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ABSTRACT more efficient synthesis approaches than DATEMM.

A consistent graph is a graph with zero cyclic sum of weights, 1€ purpose of this paper is to study the efficient syn-
of edges along all loops. Given a number of possible weight esis of consistent graphs in a theoretical and systeahatic

for each edge, we study the problem of synthesizing con@- BY using the well known concept of loop matrix from
' e electric network theory, we develop different novel ap-

sistent graphs, i.e. to find the appropriate combinations hes t thesi istent hs. We show thei
weights, which form consistent graphs. This problem play roaches to synthesize consistent grapns. Ve snow their per
rmance and compare their computational complexity.

an important role in, e.g. source localization based on tim
difference of arrival (TDOA). By using the concept of loop
matrix known from the electric network theory, we propose 2. CONSISTENT GRAPH

some novel systematic approaches for the efficient syrsthesi graphG(V, E) is defined by a set ol vertices (nodesy =
of consistent graphs. We describe our algorithms, demorgy; ... vyl and a set oN edgesE = {ey,---,en}. Clearly,
strate their performance and compare their computation My _ 1 _
complexity, both in theory and in experiments. i\ < (7) = 3M(M - 1), because there are at m¢3y vertex
pairs. The graph islirectedif its edges are specified by a
start vertexi and an end vertek. It is weightedif a weight
1. INTRODUCTION x(e) € R is assigned to each edgeln addition, we assume

A consistent graph contains vertices, edges and weights g{ﬁat the weight changes its sign if we change the direction of
edges whose sum along any closed path (loop) is zero. et edge,tl.ex.-j d —Xji- Th'sl |stp_rett_y m.l:Ch like the voltage
A well known example of consistent graphs is the voltage©fWE€en two nodes in an electric circuit.

AR, D A connection of neighboured edges is calledaah If

?v(/igr: %tvaznnec!ggtsr{c nggrlg\iﬁgetf E}f’c\;‘vﬁ é)gﬁh; Igéggr\(g I[{:v%?tg ethe start and end vertex of this path are the same, the path is
sum of voltages along any loop is zero. This kind of consisC/osed and hencelaop. When there exists a pairwise con-
tent graphs also plays an important role in many other sciiection of all vertices by a path, thMe graghis connected
entific and technical problems. In source localization Hase!f & connected graph ha¢ = [E| = (%) edges foM = |V|
on TDOA, for example, a (generalized) cross-correlation beVertices, it iscompletebecause all pairs of vertices are con-
tween two sensor signals is frequently used to estimate theected by one edge.
TDOA values. Unfortunately, the cross-correlation tyfiica In a directed weighted graph, one can compute the sum
shows many peaks due to desired direct path and (disturbingf all weights along any loop in a certain direction. This is
mu|t|-path propagation and mu|t|p|e sources. Ca”e_d thecyC“C Sum(_)f We|ghts for that IOOp A graph |_S

The callenge is to distinguish between the TDOA valuegonsistentf this sum is zero for all loops in the graph. Fig.
caused by direct or multi-path propagation and to find thosé Shows a complete consistent graph with=5 vertices
TDOA values from different sensor pairs that are related t&NdN = 10 edges. The number on the edges represent the
the same source. In [1, 2], Scheuing and Yang proposeff€ights.
for the first time the concept of consistent TDOA graphs for V1
solving this problem. Each sensor represents a vertex and v \
each TDOA value corresponds to a weight of an edge, re- -1 3 o
spectively. It was observed in [1, 2] that the sum of TDOA Vs e Vo

