
EFFICIENT SYNTHESIS OF CONSISTENT GRAPHS

Martin Kreißig and Bin Yang

Chair of System Theory and Signal Processing, University ofStuttgart
email:{martin.kreissig, bin.yang}@lss.uni-stuttgart.de

ABSTRACT

A consistent graph is a graph with zero cyclic sum of weights
of edges along all loops. Given a number of possible weights
for each edge, we study the problem of synthesizing con-
sistent graphs, i.e. to find the appropriate combinations of
weights, which form consistent graphs. This problem plays
an important role in, e.g. source localization based on time
difference of arrival (TDOA). By using the concept of loop
matrix known from the electric network theory, we propose
some novel systematic approaches for the efficient synthesis
of consistent graphs. We describe our algorithms, demon-
strate their performance and compare their computational
complexity, both in theory and in experiments.

1. INTRODUCTION

A consistent graph contains vertices, edges and weights of
edges whose sum along any closed path (loop) is zero.

A well known example of consistent graphs is the voltage
graph of an electric circuit where the weight is the voltage be-
tween two nodes. According to Kirchhoff’s second law, the
sum of voltages along any loop is zero. This kind of consis-
tent graphs also plays an important role in many other sci-
entific and technical problems. In source localization based
on TDOA, for example, a (generalized) cross-correlation be-
tween two sensor signals is frequently used to estimate the
TDOA values. Unfortunately, the cross-correlation typically
shows many peaks due to desired direct path and (disturbing)
multi-path propagation and multiple sources.

The callenge is to distinguish between the TDOA values
caused by direct or multi-path propagation and to find those
TDOA values from different sensor pairs that are related to
the same source. In [1, 2], Scheuing and Yang proposed
for the first time the concept of consistent TDOA graphs for
solving this problem. Each sensor represents a vertex and
each TDOA value corresponds to a weight of an edge, re-
spectively. It was observed in [1, 2] that the sum of TDOA
values along any loop in the TDOA graph must be zero if
all these TDOA values stem from the same source and di-
rect path propagation. Hence the task is now to synthesize
consistent TDOA graphs, given a number of possible TDOA
estimates for each sensor pair.

To our knowledge, this graph synthesis problem has
never been addressed systematically in the literature.
Scheuing and Yang proposed a first algorithm DATEMM
(disambiguation of TDOA estimates in multi-path multi-
source environments) in [1, 2] for this purpose. Its basic
idea is to first look for consistent TDOA triples (three ver-
tices) and then, using a bottom-up approach, combine them
to consistent TDOA quadrupels (four vertices), consistent
star graphs (quadrupels sharing a common initial triple) and
finally complete consistent TDOA graphs [2]. But this algo-
rithm is ad-hoc and has not been completely understood yet
in the multiple source case. Also it is open whether there are

more efficient synthesis approaches than DATEMM.
The purpose of this paper is to study the efficient syn-

thesis of consistent graphs in a theoretical and systematical
way. By using the well known concept of loop matrix from
the electric network theory, we develop different novel ap-
proaches to synthesize consistent graphs. We show their per-
formance and compare their computational complexity.

2. CONSISTENT GRAPH

A graphG(V,E) is defined by a set ofM vertices (nodes)V =
{vi , · · · ,vM} and a set ofN edgesE = {e1, · · · ,eN}. Clearly,
N ≤

(M
2

)

= 1
2M(M−1), because there are at most

(M
2

)

vertex
pairs. The graph isdirected if its edges are specified by a
start vertexi and an end vertexj. It is weightedif a weight
x(e) ∈ R is assigned to each edgee. In addition, we assume
that the weight changes its sign if we change the direction of
the edge, i.e.xi j =−x ji . This is pretty much like the voltage
between two nodes in an electric circuit.

A connection of neighboured edges is called apath. If
the start and end vertex of this path are the same, the path is
closed and hence aloop. When there exists a pairwise con-
nection of all vertices by a path, the graphG is connected.
If a connected graph hasN = |E| =

(M
2

)

edges forM = |V|
vertices, it iscompletebecause all pairs of vertices are con-
nected by one edge.

