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Abstract—Characterizing individual human drivers is of in-
creasing interest for applications like adaptive driver assistance
or monitoring. Describing the human driver by means of control-
theoretic driver models constitutes a promising approach. In
this paper, we apply a driver model adopted from literature to
real-road driving of a distraction experiment in order to assess
the driver state. The control-theoretic driver model features an
anticipatory and a compensatory tracking component as well
as a processing delay and a neuromuscular motor component.
The distraction experiment data comprises real road driving
with a visuomotor and an auditory secondary task, as well as
reference driving. By means of prediction error identification,
we continuously and individually estimate the model parameters
from driving data of eleven drivers. We evaluate the distributions
of the driver model parameters and the predictive capability
of the estimated driver models. The estimated driver model
parameters reflect distracted driving behavior according to the
driving task. As a promising experimental result, the driver
model parameters and predictive performance are significantly
associated with driver distraction.

Index Terms—Driver modeling, Driver distraction, Driver
state, System identification, Driver monitoring, Fatigue, Intelli-
gent vehicles, Vehicle safety, Automated driving

I. INTRODUCTION

With driving safety, driver support, and automated driving
in mind, the question of characterizing individual driving
becomes an increasingly important task considering seamless
interaction between humans and technical systems or adapta-
tion of such systems to individuals. Few attempts have been
made to apply control-theoretic driver modeling principles to
applications such as driver state or driver distraction monitor-
ing. However, control-theoretic driver models offer interesting
opportunities, which may be advantageous in driver state
detection, e.g. joint modeling of the human driver together with
the driving task or an inherently time-related driver behavior
description. This paper is part of a thorough investigation of
the applicability of control-theoretic driver models to identify
and capture variations in driver state as induced by attentional
shifts, distraction or drowsiness.

In the field of driver modeling, a large number of driver
modeling approaches from different research domains have
been proposed for a variety of applications (see [1] for an
overview). The proposed approaches in connection with driver
support, to mention only a few, range from simple autoregres-
sive modeling [2], [3], physiologically inspired modeling [4]–
[8], to machine learning techniques [9], [10] and highly inte-

grated and complex cognitive co-pilot systems [11]. However,
among the literature regarding driver state detection (cf. [12]),
few approaches employ driver modeling. For example, [10]
proposes a modeling approach based on machine learning in
connection with distracted driving classification, whereas [2],
[3] use autoregressive models for lane keeping support.

Previous works indicate that varying driving behavior can
be captured using control-oriented driver models. While [2]
use an autoregressive model and show fatigue-related trends
in the parameters and model residuals on driving simulator
data, a preview driver model can also be used to capture
varying steering behavior under real-world controlled driving
conditions [13]. In this work, by employing the physiologically
oriented driver model adopted from [6], [7] through system
identification procedures to a real-world driving experiment
with visuomotor and auditory distraction, we investigate the
detection of driver distraction.

In Section II, we give an overview of the driver model from
[6], [7] and of the computations to reconstruct perceptional and
motor signals. Section III presents the system identification
techniques as well as the identification and simulation scheme
used in this paper. The real-world driving experiment with
distractions by [14] from which the data originates is presented
in IV. In Section V, analyses of the parameter identification
quality (V-B), the distributions of the estimated parameters
(V-C), and the model simulation performance are presented.
In Section VI we conclude with the findings that the estimated
parameters and the model simulation performance are sensitive
to the induced distractions.

II. CYBERNETIC DRIVER MODEL

A large number of driver models for different applications
have been published. In this paper, the model developed
by Mars and Saleh [6], [7] has been selected due to its
combination of perceptual and motor components.

A. Model Presentation

The model depicted in Figure 1 features an anticipatory and
a compensatory tracking component, a processing time delay,
and a neuromuscular subsystem with a torque control loop.
Additionally, two aspects make this model especially useful
for computational investigations: First, a thorough investigation
of model parameters and their ranges is available in [7].
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Fig. 1. Cybernetic driver model according to [6], [7] with visual system
before the processing delay τ and a neuro-muscular system after the delay

Second, a closed-loop formulation of the driver-vehicle model
is presented in [8] together with a full parameter set.

