-
DFS [4]. Both algorithms need an initial vertex to start tregiarch. tain & K, or less consistent subgraphs containing both FLs. In that
BFS searches all neighbours of the current vertex and mark&ay, we merge iteratively the consistent solutions of tirai@ing
them as visited if this has not been done previously. Next, @in FLs to them. This is illustrated in Fig. 2 where the graph sdw
the newly marked neighbours is defined as the new referemtexve a) has three FLs denoted Bsl», 3. Each of them is assumed to
and its neighbours are explored. If there is no new vertexetei®- have two consistent solutions. These consistent FLs showhare
ited, BFS steps back to the previous reference vertex afg i denoted by, , whereo indicates the loop number anpdthe index
the next neighbour which has not been explored yet and migss i of its consistent solution. In c) we present the loop mergiraeess
areference one. This leads to a rather wide spanning tréeh\whs where x denotes a conflict in the edge weights of common edges,
small distances from the initial vertex to all others. which is the case e.g. fdi ; andl2,; on edge(vi,v2). The solid
In comparison, DFS leads to a rather narrow and deep spannirgyrows indicate a valid merging and the dashed arrows shippest
tree. DFS searches for a neighbour of the inital vertex, mdras combinations.
visited and defines it directly as the new reference vertexenit It is clear that only these pairs of consistent FLs lead to-a re
explores the neighbours of the new reference vertex. leti@an duction in the combinations if they have common edges. Thiss i
unvisited one, it is defined as the new reference. Otherid§& recommended to sort the FLs in such a way that FLs having a larg
steps back to the previous reference vertex and explorasitaun- number of common edges are merged first.
visited neighbour. The complexity of the loop merging step depends on the number
BFS and DFS are known to find their solutiondh(M + N) of consistent solutions. If we assunk& = K, we obtain at most
steps. The worst case is when they have to explore each \artex KV—M+! different combinations in the tree of Fig. 2. It is easy
each edge once. to see that this is a very pessimistic bound, because a lambi
For our purpose it is better to apply the BFS algorithm asat pr nations will be discarded at early stages due to conflicthénttest
duces shorter FLs. For the same reason, itis recommendedds& case, if the merging of two FLs always returfis consistent solu-
the initial vertex of the spanning tree algorithm as the oita most tions out of 2 combinations, the overall complexity of the merging
neighbours. step has the orde? (N — M)K?).

/ \ consistent solutions that are not covered by the FLs. Aafutiy, in
ot 3 -1 4 N 4 N [5] a consistent assignment like, in Fig. 2 is computed at run time

\ /o f 5. 1 4 afterl;,;. When the same assignment is reached in another branch
N 3 like 11,2 in our example it is recalculated. In the new algorithm we
Vo — == V4 —2 a1 - compute the consistent assignments only once and that teaas
2 \ . /
\ /’ l11 l31 lower complexity.
\
\ /
Y/ / /N N
V3 1 3 4 1 4. APPROXIMATELY CONSISTENT GRAPHS
v L 1. g

\ L -1 3 7 So far we considered the ideal case of perfect zero cyclic dam
2 l loo x 4 real applications, the edge weights like TDOA measurements are

A lio " s never precise due to noise, measurement error and timestizser
tion. Hence, the cyclic sum of even matching edge weight®is n

c) mally small, but not exactly zero. This is called an appradiaty

h ol ol consistent graph. In this case, we have to replace the egastse

/ \ tency condition (2) by a relaxed one. This can be done indalig

I+l W21 olaz elz1 Xl forall FLs{,
! j \ / \ ! Tw| <6 Vi 3
o D /A Lwlso Vi ®)
+(o+ e o o [o o
1T 13,1 13,2 13,1 l§2 13,1 l§2 13,1 13,2 or for all FLs together
Fig. 2. lllustration of loop merging for three fundamental loopishw IBfwll, <A 4

each two consistent solutions.)]
where|| - ||, is a suitableo-norm. The thre@-normsp = 1 (the sum

of magnitude of all elements (B?Q), p = 2 (the euclidean norm
3.5. Complexity of Bfw), andp = oo (the maximum magnitude of all elements of
. . . . B?Q) are worth to be studied. The threshold valuer A have
The different steps of our synthesis algorithm require amata b 4 gjusted according to the variance of the edge weightsn
tional complexity ofO (M + N) for the spanning tree(’)((é\f ~ addition,s andA can also be chosen according to the length (number
M)M) for obtaining the fundamental loop&} (N =M)K®) = 5t edges) of the FLs for uncorrelated edge weight errors el
O (N — M)K™) for finding consistent fundamental loops and \griance.
O((N—-M)K?) — O (KN~M*) for loop merging. Hence
the complexityC' can be upper bounded WQ((N — M)K™M + 5 SIMULATIONS
KN=M+1) in the worst case and lower bounded BY(N — '

M)K® + (N = M)K?) = O (N — M)K?) if all FLs are triples. \ye implemented our algorithm in C++. To perform a feasible ve
This shows a significant improvement since the brute-fonge a ification of the computational complexity in Sec. 3, we choas
proach would check allc™ combinations of the edge weights with complete graph with/ = 5 vertices,N = 10 edges and generate
typically K > K. K different fully consistent weight vectois, satisfying (2). In the
first experiment, no additional erroneous edge weights ememted
and hence the total number of weights per eddé is K. We apply
the brute force approach and the new synthesis algorithmeititer
This algorithm differs to DATEMM due to its clear structuredsits ~ a DFS or a BFS spanning tree to find &llfully consistent graphs.
flexibility in terms of FLs. In DATEMM consistent triples (tps of This experiment is repeated 50 times and the average rurirtisee-
three edges and vertices) are synthesized and merged ifiplest onds is plotted in Fig. 3 ovelk = K. We see a significant reduction
have the same weight on a common edge. This combined subgrajiirun time of our algorithms compared to the brute force apph.

is appended by another triple if there are common edge wediit ~ The improvement is even bigger when we use a BFS spanning tree
so on until the maximal connected graph is synthesized. efble due to shorter FLs. The solid line in Fig. 3 shows a scaledveisf
the set of consistent triples must be scanned several tiffiésim- the computational complexityiN — M)K?>. We see that it matches
plies high cost in complexity. The new algorithm comparégairs the run time of our algorithm very well. Similar results wetkso
of consistent loops only once and is hence simpler. Moreitver obtained when running the simulations on graphs with moreoes
always possible to find a set of FLs in any connected graphorta ¢ - and complete as well as non-complete but connected graphs.