/

values along any loop in the TDOA graph must be zero if -4 2 1
all these TDOA values stem from the same source and di- \‘\/ \
rect path propagation. Hence the task is now to synthesize - 0 1 -2
consistent TDOA graphs, given a number of possible TDOA \ /A /
estimates for each sensor pair. Wl 3y
To our knowledge, this graph synthesis problem has
never been addressed systematically in the literature. Figure 1: A complete consistent graph
Scheuing and Yang proposed a first algorithm DATEMM
(disambiguation of IDOA estimates in_mlti-path nulti- Note that for a given localization problem with known

source environments) in [1, 2] for this purpose. Its basiGensor and source positions, we obtain a unique set of TDOA
idea is to first look for consistent TDOA triples (three ver-yalues between different sensor pairs which form a coniste
tices) and then, using a bottom-up approach, combine themDQA graph. Conversely, we can easily show by a construc-
to consistent TDOA quadrupels (four vertices), consistenfive proof (not given in the paper) that for any given set of
star graphs (quadrupels sharing a common initial tripl&) anconsistent edge weights as in Fig. 1, it is also possible to

finally complete consistent TDOA graphs [2]. But this algo- construct a geometric setuprhose TDOA values match the
rithm is ad-hoc and has not been completely understood yet

in the multiple source case. Also it is open whether there are !in fact, there is an infinite number of geometric setups.
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has its localization counterpart. For this reason, we use in

this paper simple integer edge weights for illustrationhwit Vs
out considering the geometrical setups of the correspgndin
localization problems.

edge weights. In other words, each set of consistent weights y
€1

0
3. INCIDENCE AND LOOP MATRIX Va

A formal description of the connectivity of a graph is given  (a) Spanning tree of the deepen- (b) Another spanning tree
by theincidence matri¥3], which describes the relationship ~ ing search
between the vertices and edges. For the graph in Fig. 1, the

incidence matrix is Figure 3: Other possible spanning trees for the example of
Fig. 1
edges— |e1 & € € €& €& € € & ep g
vertices|
w [1 1 -1 -1 0 0 0 0 0 0 i . . .
A= V2 1 0 0 0 1 1 -1 0 0 O vertices and may produce the spanning tree of Fig. 3(a). Fig.
I O S S S N T T 3(b) shows another possible spanning tree.
4 N . . .
Vs 00 01 0 0 1 0 -1 -1 The loop matrix describes the relationship between the
(1) edges and fundamental loops. For the graph in Fig. 1, we
use the six twigss, e, - - - , €10 Of Fig. 2(b) to form six funda-
Start vertices are marked with a “1” and end vertices by anental loops,lo,---,lg with the spanning tree in Fig. 2(a).
“-1" The corresponding loop matrix is
In this paper, we study connected graphs only, i.e. each
vertex is connected to each other vertex over a path. A nec- elggggj & @ & & & & & & & o
essary condition is that the graph has at ledst M — 1 N T 1 0 o 1 0 o o0 o o
edges. According to [4], itis then always possible to setth g _ I 1 0 1.0 0 1 0 0 0 0] (3)
columns ofA such that its firsM — 1 columns are linearly s |1 06 0 -1 0 0 1 0 0 O
. : I 01 1 0 0 0 0 1 0 0
independent. We rewritA as ls 010 1 0 0 0 0 1 0
le o o0 -1 1 0 0 0O 0 O 1
A= [Ast Act] (2)

A “1” indicates identical edge and loop direction, while a
where Ag is anM x (M — 1) matrix with full rankM —1  “-1” reflects opposite edge and loop direction.
and A is anM x (N —M + 1) matrix. Ag represents the The loop matrixB has the dimensiofN —M +1) x N..
spanning treeand A the complementary treealsocotree It has the full rankN — M + 1 as apparent from the identity
of the graph, respectively [4]. The spanning tree defines BMatrix in the last columns in (3). The identity matrix can al-
subgraph of5 that reaches every vertex without closing anyWways be achieved for any loop matrix when the fundamental
loop. One possible spanning tree of the graph in Fig. 1 i400ps in (3) appear in the same order as the twigs. For this

shown in Fig. 2(a) with solid lines. reasonB can be written as
Vi B = [BstIn-m+1] (4)
y &
whereBg; contains the firsM — 1 columns ofB correspond-
Vs m Vo Woo——-— 87— V2 ing to the edges in the spanning tree. CleaNyy> M if a
e e\l // \\ N Pid /’ connected graph has at least one loop.
/ €0 € 6 €
/ \ AN /' 4. CHECK OF CONSISTENCY
\
Va V3 \Z! <. € —— V3 The fundamental loops play an important role for the synthe-