The driver model in Figure 1 shall now be thoroughly
described in accordance with [6], [7]. As visual perception
inputs it uses a far point preview angle ρfar and a near point
preview angle ρnear (cf. Section II-B1 for a derivation). In the
anticipatory part, ρfar is amplified by the anticipation gain Ka.
In the compensatory part, ρnear is processed by a lead-lag-
element (Tls+1)

/
(Tis+1) with the time constants Tl, Ti and

the compensation gain Kc scaled by the vehicle speed v. This is
supposed to be a speed-dependent sensibility valid in the range
of highway speeds. Anticipation and compensation signals are
delayed by a processing time τ to form the intended steering
wheel angle δd. Subsequently, this intention is modulated by
the human neuromuscular system. δd is amplified by vKr,
which resembles the human internal model of the steering
system. As an approximation of the human reflex system,
the residual steering wheel angle between the intention δd
and the steering wheel angle feedback δ, amplified by the
steering stiffness coefficient Ks, is superimposed. Using the
sensed steering alignment torque feedback Ma, a muscular
control loop with neuromuscular time constant Tn is realized
to generate the desired steering wheel torque M . Then, the
single output of the model in Figure 1 is the acted steering
wheel torque M . Note that although the model formulation is
in continuous time, processing in the following is discrete with
time index k.

B. Perceptional and Motoric Variables

In vehicle measurements from real road driving, the vehicle
yaw angle ψL,k with respect to the lane and the lateral offset dk
from the lane center are available from lane tracking cameras.
Standard vehicle sensors provide the vehicle speed vk as well
as the steering wheel angle δk. Thus, the perceived preview
angles ρnear,k, ρfar,k, the steering wheel aligning torque Ma,k,
and the acted torque Mk have to be recomputed in order to be
able to estimate the driver model parameters.

1) Preview Angles: As in [6], the near point angle ρnear,k
between the vehicle heading and a near point in the center of
the lane at preview distance lp = 5 m as well as the far or
tangent point angle ρfar,k = ρTP between the vehicle heading
and the current lane tangent point are used as inputs. The near
point angle is related to lane tracking behavior and the far point
angle is related to previewing anticipatory steering behavior
[15]. In the following, we compute the angles ρnear,k, ρfar,k,
which Figure 2 visualizes.

a) Angle to Near Point: The near point preview angle
ρnear results from an approximation ρnear,k ≈ ψL,k + dk

lp
, as

illustrated in Figure 2(a). This approximation is valid for small
angles ψL,k and approximately straight roads within distance
lp. Note that the coordinate conventions differ from [7].

b) Angle to Tangent Point: Computation of angle ρfar,k
is not trivial given complex road trajectories and only inertial
and lane measurements of real driving data. As discussed in
[13], we reconstruct the vehicle trajectory pk from the vehicle
yaw rate ψ̇k and vehicle speed vk at time instant k by

ψk =

k−1∑

i=0

Tsψ̇i, pk =

k−1∑

i=0

[
cosψi − sinψi
sinψi cosψi

]

︸ ︷︷ ︸
R(ψk)

[
∆si cos ∆ψi

2

∆si sin ∆ψi
2

]

where the inter-sample distance is ∆sk ≈ Tsvk and the inter-
sample yaw angle is ∆ψk = ψk+1 − ψk ≈ Tsψ̇k. With
the current lane width wk and with the assumption that dk
and wk are measured perpendicular to the lane markings, the
trajectories of the left and right lane markings lk, rk of the
vehicle’s current lane can be reconstructed by

lk = pk + R(ψk)
[
0 ( wk

2 − dk)
]T

rk = pk + R(ψk)
[
0 (−wk2 − dk)

]T

Given lk and rk, the angle ρfar,k is determined from the
observation that a tangent point within a previewed road
window i ∈ {k, . . . , k + Nprev} can be located by finding the
global, non-boundary extreme points il = arg mini αl,i and
ir = arg maxi αr,i of all preview angles αl,i, αr,i between the
vehicle heading and any point lk, rk respectively. Figure 2(b)
illustrates this by the thick lines. After determining all visible
il, ir, the far point angle is chosen such that

ρfar,k =

{
αl,il iTP ∈ il
αl,ir iTP ∈ ir

, iTP = max{il, ir} (1)

with iTP the farthest visible tangent point in the preview
window. This implements assumed human preview behavior.
Conflicts in (1) are resolved to the smallest ρfar,k. For parallel
lane markings, the tangent point is at infinite distance and ρfar,k
reduces to the lane yaw angle ψL,k of the vehicle. Finding ρfar,k
and current valid ρTP has to be repeated in every step k.