In a directed weighted graph, one can compute the sum
of all weights along any loop in a certain direction. This is
called thecyclic sumof weights for that loop. A graph is
consistentif this sum is zero for all loops in the graph. Fig.
1 shows a complete consistent graph withM = 5 vertices
andN = 10 edges. The number on the edges represent the
weights.

v4 v3

v2

v1

v5

3

1-4

-1

-21

2

3

0-3

Figure 1: A complete consistent graph

Note that for a given localization problem with known
sensor and source positions, we obtain a unique set of TDOA
values between different sensor pairs which form a consistent
TDOA graph. Conversely, we can easily show by a construc-
tive proof (not given in the paper) that for any given set of
consistent edge weights as in Fig. 1, it is also possible to
construct a geometric setup1 whose TDOA values match the

1In fact, there is an infinite number of geometric setups.

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 1364

edge weights. In other words, each set of consistent weights
has its localization counterpart. For this reason, we use in
this paper simple integer edge weights for illustration with-
out considering the geometrical setups of the corresponding
localization problems.

3. INCIDENCE AND LOOP MATRIX

A formal description of the connectivity of a graph is given
by theincidence matrix[3], which describes the relationship
between the vertices and edges. For the graph in Fig. 1, the
incidence matrix is

A=

edges→ e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
vertices↓

v1 1 1 -1 -1 0 0 0 0 0 0
v2 -1 0 0 0 1 1 -1 0 0 0
v3 0 -1 0 0 -1 0 0 1 1 0
v4 0 0 1 0 0 -1 0 -1 0 1
v5 0 0 0 1 0 0 1 0 -1 -1

.

(1)

Start vertices are marked with a “1” and end vertices by a
“-1”.

In this paper, we study connected graphs only, i.e. each
vertex is connected to each other vertex over a path. A nec-
essary condition is that the graph has at leastN = M − 1
edges. According to [4], it is then always possible to sort the
columns ofA such that its firstM −1 columns are linearly
independent. We rewriteA as

A= [Ast Act] (2)

whereAst is an M × (M − 1) matrix with full rank M − 1
andAct is anM × (N−M + 1) matrix. Ast represents the
spanning treeandAct the complementary tree, alsocotree
of the graph, respectively [4]. The spanning tree defines a
subgraph ofG that reaches every vertex without closing any
loop. One possible spanning tree of the graph in Fig. 1 is
shown in Fig. 2(a) with solid lines.

v4 v3

v2

v1

v5

e1

e2e3

e4

l1

(a) Spanning tree

v4 v3

v2v5

e5e6

e7

e8

e9e10

(b) Complementary tree

Figure 2: A possible spanning tree of the graph in Fig. 1 and
its complementary tree

The complementary tree to Fig. 2(a) is presented in Fig.
2(b) and contains the twigs. Each of the twigs closes one
fundamental loopwith the spanning tree, also referred to as
elementary cyclein graph theory. Fundamental loops are the
minimum set of loops inG without any redundancy. Each
column inAct is hence responsible for one fundamental loop.
In Fig. 2(a) it is shown how the twige5 from the complemen-
tary tree closes one loopl1 with the spanning tree.

There are different ways to obtain the spanning tree from
the incidence matrixA. A breadth-first search would pri-
marily look in the surrounding of a vertex like in Fig. 2(a).
A deepening search would try to find the longest sequence of

v4 v3

v2

v1

v5

e4

e10

e8

e5

(a) Spanning tree of the deepen-
ing search

v4 v3

v2v5

v1

e6

e7

e1

e8

(b) Another spanning tree

Figure 3: Other possible spanning trees for the example of
Fig. 1

vertices and may produce the spanning tree of Fig. 3(a). Fig.
3(b) shows another possible spanning tree.

The loop matrix describes the relationship between the
edges and fundamental loops. For the graph in Fig. 1, we
use the six twigse5,e6, · · · ,e10 of Fig. 2(b) to form six funda-
mental loopsl1, l2, · · · , l6 with the spanning tree in Fig. 2(a).
The corresponding loop matrix is

B=

edges→ e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
loops↓

l1 1 -1 0 0 1 0 0 0 0 0
l2 1 0 1 0 0 1 0 0 0 0
l3 -1 0 0 -1 0 0 1 0 0 0
l4 0 1 1 0 0 0 0 1 0 0
l5 0 1 0 1 0 0 0 0 1 0
l6 0 0 -1 1 0 0 0 0 0 1

. (3)

A “1” indicates identical edge and loop direction, while a
“-1” reflects opposite edge and loop direction.