sis of consistent graphs. A necessary and sufficient camditi
for a graph to be consistent is that Ml M + 1 fundamental
loops are consistent, i.e. have a zero cyclic sum of weights.
Figure 2: A possible spanning tree of the graph in Fig. 1 andk is no longer necessary to prove the consistency of alldoop
its complementary tree Letx; be the weight assigned to the edgél <i <N).
We define the edge weight vectoras- [xg,---,xy]" € RN,

The complementary tree to Fig. 2(a) is presented in FigThe consistency of all fundamental loops and hence of the
2(b) and contains the twigs. Each of the twigs closes onwhole graph can be easily checked by
fundamental loopvith the spanning tree, also referred to as
elementary cyclen graph theory. Fundamental loops are the B-x=0. (5)
minimum set of loops irG without any redundancy. Each ) .
columninA is hence responsible for one fundamental loop.The main problem, however, is that each edgeas a num-

In Fig. 2(a) itis shown how the twigs from the complemen-  ber of possible weights. They could be the different TDOA
tary tree closes one lodp with the spanning tree. values for a sensor pair caused by different sources and di-
There are different ways to obtain the spanning tree fronfiect as well as multi-path propagations. Mt be the set

the incidence matribA. A breadth-first search would pri- of § = [W| weightsx, € W for edgee. Clearly, there is
marily look in the surrounding of a vertex like in Fig. 2(a). a total number of]\; S possibilities for the weight vector
A deepening search would try to find the longest sequence of € (W x --- x Wy ). Each of these vectors corresponds to a

(a) Spanning tree (b) Complementary tree
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graph with a certain combination of weights whose consishighly interested to reducg (1 <i <M — 1) for the span-
tency has to be examined according to (5). This process ising tree since these numbers affect the complexity of the
called synthesis of efficient graphs. In the next section, w&iPoS significantly, see the ter8Y 1 in (8).

propose different approaches for this purpose. We propose to prune the weight sets by checking the con-
sistency of each of thid — M + 1 fundamental loops. Assume
5. SYNTHESISALGORITHMS that the fundamental loofy containsM > N; > 3 edges.

In this section, we present systematic approaches for the ef Then we obtair8" possible combinations of weights for this
cient synthesis of consistent graphs given sets of welghts 100p- The consistency of each weight combination can be ex-
(1<i<N). For an easier estimation of the computationa@Mined byN; —1 operations. The complexity of the pruning
complexity, we assume an equal number of weights per edgdepP 0fN —M + 1 fundamental loops is thus

S = S All synthesis algorithms rely on the use of the loop _
matrix B in (4). CerundM,N,S) = SNi(N; —1)(N-M 4 1). (9)

5.1 Thebruteforceapproach If all fundamental loops are triples with; = 3 which is al-
ways possible for complete graphs with a breadth-first $earc
spanning tree like in Fig. 2(a), we obtalprund M,N,S) =
S2(N-M+1).

After the pruning step, we have removed all weights

The brute force approach tries giji; S = SV possible
weight vectorsx € (Wi x --- x Wy). For each combination
x of weights, the consistency condition (5) has to be exam

ined. Without taking the zero entries B into account,

the computational complexity of this consistency check id"®™M W which are not consistent for any fundamental loop
(N— M+ 1)N operations, where one operation is either arFind thus cannot contribute to the consistency of the whole
addition/subtraction or comparison. This complexity can b graph. The reduced weight set for edges Wi C W with
reduced by considering the zero entriesn The price is S = [Wi| <S. Then we apply the previous KiPoS algorithm
a higher complexity in program code and address calculd® find consistent graphs. This algorithm is called Kirctihof

tions. The total computational complexity of the brute forc Potential Synthesis with Pruning (KiPoS-P). Its overatheo

approach is hence plexity is
Caruterorcd M, N, S) = S (N=M+1)N. (6) Ckipos-P(M, N, Saé) = Cerund M, N, S) + Cipos(M, N,_?%.O)
5.2 Kirchhoff Potential Synthesis (KiPoS) if §=Sforall1<i<N.