2) Steering Wheel Torques: The steering wheel torques
Ma,k, Mk are not available as vehicle signals in the data of
this paper. Hence, they are reconstructed with a power steering
model from [8], [16], on the one hand based on measurements
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(a) Near point angle to road center
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(b) Far point angle to tangent point
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Fig. 2. Preview angles to road center and to tangent point respectively



of vehicle yaw rate ψ̇k and steering wheel angle signals δk, δ̇k,
on the other hand based on estimations of vehicle skid angle
βk and δ̈k of the steering wheel angle δk. For this purpose,
the βk is using the well-known second order vehicle bicycle
model (cf. e.g. [17]) and a Luenberger observer (cf. e.g. [18]),
which will not be discussed here. Finally, using a numerical
approximation of δ̈k given measurements of δ̇k, the torques
Mk, Ma,k are computed by evaluating the algebraic equations
[7], [16]

Ma,k =
lf
v Cvψ̇k + Cvβk − 1

iδ
Cvδk

Mk = Jδ

(
δ̈k − lf

v Cvψ̇k − Cvβk + 1
iδ
Cvδk + ζδ

Jδ
δ̇k

)

with the coefficient Cv =
2cfηKδ
iδJδ

and the parameters from
Table I.

TABLE I
STEERING MODEL PARAMETERS (BASED ON MEASUREMENTS)

Parameter Value Description

cf 86.61 kN/rad front wheel cornering stiffness
lf 1.4m center of gravity to front axle
ηf 0.07m tire patch length
is 15 steering transmission ratio
Kδ 0.19 manual steering column coefficient
Jδ 0.01 kg m2 steering system moment of inertia
ζs 0.3 steering system damping coefficient

III. IDENTIFICATION OF DRIVER MODEL PARAMETERS

A. Parameter Estimation

To estimate the model parameters of the model depicted in
Figure 1, we make use of the state space formulation thereof
in [7]. The system equations are

ẋ(t) = A(v)x(t) + B(v)u(t)

y(t) = C(v)x(t) + D(v)u(t)
(2)

with v = v(t), x(t) =
[
x1(t) x2(t) x3(t)

]T
the state

vector, y(t) =
[
M(t) δ(t)

]T
the model output, and u(t) =[

ρfar(t) ρnear(t) δ(t) M(t)
]T

the model input. Note that
[7] also uses δ(t) as model output to improve convergence of
the system identification. The matrices are

A(v) =




− 1
Ti

0 0
2Kc
vτ

(
Tl
Ti
− 1
)

− 2
τ 0

−Kc(vKr+Ks)
vTn

(
Tl
Ti
− 1
)

2(vKr+Ks)
Tn

− 1
Tn




B(v) =




0 1
Ti

0 0

2Ka
τ

−2KcTl
vτTi

0 0

−Ka(vKr+Ks)
Tn

Kc(vKr+Ks)
vTn

Tl
Ti

−Ks
Tn

− 1
Tn




C(v) =

[
0 0 1

−Kc
v

(
Tl
Ti
− 1
)

2 0

]

D(v) =

[
0 0 0 0

−Ka
Kc
v
Tl
Ti

0 0

]
.

TABLE II
STARTING VALUES, CONSTRAINTS AND DESCRIPTION OF THE DRIVER

MODEL PARAMETERS [7]

Parameter Value Range Description

Ka 3.4 [0.05, 5] Anticipation gain
Kc 15 [5, 50] Compensation gain
Tl 3 [0.5, 5] Lead time constant
Ti 1 [0.2, 4] Anticipation gain
τ 0.04 fixed Processing delay
Kr 1 [0.01, 1.5] Angle-to-torque internal model coeff.
Ks 12 [0,∞) Steering wheel holding stiffness
Tn 0.1 fixed Neuromuscular time constant
lp 5m fixed Near-point preview length

This formulation requires approximation of the explicit time
delay by a first-order Padé approximation. In order to process
the driver model on sampled measurement data and to shorten
processing time, equations (2) are discretized by

AT (vk) = TsA(v) + I, BT (vk) = TsB(v)

xk+1 = AT (vk)xk + BT (vk)uk

yk = C(vk)xk + D(vk)uk
(3)

which is justified by the short model sampling time Ts = 0.002
compared to the system time constants greater than 0.02 s.

