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Abstract—Scene understanding for automated driving requires
accurate detection and classification of objects and other traffic
participants. Automotive radar has shown great potential as a
sensor for driver assistance systems due to its robustness to
weather and light conditions, but reliable classification of object
types in real time has proved to be very challenging. Here we
propose a novel concept for radar-based classification, which
utilizes the power of modern Deep Learning methods to learn
favorable data representations and thereby replaces large parts
of the traditional radar signal processing chain. We propose
to apply deep Convolutional Neural Networks (CNNs) directly
to regions-of-interest (ROI) in the radar spectrum and thereby
achieve an accurate classification of different objects in a scene.
Experiments on a real-world dataset demonstrate the ability to
distinguish relevant objects from different viewpoints. We identify
deep learning challenges that are specific to radar classification
and introduce a set of novel mechanisms that lead to significant
improvements in object classification performance compared to
simpler classifiers. Our results demonstrate that Deep Learning
methods can greatly augment the classification capabilities of
automotive radar sensors.

I. INTRODUCTION

Autonomous vehicles rely on multiple sensors to obtain a
reliable understanding of their environment. Simple localiza-
tion of potential obstacles in the vehicle’s path is insufficient;
instead, a semantic understanding of the world in real time is
crucial to take into account possible reactions of identified road
users and to avoid unnecessary evasive/emergency brake ma-
neuvers for harmless objects. At present, there is a strong focus
on imaging sensors for scene understanding, because high-
resolution color images contain substantial information that
allows object classification [1]. However, vision is severely
limited in difficult light or weather conditions, and automotive
radar provides a particularly useful complementary source
of information [2]. Typically, radar processing chains extract
radar reflections and identify object classes by the shape of the
point-cloud of reflections belonging to the same object [3].

This approach works well for larger objects such as cars,
but distinguishing many object classes from small sparse point
clouds has proven to be challenging. Here we propose that one
reason for this difficulty is the loss of a substantial amount of
information characteristic for the object type at the stage of
point-cloud representation. It is therefore advantageous to base
radar classification on a more informative data representation.

For computer vision, a similar trend has been observed in
recent years and by far the most successful approach has
been the introduction of Deep Learning methods [4] for object
classification, object detection, and semantic segmentation.
Deep Learning is able to learn favorable representations of raw
input data in deeper layers of neural networks, which capture
the crucial features necessary for object classification, but also
exhibit invariances to viewpoints, light conditions, noise, and
other transformations.

Radar spectra generated by multi-dimensional Fast Fourier
Transform (FFT) not only preserve all information available
in the raw signal but also yield a data representation on
which powerful Deep Learning methods such as Convolutional
Neural Networks (CNNs) can be applied in a very similar
fashion as in vision. In this article, we identify a number of
radar-specific challenges that require adaptations of the neural
network input, and which lead to significant improvements
in classification performance. In particular, we observe that
combining the spectra with information about the range and
direction of arrival (DOA) of the object is beneficial for
classification. Furthermore, integration of classification results
over time can lead to substantial improvements.

In order to demonstrate our results, a real-world dataset was
recorded in which multiple static objects were placed on a test
track and recordings were done with an automotive radar sen-
sor mounted in a vehicle driving between the different objects.
The objects can be expected to be found on real streets and are
relevant for scene understanding.The results demonstrate that
prediction of object classes in real time with neural networks
works reliably for all classes, and filtering classification results
over time can greatly improve the performance.

A. Related Work

Unlike in computer vision, applying Deep Learning to radar
is still at an early stage. The most direct application of CNNs
is possible on occupancy radar grids [5], [6] and images gen-
erated via Synthetic Aperture Radar (SAR)[7], [8] for remote
sensing. However, both require long integration times to first
generate a map before Deep Learning can be applied, and are
thus difficult to apply in rapidly changing environments, which
is the default case for automotive applications.



Fig. 1. Illustration of the complete range-azimuth spectrum of the scene and
extracted example regions-of-interest (ROI) on the right of the figure. The
figure depicts 2 of the detected targets in the field-of-view

Most approaches for automotive object classification work
with radar reflections, which first requires applying a statistical
detection algorithm (e.g. Constant False Alarm Rate (CFAR))
in order to curtail the information of the power spectrum to
a set of detection points. Reflections belonging to the same
object are then typically grouped via clustering algorithms,
before classifying based on the shape of the resulting point
cloud. An alternative, deep learning based, approach was re-
cently presented by [9], which yields a semantic segmentation
of the point cloud, meaning that a potential class label is
assigned to every detected reflection. Their approach, however,
does not resolve individual instances, but merely provides an
indication of how many reflections belong to a certain class
in a given scene, and where those classes are located. Overall,
point-cloud based methods work well for distinguishing object
classes with distinctive shapes, but for harder tasks they are
limited by the loss of information due to CFAR detection.