The loop matrixB has the dimension(N−M+1)×N.
It has the full rankN−M+1 as apparent from the identity
matrix in the last columns in (3). The identity matrix can al-
ways be achieved for any loop matrix when the fundamental
loops in (3) appear in the same order as the twigs. For this
reason,B can be written as

B= [Bst IN−M+1] (4)

whereBst contains the firstM−1 columns ofB correspond-
ing to the edges in the spanning tree. Clearly,N ≥ M if a
connected graph has at least one loop.

4. CHECK OF CONSISTENCY

The fundamental loops play an important role for the synthe-
sis of consistent graphs. A necessary and sufficient condition
for a graph to be consistent is that allN−M+1 fundamental
loops are consistent, i.e. have a zero cyclic sum of weights.
It is no longer necessary to prove the consistency of all loops.

Let xi be the weight assigned to the edgeei (1≤ i ≤ N).
We define the edge weight vector asx= [x1, · · · ,xN]

T ∈ R
N.

The consistency of all fundamental loops and hence of the
whole graph can be easily checked by

B ·x= 0. (5)

The main problem, however, is that each edgeei has a num-
ber of possible weights. They could be the different TDOA
values for a sensor pair caused by different sources and di-
rect as well as multi-path propagations. LetWi be the set
of Si = |Wi | weightsxi ∈ Wi for edgeei . Clearly, there is
a total number of∏N

i=1Si possibilities for the weight vector
x ∈ (W1×·· ·×WN). Each of these vectors corresponds to a

1365

graph with a certain combination of weights whose consis-
tency has to be examined according to (5). This process is
called synthesis of efficient graphs. In the next section, we
propose different approaches for this purpose.

5. SYNTHESIS ALGORITHMS

In this section, we present systematic approaches for the effi-
cient synthesis of consistent graphs given sets of weightsWi
(1 ≤ i ≤ N). For an easier estimation of the computational
complexity, we assume an equal number of weights per edge
Si = S. All synthesis algorithms rely on the use of the loop
matrixB in (4).

5.1 The brute force approach

The brute force approach tries all∏N
i=1Si = SN possible

weight vectorsx ∈ (W1 × ·· ·×WN). For each combination
x of weights, the consistency condition (5) has to be exam-
ined. Without taking the zero entries inB into account,
the computational complexity of this consistency check is
(N−M +1)N operations, where one operation is either an
addition/subtraction or comparison. This complexity can be
reduced by considering the zero entries inB. The price is
a higher complexity in program code and address calcula-
tions. The total computational complexity of the brute force
approach is hence

CBruteForce(M,N,S) = SN · (N−M+1)N. (6)

5.2 Kirchhoff Potential Synthesis (KiPoS)

KiPoS exploits the special structure of the loop matrix in (4)
that is always possible for a connected graph. We partition
x into two subvectors of lengthM − 1 andN−M + 1, i.e.
x = [xT

st x
T
ct]

T . xst = [x1, · · · ,xM−1]
T contains the weights

of the spanning tree whilexct = [xM, · · · ,xN]
T contains the

weights of the twigs of the cotree. By using (4), the consis-
tency condition can be written as

xct =−Bst ·xst. (7)

Instead of considering allSN combinations forx, we now
look at ∏M−1

i=1 Si = SM−1 combinations forxst. For each of
these combinations of the spanning tree, we computeBst ·
xst and compare it to the weights of the cotreexct. Since
we needM−2 additions/subtractions andScomparisons for
each of theN−M+1 rows ofBst ·xst (fundamental loops),
the computational complexity of this algorithm is reduced to

CKiPoS(M,N,S) = SM−1 · (N−M+1) · (M−2+S). (8)

This algorithm has a nice interpretation in terms of the
Kirchhoff voltage law. We assign a zero “electrical potential”
to a reference vertex andM−1 “potentials” to the remaining
vertices. This assignment corresponds to the choice ofxst.
Then we compute the differences of the potentials and com-
pare them to the “voltages”xct along the twigs of the cotree.
For this reason, this synthesis algorithm is calledKirchhoff
Potential Synthesis (KiPoS).

5.3 KiPoS with initial pruning (KiPoS-P)

In order to further reduce the computational complexity, we
propose to apply a pruning technique before we perform the
previous algorithm. The basic idea of pruning is to reduce
the size of the weight setsSi = |Wi |. In particular, we are

highly interested to reduceSi (1≤ i ≤ M −1) for the span-
ning tree since these numbers affect the complexity of the
KiPoS significantly, see the termSM−1 in (8).