For system identification, we define the parameter vector
θ = [Ka Kc Tl Ti Kr Ks]

T , which comprises the identifiable
parameters. The parameters τ , Tn and lp are fixed to their
nominal values. [7] argues that well-established values can be
found in literature (cf. Table II).

The input-output data to fit the driver model to is composed
from values recomputed in Section II-B or directly measured:

uk =
[
ρfar,k ρnear,k δk Ma,k

]T
, yk =

[
Mk δk

]T
.

System identification uses the residual εi(θ) = ŷi(θ) − yi,
where ŷi(θ) is computed through integration of (3) over the
identification window i ∈ I = {k −N + 1, . . . , k}. All initial
conditions are set to zero. The identification problem to find
the best parameter vector θ̂ for this window is then stated as

εI(θ) =
1

N

∑

i∈I
(εi(θ))Tεi(θ) (4)

θ̂ = arg min
θ
εI(θ), (5)

B. Identification and Validation Scheme

Constrained prediction error identification as implemented
by the System Identification toolbox of MATLAB 8.0 is
used to identify model parameters. The parameter vector θ̂ is
estimated based on the criterion (5) in an output error approach
[19] and no disturbance model is estimated. The nominal
parameter values from [7] are used as starting values. The
constraints have been modified to accommodate the different
vehicle and experiment setting. Table II shows the values,
constraints, and meanings.

Identification is conducted on a window basis across a drive
regardless of the distraction task as Figure 3 depicts. The
identification windows are denoted by I. An identified model
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Fig. 3. Per-driver scheme of identification and simulation partitioning of
data (identification window I, simulation window S; dashed: corresponding
windows for identification and simulation)

is then validated on the next subsequent, non-overlapping
window denoted by S, as indicated by the dashed lines in
Figure 3. On S, the predictive model performance εS(θ) is
computed according to (4). In the following, the distributions
of the identified model parameters and the evaluated predictive
model performance are analyzed with respect to the distraction
tasks.

IV. DRIVER DISTRACTION EXPERIMENT

The data set1 used for the analysis in this paper has been
collected as part of the driver monitoring study presented in
[14] that investigates EEG-based neurological measures related
to attention and distraction. In the real-road driving experiment,
the subjects had to perform an auditory and a visuomotor
secondary task during real road driving.

A. Route and Measurements

The experiment was conducted on the German Autobahn
A81 south of the city of Stuttgart. Throughout the distraction
experiment, adaptive cruise control was activated for safety
reasons and the drivers were not allowed to overtake. Addi-
tionally, all drives were accompanied by supervisors trained in
identification and intervention of safety-critical situations, for
which the vehicle was equipped with extra pedals at the pas-
senger seat. In this paper, data of N = 14 drivers is examined.
These drives have been conducted with a 2009 Mercedes-Benz
E-Class. In this vehicle, sensor measurements are available
from off-the-shelve sensors comprising lane tracking camera,
adaptive cruise control radar, yaw rate, and odometry sensors,
recorded at a sampling time of 0.02 s.

B. Distraction Tasks

After an initial driving stage to familiarize themselves
with the vehicle and the adaptive cruise control functionality,
the drivers had to complete a visuomotor and an auditory
secondary task, as well as phases of driving without any
applied distraction. For the purpose of this paper, a short
description of the distraction tasks is given. Refer to [14] for
a thorough description and neurophysiological evaluation.

The visuomotor distraction consisted of a Landolt ring (c-
shaped symbols) task presented on a separate display in the
vehicle at the location approximately of the radio console.
Four Landolt rings were presented in a 2-by-2 configuration
with one ring orientated differently from the others. Using two

1Courtesy of Daimler AG

TABLE III
DRIVING DATA STATISTICS

Vehicle speed Lane lateral Steering wheel
v (m/s) offset d (m) angle δ (rad)

average median 28.417 -0.061 0.008
average standard dev. 0.376 0.168 0.017

buttons comfortably placed on the vehicle’s middle console,
the drivers had to enter the column of the odd Landolt ring.
After an input, a different set of Landolt rings was presented.
Each of the visuomotor distraction tasks lasted for 3 minutes.
Referring to the driving performance examined in this paper,
the drive segments with visuomotor distraction are considered
to induce severe visual distraction with a significant number
of eye glances off road and considerable non-smooth out-of-
the-loop effects regarding the driver vehicle control loop.