In [10] the processing of raw radar spectra for pedestrian
detection was suggested, but no machine learning was applied.
Deep Learning methods that work on the radar spectrum after
multi-dimensional FFT have been successfully applied in tasks
such as human fall detection [11], human pose estimation [12],
[13] and human-robot classification [14]. These approaches
operate on the full radar spectrum, whereas our approach
first extracts ROIs, which are classified by a CNN. To the
best of our knowledge, this is the first Deep Learning based
approach for automotive radar spectra that allows classification
of multiple objects within a real-world scene.

II. SETUP AND METHODOLOGY

A. Experimental Setup

The goal of our study is to recreate a realistic scenario for
classification with automotive radar sensors. A radar sensor is
mounted on the front bumper of the test vehicle which drives
between different objects on a test track, approaching them
from several different directions. As objects we selected a
single instance of each of the following seven different objects
(commonly found in urban scenarios): car, construction barrier,
motorbike, baby carriage, bicycle, garbage container, and stop
sign. Although these objects are visually easy to distinguish,
they pose a greater challenge for classification algorithms
when working in the radio frequency spectrum. Furthermore,
the scene is static and thus does not allow identifying the

objects solely through the Doppler spectrum. For radar, dy-
namic objects with different Doppler spectra are easier to
classify, due to their micro Doppler signature, but harder to
record and annotate. For example, a moving bicycle with
different moving parts may have an idiosyncratic signature
in the Doppler domain, which would facilitate classification
from permanent static objects such as stop signs.

For every object, the Differential GPS (DGPS) position is
measured. During the measurement, the DGPS position of the
test vehicle as well as its velocity is recorded. This allows
computing the relative coordinates of the different targets with
respect to the radar sensor, i. e. the range r, the relative radial
velocity v, and the DOA (azimuth angle) ϑ which serves as
the ground truth in the following data processing.

The radar system is a multiple input multiple output
(MIMO) radar. The carrier frequency is 77GHz and the
bandwidth is 1GHz. It uses a chirp sequence modulation, i. e.
a sequence of frequency modulated continuous wave (FMCW)
chirps. The measurement time of one coherent processing
interval is 15ms. The fully polarimetric sensor is described
in detail in [15], [16]. We only use 4 transmitting (Tx) and 4
receiving (Rx) horizontally polarized antennas. The resulting
virtual array of the MIMO radar is a linear array of 16 antennas
with an aperture of 8.5 λ, with λ being the carrier wavelength.
The cycle time of the radar system is approximately 57ms.

B. Data preprocessing

The data preprocessing consists of the following steps: first,
a range-velocity spectrum is computed via a 2D-FFT. A non-
coherent integration of the range-velocity spectrum is per-
formed, and an ordered statistics constant false alarm detector
(OS-CFAR) [17] is used to detect potential targets. For every
range-velocity bin, the azimuth spectrum is calculated and
magnitude is taken, which results in a 3D range-velocity-
azimuth spectrum. For each detected object, we cut out a
region-of-interest (ROI) of the 3D-spectrum with the range,
velocity and azimuth extent of 5m, 0.7m/s, and 0.5 rad1,
respectively, where the highest detected peak of the object
is in the center of the ROI. The ground truth information is
combined with the preprocessed data in order to automatically
label each object.

In this study we are mainly interested in the range-azimuth
spectrum, therefore we take the velocity slice which contains
the maximum intensity in the 3D ROI which results in a 2D
ROI containing 64 range and 66 azimuth bins. See Fig. 1 for
examples of ROIs from the range-azimuth spectrum.

The dataset is split into independent training, validation and
test sets. Training trials use data recorded from horizontal
and diagonal driving patterns through the test track. The test
set, for evaluation, follows unique and special driving patterns
involving a series of curves through the test track. Therefore,
the test dataset has a non-identical distribution to the training
dataset which increases the difficulty of the classification task,

1In fact we use electrical angle sin(ϑ). For ϑ = 0 the azimuth extent is
0.5 rad and for ϑ 6= 0 it increases. For convenience we refer to it as azimuth.