We propose to prune the weight sets by checking the con-
sistency of each of theN−M+1 fundamental loops. Assume
that the fundamental loopl j containsM ≥ Nj ≥ 3 edges.
Then we obtainSNj possible combinations of weights for this
loop. The consistency of each weight combination can be ex-
amined byNj −1 operations. The complexity of the pruning
step ofN−M+1 fundamental loops is thus

CPrune(M,N,S) = SNj (Nj −1)(N−M+1). (9)

If all fundamental loops are triples withNj = 3 which is al-
ways possible for complete graphs with a breadth-first search
spanning tree like in Fig. 2(a), we obtainCPrune(M,N,S) =
S32(N−M+1).

After the pruning step, we have removed all weights
from Wi which are not consistent for any fundamental loop
and thus cannot contribute to the consistency of the whole
graph. The reduced weight set for edgeei is Wi ⊂ Wi with
Si = |Wi | ≤ Si. Then we apply the previous KiPoS algorithm
to find consistent graphs. This algorithm is called Kirchhoff
Potential Synthesis with Pruning (KiPoS-P). Its overall com-
plexity is

CKiPoS-P(M,N,S,S) =CPrune(M,N,S)+CKiPoS(M,N,S)
(10)

if Si = S for all 1≤ i ≤ N.

5.4 Depth-First Search with Back-tracking (DFS-BT)

The theory of obtaining a solution to a problem with con-
straint variables is well known as theConstraint Satisfac-
tion Problem(CSP). One example is Sudoku, where we have
9×9 variables. Each of them can take a value from the set
{1, · · · ,9}. The constraints are that each row, column and
3×3-square can only have a single occurrence of each value,
i.e. the union of the values along a row, column or 3× 3-
square must be the complete set{1, · · · ,9} again.

The theory of CSP goes back to Mackworth in 1977
[6] with the description ofarc- andpath-consistency. This
means a sequence of variables that are connected by logical
or arithmetical constraints that have to be fulfilled. We can
map our problem of consistent graphs to such a CSP formu-
lation by interpreting the zero cyclic sum condition (5) as an
arithmetic constraint on the weights.

A CSP is mainly solved by a method calledsearch strat-
egy [5]. We use theDepth-First-Search(DFS) [7] which
searches a tree or structure in such a way that all nodes along
a path are explored. The ordering of the path in our case is
defined by the ordering of the fundamental loops. In the first
step, we search the edges in the first fundamental loop and
afterwards we explore the edges of the second fundamental
loop and so on. In (3), for example, the order of the edges to
be explored ise1,e2,e5,e3,e6,e4,e7,e8,e9,e10. We assign a
weightx j

i ∈Wi to each edgeei following this order.x j
i repre-

sents thej-th weight inWi . The result is a tree like in Fig. 4
where each transition from one edge of the graph to another
is determined by the weight assigned to the starting edge.

When we follow one path top down, we obtain one com-
plete assignment of all edges. If we check all assignments
for consistency, there are∏N

i=1Si different possibilities like in
the brute force approach in 5.1. Therefore, theback-tracking

1366

e1

e2 e2 e2 e2

x1
1 x2

1 x3
1 · · · xS1

1

x1
2 x2

2 · · · xS2
2 · · ·

x1
2 · · · xS2

2

Figure 4: A tree structure showing the process of assignment
of weightsx j

i to edgesei .

(BT) [9] is added to the DFS. Each time the search algorithm
detects a failure in a new assignment, it skips this value or
returns to the previous edge. The same applies when the al-
gorithm reaches the last edge.

For the synthesis of consistent graphs, a failure is a con-
tradiction to the zero cyclic sum condition in (5), i.e. we find
at a certain edge that the new assigned weight does not match
to the previously assigned weights in the sense of (5). In this
case, we try the next weight fromWi for the current edge and
test its consistency to the previous weights. If all weights
for the current edge have already been considered, we track
back to the previous edge in the search tree and proceed with
its next weight. The improvement of this approach to brute
force is that we skip complete subtrees in Fig. 4, when the
weights of edges of higher levels conflict.

This algorithm is quite similar to the algorithm presented
in [2] where triples are used to synthesize a consistent graph.
Each triple corresponds to a row inB (fundamental loop) for
complete graphs. The test of the zero cyclic sum condition
along a triple in [2] corresponds to the pruning ofWi . The
concatenation of rows ofB and the assignment of weights
to edges is equivalent to the combination of consistent triples
that have a common edge.

The difference is that we have erased the redundancy of
considering all triples. Instead we consider only the funda-
mental loops. Moreover, our approach does not require a
complete graph whose fundamental loops can be chosen as
triples. The loop matrix is a more general concept and appli-
cable to arbitrary connected graphs.