After the visuomotor distraction task, the participants com-
pleted a segment of 1.5 min of undistracted driving before
starting with the auditory task.

The auditory distraction consisted of listening to a German
audiobook and identifying the German article word “die”.
For each identified word, participants had to push a button.
The button was attached to their left index finger tip such
that the button operation did not interfere with the steering
wheel operation nor involve visual inspection. Each of the
auditory task segments had a duration of 3 minutes. After each
segment, the drivers had to answer a question related to the
content of the audiobook chapter they had listened to. For the
purpose of this paper, the auditory distraction segments are
considered to occupy attentional resources which might affect
situation perception. However, at the same time the task is not
considered to induce eye glances off the road.

After the auditory distraction task, the participants com-
pleted another segment of 1.5 min of undistracted driving.

The sequence visuomotor task – undistracted driving –
auditory task – undistracted driving was completed four times
in a row by every participant.

V. RESULTS

A. Experiment Data

All investigations in the following are based on a moving
window of 500 data samples (10 s) with a window shift of
250 samples (5 s). Inapplicable windows with data such as
lane changes, inaccurate lane signals, or large accelerations
have been discarded. For this resulting dataset, the statistics in
Table III have been computed. On every window, a median and
standard deviation value have been computed and subsequently
averaged over all windows to give an impression of the data.

B. Parameter Identification

The data set for system identification of driver models
is composed from the recorded vehicle sensor measurements
using the reconstruction of perceptional and motoric variables
from Section II.
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Identification preprocessing involved removal of sample
means, filtering of the data window using a lowpass filter with
cutoff frequency of 5 rad/s to focus on the frequency range
of interest in manual control tasks [20] and first-order-hold
upsampling to the model sampling rate Ts = 0.002 s.

On N = 4049 windows, driver models have been identified
according to Section III with vk set to the median vehicle speed
over the window. The identification quality has been assessed
and outliers have been excluded, which may originate e.g. from
small, untracked situational changes or numerical identification
artifacts. Thresholds have been defined for the identification
MSE εI,k(θ̂) when exceeding the 98%-percentile and for the
normalized error

ε̌I,k(θ̂) =
[
|δ̂k(θ)−δk|
|δ̂k(θ)−δ̄I |

|M̂k(θ)−Mk|
|M̂k(θ)−M̄I |

]T

where δ̄I , M̄I denote the sample mean of δk,Mk over the
identification window I. Valid models have to fulfill these
thresholds on both I and S intervals. After exclusion, the total
number of models is N = 3864, distributed across the groups
at Nundistr. = 1469, Nauditory = 1456, Nvisual = 939.

C. Driver Distraction

The identified driver models are analyzed in the three
task groups visuomotor distraction, auditory distraction, and
undistracted driving.

In the following the two fundamental approaches of an-
alyzing identified driver models are employed: First, the
distributions of the model parameters identified across the
identification windows I (Figure 3) are analyzed with respect
to the task groups. Second, the model simulation performace
is evaluated accross the simulation windows S (Figure 3) for
its predictive capability compared to measured driver behavior.

1) Model Parameters: Figure 4 shows boxplots of the
anticipation and the compensation gains Ka, Kc out of six
estimated model parameters with respect to the task groups.
The figure reveals the dependence of the identified driver
model parameters on the distraction tasks. Visual distraction
results clearly in different parameters than auditory distraction
or undistracted driving, whereas the latter two show very
similar distributions. In the visual distraction tasks, the com-
pensation gain Kc is larger compared to other task, while

TABLE IV
DISCRIMINATION ANALYSIS OF THE MODEL PARAMETERS WITH RESPECT

TO GROUPS OF DISTRACTED AND UNDISTRACTED DRIVING

Comparisonsa Parameters and p-Values

Ka Kc Ti Tl Kr Ks
<0.001 <0.001 0.0701 <0.001 0.0730 0.1668

vis./undist. * * - * - -
vis./aud. * * - - - -
undist./audi. - - - * - -
aSignificant distinctions at p < 0.05 marked with *

the anticipation gain Ka is smaller. This corresponds to the
expected behavior in a visually demanding distraction task,
which involves more corrective steering effort and less planned
ahead action. However, variations of the parameters within
the task groups are much larger than the differences across
the task groups. Still, using the statistical Kruskal-Wallis test
(rank-based ANOVA) and multiple comparision adjustment,
discrimination between the task groups is possible for the
parameters Ka, Kc and Tl with the statistical significance value
p at a significance level of 0.05, as listed in Table IV.

