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Abstract—This paper presents a real-world driving experiment
with aim on controlled variation of steering and lane keeping
behavior and investigates the ability of three common driver
models to distinguish variations in driving performance. Nine
drivers executed a lane keeping task with visual occlusion of
the upper or lower field of view restraining them to near or
far road scene information. Three common driver models are
applied to replicate driving behavior. An autoregressive model
with exogeneous input (ARX) is identified using vehicle lateral
lane deviation as input and steering wheel angle as output.
Two output error models are identified using vehicle heading
deviation angles with respect to near and far preview points as
respective inputs and steering wheel angle as output. The results
show that the driving behaviors induced in the experiment are
significantly different in terms of lane keeping performance. In
simulations, the output error models exhibit advantages over the
ARX model in capturing driving behavior. However, the model
natural frequency and the model simulation error show weak
performance in discerning this varying driving behavior and are
largely determined by track effects.

Index Terms—Driver modeling, System identification, Lane
keeping, Visual control, Driver monitoring, Fatigue, Intelligent
vehicles, Vehicle safety, Driver state

I. INTRODUCTION

Driver assistance systems increasingly rely on individual

characteristics of drivers to optimally support current driving

behavior. Conventional calibration of vehicle safety systems in

the development phase often involves trade-offs in comfort or

efficiency and inherent compromises to suit a variety of drivers.

In contrast, online adaptation of safety systems, like driver

drowsiness or inattention detection, can improve prevention,

interaction and personalization strategies by adjusting system

thresholds and parameters to a driver’s individual mid-term

behavior. This driver behavior can be characterized using driver

models.

Driver models can generally be described as adaptive

multiple-input multiple-output systems, which focus on repli-

cating a certain driving behavior. Depending on research disci-

pline and application, a large variety of human operator models

has been proposed. Due to the vast amount of literature, only a

few key references shall be mentioned here. [1]–[5] give good

introductions. Models involving psycho-physiological aspects

of human behavior have been proposed to increase a priori

validity of modeling [6]–[8]. Emphasis on perceptional aspects

of driver modeling can be found in [9]. [10] and [11] carry out

a system modeling without assumptions about driver psycho-

physiology.

This paper refers to two essentially different approaches

in [9] and [10]. The first is an approach motivated from hu-

man perception, which incorporates a two-point visual control

model of the driver. The inputs are deviation angles from

vehicle heading to the directions of experimentally determined

preview points. [10] suggests a signal-theoretic approach using

autoregressive models with exogenous input (ARX) as driver

models for detecting driver impairment. Here, model estima-

tion is done from vehicle lateral lane deviation as input and

steering wheel angle as output. However, both [9] and [10] are

based on driving simulator studies.

Application of driver models to real-world driving data,

even when limited to highway driving, imposes increasing

challenges. Real-world driving typically shows a large vari-

ation in the driving task and driver behavior due to different

driving maneuvers, as well as traffic and road conditions. This

contradicts the generally limited scope of application of driver

models and therefore restricts their description capability.

In order to apply driver models to real driving behavior with

minimal disturbances and well-defined variations, this paper is

based on driving data collected on a test track in controlled

driving experiments. In a lane keeping task, upper and lower

regions of the drivers’ visual fields were occluded to induce

different lateral control behavior of drivers. This paper presents

the experiment and investigates the capability of driver models

to capture the different driving behaviors in the recorded data.

The driver models applied in this paper are presented in

section II-A together with the computation of the preview

angle input in section II-B. Section II-C introduces the ap-

plied system identification techniques. The conducted driving

experiment is introduced in section III. Section IV comprises

findings for the experiment setting (IV-A), the results for the

identification (IV-B) and evaluation of driver models (IV-C).

II. DRIVER MODELS

A. Driver Models with Lateral Offset and Preview Input

In the vehicle-driver system, the driver acts as a regulator

in the feedback loop. This system can be sampled in the time

domain and transformed into the generic discrete-time system

in Figure 1 such that the driver is represented by the dynamics

model G(q). The vehicle is represented by the feedback model

K(q). H(q) is a noise model comprising unmodeled effects

and disturbances to the driver-vehicle system. The system’s
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Fig. 1. General system structure with driver model G(q), vehicle
model K(q) and noise model H(q)

time difference equations are

yk = G(q)uk +H(q)ek

uk = rk −K(q)yk

where rk is a generic environment reference, uk resembles the

control error perceived by the driver, yk is the measured driver

control output and ek is sampled white noise. q is the one step

time shift operator such that q−1xk = xk−1.

Among the large number of driver models, we first concen-

trate on the approach in [10], which is then developed into a

preview driver model with human perception characteristics.

The driver model is obtained by fitting a second-order ARX

model to simulator data using least-squares estimation. The

vehicle’s measured lateral offset dk from the lane center as

depicted in Figure 2(a) is used as input and the steering wheel

angle δk as output. This lateral offset model is denoted as

Glat(q) with the specific input and output signals uk = dk,

yk = δk.