In general, it is difficult to determine precisely the com-
plexity of the DFS-BT algorithm. Taking the consistency
constraints of the fundamental loops into account, we can
approximate the complexity as follows. To test the first fun-
damental loop, we have to assign a weight to all included
edges. In the worst case, that meansM edges (M− 1 from
Bst and one fromIN-M+1 in (4)). Hence we obtainSM dif-
ferent assignments for the first fundamental loop. Assuming
that the first fundamental loop hasS′ consistent weight com-
binations, we can reduce the number of assignments from
SM to S′. For the next fundamental loop, only one new edge
(from IN-M+1) with S possible weights is added which gives
S·S′ different assignments to be checked. Subsequently this
is done for allN−M remaining fundamental loops. Since
each fundamental loop needs at maximumM−1 operations
for a consistency check, we obtain a complexity of

CDFS-BT(M,N,S,S′) = (M−1) ·
[

SM +S·S′ · (N−M)
]

.
(11)

5.5 DFS-BT with initial pruning (DFS-BT-P)

Just like in section 5.3 we can further reduce the computa-
tional complexity of DFS-BT by applying an initial pruning
step to the weight setsWi . By testing the consistency of each
fundamental loop, we can reduceWi to Wi with S= |Wi |
before we apply the DFS-BT algorithm. This algorithm is
called DFS-BT with initial pruning (DFS-BT-P).

In general,S≥ S′ ≥ Sbecause there may exist more con-
sistent fundamental loops than complete consistent graphs
including all loops. But for the sake of simplicity we as-
sumeS′ = Sconsistent graphs and subgraphs (loops). Hence
the overall complexity of DFS-BT-P is

CDFS-BT-P(M,N,S,S)=CPrune(M,N,S)+CDFS-BT(M,N,S,S).
(12)

6. EVALUATION AND COMPARISON

In this section, we evaluate the proposed synthesis algorithms
and compare their complexity.

6.1 Simulation setup

We implemented all algorithms in MATLAB. For a graph
with M vertices andN edges, we generated for each edgeei a
setWi of S= |Wi | weights. We propose the so called potential
approach to generateSgraphs which are consistent by defini-
tion: We first assignM arbitrary “electrical potentials” to the
M vertices. Then we compute their differences (“voltages”)
as the weight of the edgesxi . In this way, the resulting weight
vectorx always satisfies the consistency conditionB ·x= 0.
The remainingS− S weights per edge are generated ran-
domly.

6.2 More consistent graphs than generated

We applied all algorithms to these simulated weight sets. All
algorithms find allSconsistent graphs as expected. Interest-
ingly, the synthesis algorithms often find more thanS con-
sistent graphs. Fig. 5 shows such an example. For a sim-
ple triple, we generatedS= S= 3 consistent weight vectors
x1 = [2,1,1]T , x2 = [3,2,1]T , x3 = [3,3,0]T as shown in
Fig. 5(a). The corresponding weight sets areW1 = {2,3},
W2 = {1,2,3}, W3 = {0,1}. The synthesis algorithms, how-
ever, produce in addition to these consistent graphs a new
onexnew= [2,2,0]T in Fig. 5(b) whose weights are a com-
bination fromW1, W2, W3.

1
e3

2 e1
1e2

1

3 2

0

3 3

(a)

⇒

0

2 2

(b)

Figure 5: Given the three consistent graphs in 5(a), a
new consistent graph in 5(b) occurs by combining existing
weights.

The reason for this phenomenon is pretty simple. If allxi
are consistent in the sense ofB ·xi = 0, then any linear com-
bination ofxi is also consistent because ofB · (∑i cixi) = 0.
In the above example,xnew = 2(x2−x1) and all weights in
xnew occured inx1, x2, x3.

1367

6.3 Comparison of computational complexity

For comparing the complexity of different algorithms, we fo-
cused on complete graphs withM = 6 andM = 10 vertices
andN =

(M
2

)

edges. Fig. 6 shows the theoretical complexi-
ties of the brute force approach (6), KiPoS (8) and DFS-BT
(11) for a varying numberS= S of weights per edge. The
plots illustrate a polynomial increase of complexity due to
O(SN) in (6) andO(SM) in (8) and (11). It is obvious that the
brute force approach has the highest complexity.