Fig. 2. CNN Architecture for ROI input. This CNN architecture with 3 convolutional and 2 fully-connected layers is kept identical for all CNN experiments.

though reliably evaluates the generalization capability of the
algorithms. The validation set was created from independent
measurements involving both straight and curvy driving pat-
terns. The training, validation and test datasets contain 39126,
12212 and 8376 data points, respectively.

C. Network Architectures

Each ROI, in linear scale, forms the input to a Convolutional
Neural Network (CNN) [18], which consists of 3 convolutional
layers using 3x3 filters, with 32, 64 and 128 filters. Each
convolution layer is followed by a 2×2 average-pooling layer,
reducing the dimensionality of the feature maps by a factor
of 2. The final feature map is flattened and processed by 2
fully-connected layers with 512 and 32 neurons, respectively,
before classification is performed by a softmax layer. Each
layer uses rectified linear unit (ReLU) activation functions.
The CNN architecture and the feature maps at different layers
can be seen in Fig. 2.

During training, Batch Normalization [19] and Dropout [20]
with a drop-out probability of 0.40 are used after each of
the 2 fully-connected layers. Training of the network weights
uses the Adam [21] optimizer with a batch size of 64. Hyper-
parameters were optimized on an independent validation set.

III. METHOD

The ROIs represent only a portion of the entire field-of-
view (FOV), i.e. full range-velocity-azimuth spectrum. As the
sensor operates in the polar coordinate system, the physical
area covered by the ROI expands with range. Therefore, the
ROI may capture reflections from multiple targets and their
side-lobes, presenting themselves as pernicious noise. Hence,
most periphery parts of the ROI present distractions to the
classification algorithm.

Without any prior information about the location of the
ROI in the FOV, a machine learning algorithm that should
generalize to real-world scenarios needs to learn to deal with
these distortions from the data, as well as learn to ignore
reflections from other objects. This would require a much
larger and more diverse dataset than we have available, and
importantly would require measurements of ROIs from all
regions of the FOV, and with different objects distorting the
measurements. Alternatively, data augmentation by selected
transformations applied to ROIs could aid for such a task,
though data augmentation for radar spectra is an open prob-
lem. In the following, we propose two novel radar-specific

approaches to incorporate prior information about the location
of the ROI in the FOV as an additional input to the networks,
and to suppress interfering reflections from nearby objects.

A. Incorporating Range-Azimuth Information

Additional information about the geometry of the ROI can
be provided to the CNN in the form of an additional input
channel. This so-called distance-to-center (DTC) map contains
the physical distance (in meters) of each bin of the ROI to the
center bin of the ROI, thereby implicitly encoding both the
range and azimuth information. The CNN can learn to leverage
this information (by applying the filters across the two input
channels) to extract object-specific features, such as its size
and reflectivity, as well as efficiently learn how the signal is
distorted according to its relative location.

In order to explicitly attenuate all reflections and noise
(including most but not all side-lobes from other object reflec-
tions in the FOV) from bins which do not originate from the
direct vicinity of the object, the DTC map can be fused with
the radar spectrum by decaying the intensity of each bin as a
function of its distance to the center bin. The linear scale spec-
trum in the ROI is exponentially decayed by multiplying with
e−a·(d−dmin), where d is the distance to the center bin obtained
from the DTC map, and a is a hyper-parameter determining
the rate of decay (empirically optimized as a = 0.5). In order
to avoid attenuating reflections caused by the object, a pre-
selected minimum decaying distance, dmin, is set where bins
with d < dmin are considered important and kept unaffected.
This hyper-parameter is easily exchangeable and can be set in
order to capture all possible reflections originating from the
largest object class to be predicted. For all experiments, we set
dmin = 2.5m which captures most reflections from objects
in this study. The exponential decay generates a combined
single input channel, which implicitly contains the location
information (which can be learned from the decay rate of the
signal), and pronounces object reflections by attenuating the
periphery signals.