To individualize the assertions of the model parameters
with respect to the distraction tasks, a baselining scheme
has been employed. For each driver, individual baselining of
the identified parameters was undertaken by subtracting the
respective medians in undistracted driving from the parameters
values during the distraction tasks. However, this had no
considerable effect on the delimitation of the distraction tasks
by the parameters and thus is not discussed here.

2) Model Simulation Performance: Contrary to the evalua-
tion of the model parameter distributions, the predictive model
performance is evaluated on the simulation windows S of the
data (cf. Figure 3). The MSE εS,k is computed similarly to
(4) between a model’s simulation result and the measured
data from S. Figure 5 shows the distributions across all the
three driving task groups and suggests pairwise discrimina-
tion of all three task groups. Using again a Kruskal-Wallis
rank-based ANOVA and adjustment for multiple comparisons,
the task groups show statistically significant differences with
p < 0.001. The model performance also shows expected
deterioration during visual distraction due to the intermittent
nature of the secondary task, which repeatedly interrupts

0

0.5

1

·10−2

visual undistracted auditory

Fig. 5. Discrimination of distraction tasks from undistracted driving using
the model simulation error MSE εS,k on simulation segments S



the driver-vehicle control loop. Remarkably, the predictive
model performance improves in the auditory distraction tasks
compared to undistracted driving. A reason for this might be
that the actual lane keeping improves and the driver behavior
becomes more similar to the lane tracking controller behavior
of the model as the driver’s visual focus concentrates at the
central road scene during the auditory task. Effects like these
have been reported from driving studies in connection with
lane keeping during phone conversations [21] and eye gaze
distribution under mental load [22].

VI. CONCLUSION AND FUTURE WORK

In this paper we employed an approach to analyze distracted
and undistracted driving using a control theoretic driver model
with physiological aspects from literature. We successfully
analyzed the identified model parameter distributions as well
as the predictive model performance for effects associated with
distraction tasks.

Differences in the distribution of the model parameters
as well as the predictive model performance are statistically
significant between driving undistractedly or with a visual or
auditory secondary task. The anticipation and compensation
gains Ka,Kc reflect expected human behavior in the visual
distraction task compared to undistracted driving and show a
shift in steering behavior from anticipatory towards compen-
satory control. The predictive model performance evaluated
by computing the model simulation MSE on simulation data
is the only feature showing significant differences between all
three driving tasks. As expected, the predictive performance
decreases under visual distraction compared to undistracted
driving. The increased performance under auditory distraction
is surprising but explicable: it might be related to more
continuous human lane tracking control as the driver focuses
more on the road ahead due to less visual activity under
auditory load [21], [22].

The explained results show good interpretability. However,
further work will have to examine to what extent the esti-
mation procedure uniquely identifies model parameters and
thus facilitates relating parameter values to the modeled phe-
nomenons. Moreover, this study evaluates parameters over a
population of drivers. An individualization attempt to baseline
each driver’s model parameters with respect to his or her
individual undistracted driving data could provide no further
information. Achieving a better individualization to account for
individual driving styles and to improve individual over whole
population distraction assessment is also subject to further
research towards an actual detection system.

The presented approach of identifying model parameters
from driving data and deriving measures from the parameter
distributions and the predictive model performance is also sub-
ject to further improvements regarding predictive application of
a model to multiple other drive segments. Constrained iterative
parameter estimation currently consumes a lot of processing
power and shows slow convergence. Other approaches using
high-order identification in a first step and order reduction and
model fitting in a second step are to be evaluated.

Computational demand is also a question of interest re-
garding in-vehicle applications. In the long range, this work
is to be extended to other kinds of driver state supervision and
driver characterization with an eye to the increasing demand
for driver-centered supervision, assistance, and automation.
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