KiPoS exploits the special structure of the loop matrix ip (4 . . .
that is alvf/)ays possigle for a connected grapkl?. We pa)r]tigioﬁ'4 Depth-First Search with Back-tracking (DFS-BT)

x into two subvectors of lengtM —1 andN —M +1, i.e.  The theory of obtaining a solution to a problem with con-
x =[x xq]T. xst= [X1,---,xu_1]T contains the weights straint variables is well known as th@onstraint Satisfac-

of the spanning tree whilgg = [xu,--- ,xn]T contains the tion Prob_lem(CSP). One example is Sudoku, where we have
weights of the twigs of the cotree. By using (4), the consis9 x 9 variables. Each of them can take a value from the set

tency condition can be written as {1,---,9}. The constraints are that each row, column and
3 x 3-square can only have a single occurrence of each value,
Xct = —Bst- Xt. (7) i.e. the union of the values along a row, column ox 3-
square must be the complete §&t---,9} again.
Instead of considering aN combinations forx, we now The theory of CSP goes back to Mackworth in 1977

look at)M7*S = S~ combinations forxs;. For each of [6] with the description ofarc- and path-consistencyThis
these combinations of the spanning tree, we comjagge = means a sequence of variables that are connected by logical
xst and compare it to the weights of the cotreg. Since  or arithmetical constraints that have to be fulfilled. We can
we needM — 2 additions/subtractions arfBcomparisons for map our problem of consistent graphs to such a CSP formu-
each of theN — M + 1 rows ofBg;- x5t (fundamental loops), lation by interpreting the zero cyclic sum condition (5) as a
the computational complexity of this algorithm is reduced t arithmetic constraint on the weights.
A CSP is mainly solved by a method callsearch strat-
Ckipos(M,N,S) =S 1. (N-M+1)-(M—2+9). (8) egy[5]. We use theDepth-First-SearcDFS) [7] which
searches a tree or structure in such a way that all nodes along
This algorithm has a nice interpretation in terms of thea path are explored. The ordering of the path in our case is
Kirchhoffvoltage law. We assign a zero “electrical potafiti  defined by the ordering of the fundamental loops. In the first
to a reference vertex ard — 1 “potentials” to the remaining step, we search the edges in the first fundamental loop and
vertices. This assignment corresponds to the choicesof afterwards we explore the edges of the second fundamental
Then we compute the differences of the potentials and comeop and so on. In (3), for example, the order of the edges to
pare them to the “voltagest.; along the twigs of the cotree. be explored isey, e, €5, €3, €5,€4,€7,€3,69,€10. We assign a

For this reason, this SyntheSiS algorithm is Ca&[thhoﬁ: We|ghtX|J GVV| to each edga fo"owing this Order_XiJ repre-

Patential Synthesis (KiPoS) sents thg-th weight inW. The result is a tree like in Fig. 4
. - : ) where each transition from one edge of the graph to another
5.3 KiPoSwithinitial pruning (KiPoS-P) is determined by the weight assigned to the starting edge.

In order to further reduce the computational complexity, we ~ When we follow one path top down, we obtain one com-
propose to apply a pruning technique before we perform thglete assignment of all edges. If we check all assignments
previous algorithm. The basic idea of pruning is to reducdor consistency, there am{\‘zls different possibilities like in

the size of the weight se§ = |W|. In particular, we are the brute force approachin 5.1. Therefore,ltlhek-tracking
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5.5 DFS-BT with initial pruning (DFS-BT-P)

x X/ 3\ - ' Just like in section 5.3 we can further reduce the computa-
tional complexity of DFS-BT by applying an initial pruning
@ @ @ @ step to the weight set&f. By testing the consistency of each
L4 s ) S fundamental loop, we can reduw¢ to W; with S= |W;|
X% N\ X/ 1 \X2 before we apply the DFS-BT algorithm. This algorithm is
called DFS-BT with initial pruning (DFS-BT-P).