Overall, this allows us to compare three variants that incor-
porate radar-specific knowledge in the input:

• I1: ROI spectrum
• I2: ROI spectrum + DTC map (2 input channels)
• I3: Decayed ROI spectrum outside dmin



(a) I1 (b) I2 (c) I3

Fig. 3. Example ROI: Construction Barrier at range 30.36m and azimuth 0.56 deg with reflections from another object (top left region). (a) ROI spectrum
(I1) (b) Distance-to-Center (DTC) Map (c) Decayed ROI spectrum (I3). It can be seen that the peripheral reflections are attenuated and important reflections
are pronounced when using the proposed pre-processing operator. Best viewed in color

(a) (b)

Fig. 4. (a) Single-frame classification accuracies on the test set for different classifiers and input representations. The CNN approaches significantly outperform
the baseline algorithms. The decayed ROI spectrum (input variant I3) yields the best accuracy. (b) Mean and standard deviation of accuracies for temporally
filtered predictions of increasing window size (over 30 networks). A clear improvement for longer time windows over single frame approaches is visible.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of different classifiers,
we compute the average class-weighted accuracy.This metric
incorporates the class-imbalance in the test dataset in order to
provide a representative performance metric. This is achieved
by calculating the accuracy on a per-class basis and taking the
average across all classes:

A =
1

C

C∑
c=1

pc
Nc

(1)

where C is the number of classes, pc the number of correctly
classified samples of class c, and Nc the number of samples
belonging to class c.

A. Baseline Algorithms

There are no public comparable datasets or algorithms
for radar spectrum classification, hence we have to create
our own baseline to put the accuracy of the CNN classifier
into context. We compare against other machine learning
classification algorithms, in particular, K-Nearest Neighbor
(KNN) for k = 3 and k = 5 with the standard Euclidean
distance as the metric and Support Vector Machines (SVM)
with a Radial Basis Function kernel, which can both operate
directly on the 2D ROI images.

B. Assimilating Location Information

The first experiments evaluate the effect of the different
input representations I1, I2, and I3, as presented in Sec-
tion III-A. For this experiment, the network architecture and
hyper-parameters are kept identical and only the network
inputs and weight initializations are changed. The results in
Fig. 4a report the mean and standard deviation of the classi-
fication accuracy on an independent test set over 30 networks
(each network having different random weight initializations).

Fig. 4a shows that CNNs clearly outperform the baseline
algorithms on all tested input representations. Furthermore, the
CNNs, but not necessarily the other algorithms, benefit from
the implicitly encoded geometrical information in the DTC
map and the decayed spectrum. The input representation with
distance-dependent exponential decay in peripheral parts of the
ROI (I3) consistently leads to the best classification accuracy
for all tested algorithms. For KNN, which is known to have
difficulty with high-dimensional data, the second input channel
in representation I2 leads to a drop of performance, but KNN
does benefit from representation I3. Table I provides the
detailed results for CNNs for the three input representations,
indicating clear advantages of I2 over I1, and I3 over I2. The
sample means shown in Table I are statistically different at a
significance level of p < 0.01.

In summary, CNNs exhibit the best classification perfor-
mance, and the use of radar-specific input representations has



TABLE I
MEAN AND STANDARD DEVIATION OF CNN PERFORMANCES FOR THE 3

DIFFERENT INPUT REPRESENTATIONS.

I1 - Spectrum I2 - Spectrum + DTC I3 - Decayed Spectrum
59.73 +/- 0.56 62.75 +/- 0.50 65.30 +/- 0.40

a clearly beneficial effect.

C. Filtering Predictions over Time

Due to the sensitivity of radar reflections to the aspect
angle to the objects, radar spectra and their classification
may abruptly change from one frame to the next. Filter-
ing classification results over time is, therefore, an obvious
way to improve classification performance. A simple and
computationally efficient approach is to apply a temporal
filter across the single-frame predictions and predict the class
based on a majority voting scheme, where voting ties are
broken at random. This operation improves performance by
integrating previous predictions, and using the prior knowledge
that classification results for static objects should not change
abruptly across time.

Fig. 4b shows that, as expected, increasing the filtering
window T improves the classification performance for a static
environment. It can further be seen that the performance order
between input representations I1 to I3 is maintained, and again
the distance-dependent exponential decay (I3) shows the best
performance and smallest variance for all filter lengths. As
temporal filtering is a simple method to incorporate temporal
information into the prediction stage, it relies highly on the
single-frame classification performance. Therefore, applying
the same temporal filter across the other weaker KNN and
SVM predictions degraded classification performance severely.

We also experimented with presenting multiple frames si-
multaneously as inputs to the CNN, but no advantage over
majority-voting was visible, and the resulting CNN is of
significantly higher complexity.