Considering the model input dk, it is obvious that in practice

the current lateral lane deviation of the vehicle is hard to

perceive for the driver. Hence, this model does not reflect

the true driver behavior well. Drivers are more likely to use

information from the road scene ahead of the vehicle. In the

second model, the concept of preview points and preview

angles from [9] is used instead. The input is now the angular

deviation ρk(Tp) between the vehicle’s heading and a preview

point pk = [px,k py,k]
T

in the center of the road at a

given preview time Tp, as shown in Figure 2(a). The output

is again the steering wheel angle δk. This preview point

model is denoted by Gpre(q) with the specific signals mapping

uk = ρk(Tp), yk = δk.

As in [10], we assume that both Glat(q) and Gpre(q) can

be represented as second-order rational functions of q and a

parameter vector θ

G(q, θ) =
B(q, θ)

A(q, θ)
=

b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
. (2)

For the two models above, θlat and θpre are defined by

θlat =
[
alat,1 alat,2 blat,1 blat,2

]T

θpre =
[
apre,1 apre,2 bpre,1 bpre,2

]T
.
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(a) Model inputs lateral offset dk and
preview angle ρk(Tp), preview point
pk , road center ck (triangle: vehicle po-
sitions, dotted: vehicle trajectory, dash-
dotted: lane center, solid gray: lane
markings)

∆sk

∆sk
∆ψk

2

∆ψk

ψk

ψk+1

xk+1

xk

(b) Consecutive vehicle positions
xk, ψk on true trajectory (dotted),
circular (dashed) and secant ap-
proximation (solid)

Fig. 2. Model inputs and approximation of vehicle and lane trajectory

B. Calculation of the Preview Angle

Available vehicle data comprises steering wheel angle δk,

vehicle speed vk, yaw rate ψ̇k and current lateral offset dk from

the lane center, all sampled at a sampling interval Ts = 0.02 s
with off-the-shelf vehicle sensors.

Whereas the lane deviation dk is directly measured, the pre-

view angle ρk(Tp) and the preview point pk are unknown and

have to be calculated from the vehicle and the lane trajectory.

For reconstruction of the vehicle trajectory, the vehicle motion

is approximated as circular motion during a sampling interval

Ts. In Figure 2(b), the dotted vehicle path of length Tsvk is first

approximated by the circle arc length ∆sk ≈ Tsvk (dashed)

spanning the angle ∆ψk = ψk+1 −ψk ≈ Tsψ̇k and second by

the secant ∆sk ≈ ∆sk (solid). The vehicle trajectory xk in

the inertial coordinate frame is reconstructed as

ψk = ψic +

k−1∑

i=0

Tsψ̇i

xk = xic +

k−1∑

i=0

[
cosψi − sinψi
sinψi cosψi

]

︸ ︷︷ ︸
R(ψi)

[
∆si cos ∆ψi

2

∆si sin
∆ψi

2

]

with rotation matrix R(ψi) from vehicle to inertial frame and

starting from some initial conditions ψic, xic.

The lateral offset dk of the vehicle from the lane center is

measured relative to xk and perpendicular to the lane, as in

Figure 2(a). Assuming small relative yaw angles of the vehicle

with respect to the lane, the lane center position is in the

inertial frame

ck = xk + R(ψi)

[
0

−dk

]
.

The preview point pk is now determined at Tp ahead of

the vehicle under the assumptions that during Tp the vehicle

remains within the lane boundaries and its speed approximately

constant. Then, Tp can be measured in integer multiples of Ts
along the driven trajectory until xk+Tp with good approxi-

mation. Consequently, it is pk = ck+Tp the lane center at



k+Tp, which corresponds to a simple time shift and simplifies

computations. For a given preview time, the preview point

relative to the vehicle is pvk = R−1(ψi)(pk − xk) and the

preview angle is given by

ρk(Tp) = tan−1

(
pvy,k
pvx,k

) ∣∣∣|ρk(Tp)| <
π

2
. (3)

C. Identification of Driver Model Parameters

Identifying parameters of the model (2) from data recorded

in the closed-loop setting of Figure 1 imposes difficulties

on consistent parameter estimation [12], because the noise

ek and the input uk are correlated due to feedback K(q).
Since the true K(q) and H(q) are unknown, quantification

of these influences is inaccurate. Therefore, assuming a small

contribution of feedback to uk or a good signal-to-noise ratio

(SNR) of uk and ek [12], the correlation of input and noise

due feedback is neglected. The estimation problem for G(q)
thus simplifies to an open-loop estimation from uk and yk.

In [10], the driver model is obtained by fitting the ARX

model to driving simulator data using least-squares estimation.