In generalS> S > Sbecause there may exist more con-
I,sd'stent fundamental loops than complete consistent graphs
including all loops. But for the sake of simplicity we as-
sumeS = Sconsistent graphs and subgraphs (loops). Hence
the overall complexity of DFS-BT-P is

mCDFS-BT-P(M7 N7 S’ é) = CPrune(Ma N; S) +CDFS-BT(M7 N7_?EL§2))

Figure 4: A tree structure showing the process of assignme
of weightsx! to edges.

(BT) [9] is added to the DFS. Each time the search algorith
detects a failure in a new assignment, it skips this value or

returns to the previous edge. The same applies when the al- 6. EVALUATION AND COMPARISON
gorithm reaches the last edge. '

For the synthesis of consistent graphs, a failure is a cor]! this section, we evaluate the proposed synthesis alignsit
tradiction to the zero cyclic sum condition in (5), i.e. wedfin nd compare their complexity.
at a certain edge that the new assigned weight does not matgtl Simulation set
to the previously assigned weights in the sense of (5). b thi™ mulation setup
case, we try the next weight frow for the current edge and We implemented all algorithms in MATLAB. For a graph
test its consistency to the previous weights. If all weightsvith M vertices andN edges, we generated for each edge
for the current edge have already been considered, we tracletW of S= |W| weights. We propose the so called potential
back to the previous edge in the search tree and proceed wiglhproach to generafgraphs which are consistent by defini-
its next weight. The improvement of this approach to brutejon: We first assigM arbitrary “electrical potentials” to the
force is that we skip complete subtrees in Fig. 4, when the/ vertices. Then we compute their differences (“voltages”)
weights of edges of higher levels conflict. as the weight of the edges In this way, the resulting weight

This algorithm is quite similar to the algorithm presentedvectorx always satisfies the consistency condit®nx = 0.
in [2] where triples are used to synthesize a consistentgrapThe remainingS— S weights per edge are generated ran-
Each triple corresponds to a rowBi(fundamental loop) for -~ domly.
complete graphs. The test of the zero cyclic sum condition )
along a triple in [2] corresponds to the pruningwf The 6.2 Moreconsistent graphsthan generated
concatenation of rows dB and the assignment of weights \\e applied all algorithms to these simulated weight setk. Al
:ﬁ etdhges is equivalent t(;) the combination of consistenesip 5qqrithms find allS consistent graphs as expected. Interest-

athave a common edge. ingly, the synthesis algorithms often find more tt&on-

The difference is that we have erased the redundancy @istent graphs. Fig. 5 shows such an example. For a sim-
considering all triples. Instead we consider only the fundapje triple, we generate8= S= 3 consistent weight vectors
mental loops. Moreover, our approach does not require g _ 21,17, xo = [3,2,]7, x3 = [3,3,0]T as shown in
complete graph whose fundamental loops can be chosen gg, 5(5)_’ The corresbéndiﬁg weigh7t sets Wwe= {2,3)
triples. The loop matrix is a more general concept and applip, — {1,2,3},Ws = {0,1}. The synthesis algorithms,, héw-
cable to arbitrary connected graphs. ever, produce in addition to these consistent graphs a new

In general, it is difficult to determine precisely the com-onexpew = [2,2,0]7 in Fig. 5(b) whose weights are a com-
plexity of the DFS-BT algorithm. Taking the consistency bination fromwWi, W, W.
constraints of the fundamental loops into account, we can

approximate the complexity as follows. To test the first fun-
damental loop, we have to assign a weight to all included
edges. In the worst case, that medh®dges i1 — 1 from 2 NI 3 2 3 3 . 2 2
Bst and one fromIy.v+1 in (4)). Hence we obtai$V dif-
ferent assignments for the first fundamental loop. Assumin 313 5 5
(b)

that the first fundamental loop h&sconsistent weight com-

binations, we can reduce the number of assignments from

SMto S. For the next fundamental loop, only one new edge _ ) ) )