3.6. Comparison to previous algorithms

trast, DATEMM requires triples which may not exist in a cocteel In the second experiment, we checked the impact of wrong mea-
graph while DATEMM does not. surements on the run time. We generaféd= 10 weights per edge
In [5] we already presented a similar synthesis algorithrictvh ~ whereK = 1, ..., 5 weights are consistent arid — K weights are

is based on a Back-Tracking (BT) search on the FLs. The main di randomly chosen and thus wrong. In Fig. 4 we present the noa ti
advantage of BT is that only full consistent solutions areepted, of our synthesis algorithm based on either a BFS or a DFS spann
i.e. a consistent weight assignment to all edges. Insteadesual- tree. We see that the run time is constant and does not depelid o
gorithm is able to return consistent partial solutions pied by the This verifies the dependence of the complexityfomather thank’
consistent FLs and combinations of them. Note that therpantéal as predicted in Sec. 3.5.

obtain all desired solutions without synthesizing new origss ef-
fect is well known from the detection theory that the falsarmi

0° | (N - MK® -« probability increases with the detection probability.
— % — brute-force synthesis
— B — synthesis with BFS tree
4 — © — synthesis with DFS tree —
10 | T — w6 . :
o _x T i —O6— 0°=0.6
? _x g 2_
= , _ o5 —BH—0=04
Q10 | - % i< 2
E L - 53 —%—0°=0.2
5 g4t
X 1o° 5
10 3
__o--9 =
_ O — - 3
_ O o
10X — =
= °
H g 2t
5 6 7 8 9 10 S
Number of edge weight& é 1t
=]
Fig. 3. Comparison of the run time of the brute force and the new z 0
synthesis algorithms with either a BFS or DFS spanning toee f 0 2 4 6 8 10

complete graph oM = 5 vertices.a. = 5 - 10~ ¢ is a scaling factor
between the computational complexity in terms of the nundfer
operations and the run time in seconds. Fig. 5. The number of consistent graphs found in a complete graph
with M = 5 vertices and giveri{ = 10 consistent graphs, for each
setup(o?,6). The lowest points are related fo= 0.75 and the
highest ones of each line fo= 1.75 (with a step size of 0.25).

Number of generated consistent graphs found

=o04] — B —BFS
o 0al © - DFS
g > - o0- -6 - -0 -9 6. CONCLUSION
€02
S 01 The synthesis of consistent graphs can be applied to maspisin
sion applications to reduce their complexity. Here we haesented
0[; = _2_ = ? = _ZF — ? anew efficient algorithm that first finds consistent fundatadoops

_ and then merges them to fully consistent graphs.
Number of consistent edge weighits Two open questions remain to be solved. First, if a giventyrap
)) . . o is not connected, there is no spanning tree and our algodémmot
Fig. 4. Run_tlme of our_synthe_sus algorithm with either a B_FS andpq applied. In this case, we need some preprocessing to gesera
DFS spanning tree ovei” consistent out of{’ = 10 edge weights gisconnected graph into connected components beforeingmiyr
(M = 5,N =10). synthesis algorithm to each component. Second, there ifficiest
synthesis algorithm yet for partially consistent graphs.

In the final simulation, we consider the effect of errors ie th
edge weights on the synthesis of approximately consisteqhg. REFERENCES
For simplicity, we model the edge weight errors as an addlititite

Gaussian noise with the variance$ = [0.2,0.4,0.6]. The edge
(n)

[1] Bin Yang and Martin Krei3ig, “An introduction to consesit

. . . graphs and their signal processing applications,Pioc. IEEE
weightsw, ™ are randomly chosen in the intervat500; 500] and ICASSP 2011, pp. 2740 —2743.
we generated a complete graphMf= 5 and N = 10.)] . _) _
We generateds’ = 10 consistent solutions for ea¢h?, §) pair, [2] Jan Scheuing and Bin Yang, “Disambiguation of TDOA esti-

whered is given in (3). In Fig. 5, we plot the number of originally mation for multiple sources in reverberant environmen&EE
generated consistent solutions that our synthesis digotias found Trans. on ASLPvol. 16, no. 8, pp. 1479-1489, Nov. 2008.
(true positive) over the number of new consistent solut{m® neg- [3] N. Balabanian and T. A. BickartElectrical Network Theory
ative). The additional graphs occur due to the relaxatich@tyclic John Wiley & Sons, 1969.

sum condition in (3). The threshobdfor checking approximate con-

sistency is chosen to H6.75, 1.0, 1.25, 1.5, 1.75] where smallep

values correspond to the lower points in Fig. 5 and lafgelues to

upper points. [5] Martin Kreif3ig and Bin Yang, “Efficient synthesis of castent
As expected we observe a strong increase of the number of ad- 9raphs,” inProc. EUSIPCQ2010, pp. 1364-1368.

ditional solutions for large). We also see that it is impossible to

[4] Stuart Russell and Peter Norvidytificial Intelligence: A Mod-
ern Approach Pearson Education, 2 edition, 2003.