2 3 4 5 6 7 8 9 10
10

0

10
20

10
40

10
60

Brute Force (M=10)
KiPoS (M=10)
DFS-BT (M=10)
BruteForce (M=6)
KiPoS (M=6)
DFS-BT (M=6)

Number of weight,S

C
o

m
p

le
xi

ty
[o

p
er

at
io

n
s]

Figure 6: A comparison of the theoretical complexities of the
brute force approach, KiPoS and DFS-BT forM = 10 (solid)
andM = 6 (dashed)

Next we discuss the improvement of the initial pruning
step for KiPoS and DFS-BT. This step causes little additional
operations of orderO(S3M2) as shown in (9), but reduces the

overall complexity significantly due toS
M
≪ SM in (10) and

(12).
This is shown in Fig. 7 where KiPoS, KiPoS-P, DFS-BT

and DFS-BT-P are compared forM = 6 vertices,N =
(M

2

)

=

15 edges, a varying number ofSweights per edge andS= 1
2S

consistent graphs for each value ofS. The solid curves plot
the theoretical number of operations according to (8), (10),
(11), (12). The dashed curves show the run time of MATLAB
simulations inµsec. As expected, the initial pruning step re-
duces significantly the complexity because not all weights
contribute to consistent graphs and are deleted fromWi . Sec-
ondly, the theoretical comlexity estimates agree well withthe
experimental results, at least forS< 18. For larger values
of S, the complexity in simulations increases faster than the
theoretical predictions. This effect is related to the one de-
scribed in section 6.2. The larger the number of weights per
edge is, the higher the probability is that the synthesis algo-
rithms find more consistent graphs than we generated.

7. CONCLUSION AND OUTLOOK

We have presented several systematic algorithms for synthe-
sizing consistent graphs with zero cyclic sum of weights of
edges. All algorithms are based on the loop matrix which
specifies the fundamental loops in a graph. We not only stud-
ied different search strategies, but also developed a simple ef-
fective pruning step to reduce the size of the weight sets for

10 12 14 16 18 20 22 24 26 28 30

10
6

10
8

10
10

KiPoS
DFS-BT
KiPoS-P
DFS-BT-P

Number of weights,S

C
o

m
p

le
xi

ty
[o

p
.]

/R
u

n
tim

e
[µ
se

c]

Figure 7: A comparison of the theoretical (solid) and experi-
mental complexities (dashed) of KiPoS(-P) and DFS-BT(-P)
for M = 6 andS= S/2

the edges. We derived the computational complexities for all
algorithms and verified them in computer simulations.

In the future, we will study how to further reduce the
computational complexity of synthesis algorithms and make
a comparison to the DATEMM algorithm in [2]. In addition,
some practical issues like disconnected graphs and approxi-
mately consistent graphs will be investigated.

REFERENCES

[1] Scheuing, J. and Yang, B.,“Disambiguation of TDOA
Estimates in Multi-Path Multi-Source Environments
(DATEMM)”, in IEEE International Conference on
Acoustics, Speech and Signal Processing, May 2006, pp.
837–840

[2] Scheuing, J. and Yang, B.,“Disambiguation of TDOA
Estimation for Multiple Sources in Reverberant Envi-
ronments”, inIEEE Transactions on Audio, Speech and
Language Processing, Nov. 2008, pp. 1479–1489

[3] Jungnickel, D., “Graphs, Networks and Algorithms (Al-
gorithms and Computation in Mathematics)”,Springer-
Verlag, 2004

[4] Balabanian, N. and Bickart, T.A., “Electrical Network
Theory”,John Wiley & Sons, Inc. (New York), 1969

[5] Schulte, C. and Stuckey, P. J., “Efficient Constraint Prop-
agation Engines”, inTransactions on Programming Lan-
guages and Systems, vol. 31, pp. 2:1–2:43, Dec. 2008.

[6] Mackworth, A. K., “Consistency in networks of rela-
tions”, Artificial Intelligence 8, 1, pp. 99–118, 1977

[7] Tarjan, R., “Depth-First Search and linear graph algo-
rithms”, SIAM Journal in Computing, vol. 1, issue 2, pp.
146–160, 1972

[8] Bang-Jensen, J. and Gutin, G., “Digraphs - Theory, Al-
gorithms and Applications”,Springer-Verlag, 2006

[9] Kumar, V., “Algorithms for Constraint Satisfaction: A
Survey”,Artificial Intelligence Magazine, vol. 13, num-
ber 1, pp. 32–44, 1992

1368