(from In.v+1) With S possible weights is added which gives Figure 5:  Given the three consistent graphs in 5(a), a

S- g different assignments to be checked. Subsequently thisew consistent graph in 5(b) occurs by combining existing

is done for allN — M remaining fundamental loops. Since Weights.

each fundamental loop needs at maximum- 1 operations

for a consistency check, we obtain a complexity of The reason for this phenomenon is pretty simple. Ikall
are consistent in the senseBf x; = 0, then any linear com-
bination ofx; is also consistent becauseBf (3 cixi) = 0.

Corse1(M,N,SS)=(M-1) - [S"+S-S- (N-M)]. In the above examplenew = 2(x2 —x1) and all weights in
(11)  xpewoccured inxs, x, X3.

1
(@
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6.3 Comparison of computational complexity

For comparing the complexity of different algorithms, we fo ‘ 5 ‘ KiPés

cused on complete graphs with = 6 andM = 10 vertices 0| —x— DES-BT
andN = (%) edges. Fig. 6 shows the theoretical complexi- 107 4 Kipos-p L

ties of thezbrute force approach (6), KiPoS (8) and DFS-BT —b— DFS-BT-P
(11) for a varying numbe$ = S of weights per edge. The
plots illustrate a polynomial increase of complexity due to
O(sY) in (6) andO(SM) in (8) and (11). Itis obvious that the
brute force approach has the highest complexity.

60

Complexity [op.]/Runtime fisec]

10 ‘ ‘ ‘ ‘ ; ;
—=&— Brute Force (M=10)
—6— KiPoS (M=10)
= 10 12 14 16 18 20 22 24 26 28 30
% 10" Number of weightsS
§ Figure 7: A comparison of the theoretical (solid) and experi
> mental complexities (dashed) of KiPoS(-P) and DFS-BT(-P)
3 forM =6 andS=S/2
£
3
the edges. We derived the computational complexities for al
algorithms and verified them in computer simulations.
In the future, we will study how to further reduce the

computational complexity of synthesis algorithms and make
a comparison to the DATEMM algorithm in [2]. In addition,
some practical issues like disconnected graphs and approxi

Number of weightS

Figure 6: A comparison of the theoretical complexities & th mately consistent graphs will be investigated.

brute force approach, KiPoS and DFS-BT kér= 10 (solid)
andM = 6 (dashed)

Next we discuss the improvement of the initial pruning[l]
step for KiPoS and DFS-BT. This step causes little additiona

operations of orde®(S*M?) as shown in (9), but reduces the

overall complexity significantly due #B" < Min (10) and
(12).
This is shown in Fig. 7 where KiPoS, KiPoS-P, DFS-BT 2]
and DFS-BT-P are compared fior = 6 verticesN = (%)
15 edges, a varying number®fveights per edge arfs= %S
consistent graphs for each value®fThe solid curves plot
the theoretical number of operations according to (8),,(10)
(11), (12). The dashed curves show the run time of MATLAB
simulations inusec. As expected, the initial pruning step re-
duces significantly the complexity because not all weighté‘]‘]
contribute to consistent graphs and are deleted AMnSec-
ondly, the theoretical comlexity estimates agree well with  [5]
experimental results, at least f8r< 18. For larger values

of S, the complexity in simulations increases faster than the
theoretical predictions. This effect is related to the ose d [6
scribed in section 6.2. The larger the number of weights per

edge is, the higher the probability is that the synthesies-alg 7]
rithms find more consistent graphs than we generated.

(3]

7. CONCLUSION AND OUTLOOK 8]

We have presented several systematic algorithms for synthe
sizing consistent graphs with zero cyclic sum of weights of9]
edges. All algorithms are based on the loop matrix which
specifies the fundamental loops in a graph. We not only stud-
ied different search strategies, but also developed a siefpl
fective pruning step to reduce the size of the weight sets for
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