In summary, temporal filtering of CNN predictions signif-
icantly improves the classification performance over single-
frame approaches.

D. Per-Class Accuracies

Not all objects are equally difficult to classify, hence it is
interesting to observe the per-class accuracies and confusion
among the classes. The confusion matrices in Fig. 5 show
how often each of the 7 objects (true class in rows) is
classified into every other class (predicted class in columns).
Fig. 5a shows the confusion matrix of the best single-frame
CNN (for input I3), whereas Fig. 5b shows the confusion
matrix for a filter length of 4 seconds. A window size of
4 seconds was chosen here because it is a reasonable time
frame for sequentially observing a single static object in the
dataset. Both matrices show the desired concentration in the
diagonal (indicating correct classifications). For the single
frame case, large objects such as cars or barriers are best
classified, whereas there is some confusion between garbage
containers and baby carriages, or bicycles and motorbikes.

(a)

(b)

Fig. 5. Test set confusion matrices for (a) single-frame CNN trained with
input variant I3 and (b) prediction filtering method over best single-frame
CNN predictions with a window size of 4 seconds.

With temporal filtering, many of the confusions are removed,
although there are still several cases where garbage containers
and baby carriages are mixed up because indeed their spectra
look visually similar. Ultimately it will be more important to
identify the functional relevance of the object, e.g. whether an
emergency brake is necessary, rather than the exact identity.
This will be the focus of further studies with a larger set of
objects.

V. DISCUSSION

The above results indicate that deep learning applied to
automotive radar spectra is a promising approach for object
classification and scene understanding. Since all objects were
measured from many different distances and aspect angles,
and under real-world conditions, the high accuracies of CNNs
show that deep networks are able to extract features from
spectra that allow them to generalize well. This opens up
possible research questions about interpreting the features
which the network extracts. Furthermore, the architectures of
the CNNs are small enough to be efficiently implemented
in hardware.This means that our proposed system has a
high potential for real-time radar-based object classification.
Currently, the ROI extraction and classification only occurs
for the detected objects for which the ground truth (i.e. label)
exists. The system does not yet have the ability to classify
reflections from an unknown object in the full spectrum which
also produced a detection (e.g. road curb or false detections).
The detection process currently uses a conventional detection
algorithm (OS-CFAR) in order to extract ROIs to ensure that
the target was detected; this step can potentially be replaced
by a neural-network based detection approach modeled after



successful region-proposal schemes used in the vision domain
[22], [23].

There are no directly comparable data sets or classification
methods for this task, hence our results show relative compar-
isons between different machine learning methods and input
representations. We find a clear advantage for deep learning
methods over simpler methods such as KNN and SVM. In
the future, a comparison with state-of-the-art reflection-based
methods is necessary to evaluate whether the advantage of
the method lies in the additional information available in the
spectra, or in the powerful CNN classifier. We also plan to
expand measurements to even more object classes and multiple
instances of each class to evaluate the true generalization ca-
pabilities. Currently, our database contains only static objects,
but the approach should easily transfer to dynamic scenes,
where Doppler information could provide an additional cue to
distinguish objects.

Two insights from our study are particularly interesting for
future studies: First, the explicit integration of radar know-how
into input pre-processing yields significant improvements. This
suggests that additional insights from radar signal process-
ing, e.g. for data augmentation or input normalization, could
improve the performance even more. Second, the filtering
of classification predictions over time provides a significant
boost to the CNN classifiers. Our results show that even
an integration over a single second can already improve the
accuracy by 18%, and if the object is in the FOV long enough
an almost perfect classification is possible. Ultimately this
becomes a trade-off between accuracy and latency and depends
on the available time until a decision is required. Our current
approach uses a majority vote over multiple single-frame
predictions, but it seems likely that a direct accumulation of
evidence in a recurrent neural network architecture such as
LSTM [24] yields similar or potentially better results.

VI. CONCLUSION

This article has presented the first evaluation of deep learn-
ing methods applied directly to radar spectra for scene under-
standing under real-world conditions. The approach presents
a promising alternative to classical radar signal processing
methods and outperforms other machine learning approaches
on a novel dataset with realistic objects. The best results can
be obtained by combining state-of-the-art deep learning with
specific radar know-how and prior understanding of the task.
This suggests that a hybrid between data-driven and model-
based approaches may have the greatest chance for success,
in particular with limited available real-world training data.
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