The implied system model is

A(q) yk = yk + a1yk−1 + a2yk−2

= B(q)uk = b1uk−1 + b2uk−2 + ek.

For Glat(q, θ), the lane lateral deviation uk = dk is used as

model input and the steering wheel angle yk = δk as output.

This model can be written as a linear regression

yk =
[
yk−1 yk−2 uk−1 uk−2

]
θ + ek

= φTk θ + ek

with the vector of regressors φk. Note that φk contains

no previous prediction values and thus the prediction error

ǫk(θ) = yk− ŷk of model Glat(q, θ) is the one-step prediction

error

ǫk(θ) = yk −Glat(q, θ)uk = yk − φTk θ. (4)

The estimate θ̂ of the parameters is obtained by solving

θ̂ = arg min
θ
V (θ) (5)

where V is the mean square error (MSE) of the prediction

V (θ) =
1

N

N∑

k=1

ǫ2k(θ). (6)

The solution is θ̂lat = θ̂ = (ΦTΦ)−1ΦTy, where Φ is the

N × 4 matrix of regressors Φ = [φk . . .φk−N+1]
T .

The implied noise model is H(q, θ) = 1/A(q) due to

yk =
B(q)

A(q)
uk +

1

A(q)
ek = G(q, θ)uk +H(q, θ)ek.

This facilitates a direct analytical solution of (5). However,

least-squares estimation of G(q) and H(q) emphasizes a

fit to high frequency components in the data [13]. This is

undesirable, since the relevant frequencies in manual control

tasks range only up to about 5 rad/s as stated in [14]. Moreover,

occlusion

2.8◦

vehicle

(a) First drive far (occluded angles
greater than 2.8◦ down from horizon
vertically hatched)

occlusion 5.7◦

vehicle

(b) Second drive near (occluded an-
gles smaller than 5.7◦ down from
horizon diagonally hatched)

Fig. 3. Field of view occlusions setups

in real-world driving with numerous disturbances, the noise

model is unlikely to be accurately described by H(q, θ) =
1/A(q).

As an improvement, [12] suggests, under the above simpli-

fication to an open-loop scenario, an output error identification

using the system model

yk =
B(q)

A(q)
uk + ek

with H(q) = 1. In addition, we use the preview angle uk =
ρk(Tp) from (3) for a given preview time Tp as system input

and the steering wheel angle yk = δk as system output for

Gpre(q, θ).
The prediction ŷk = Gpre(q, θ)uk with this system model

is recursive and depends on previous predictions ŷk−1, ŷk−2.

Thus, instead of the one-step prediction error from (4), iden-

tification is here based on the N -step simulation error

ǫ̃k(θ) = yk − ŷk = yk −Gpre(q, θ)uk.

The model Gpre(q, θ) is therefore evaluated in a simulation

over multiple steps, which improves capturing the dynamics

of the true process. Similar to (5) and (6), the minimization

problem is formulated as

θ̂ = arg min
θ
Ṽ (θ) = arg min

θ

1

N

N∑

k=1

ǫ̃2k(θ).

where Ṽ (θ) is the simulation MSE and an iterative solution

yields the parameter estimate θ̂pre = θ̂.

This paper makes use of Ljung’s System Identification

Toolbox for MATLAB, solving output error problems with

problem-specific iterative techniques together with estimation

of optimal initial conditions for the model (see [12]).

III. EXPERIMENT SETUP

Controlled experiments with a range of windshield occlu-

sions have been conducted to record the driver steering and

lane keeping performance and suppress disturbances at large.

Nine male expert drivers were recruited to complete three

drives of a lane keeping task.

For the first and the second of the three drive tasks,

the driver’s field of view was restricted in vertical angular

direction. During the first drive, only visual information in

the area of viewing angles smaller than 2.8◦ down from the

horizon was available. This corresponded to minimum viewing



distances of approximately 24 m. Occlusion corresponding to

the vertically hatched area in Figure 3(a) was achieved by

partially covering the vehicle’s windshield.

During the second drive, only viewing angles greater than

5.7◦ down from the horizon were visible, what corresponded

to a maximum viewing distance of approximately 12 m. Oc-

clusion corresponding to the diagonally hatched area in Figure

3(b) was accomplished using the vehicles standard sun visor.

The third drive was executed as a reference drive without

visual occlusion.

For the calibration of the occlusion settings, the vehicle

was placed in a well-defined position. The subjects were told

to adjust their seat in order to match their line of sight with

the occlusion edge and calibration marks outside the vehicle.

In order to maintain the calibrated field of view, the drivers

were instructed to recline the back of their head on the driver

seat’s head rest at all times.

For all drives, the subjects were instructed to steer the

vehicle in the middle of the lane. The drives were carried out

on a rural road test track consisting of a launch area up to

0.3 km, a successive 0◦ flat straight section of approximately

1.7 km and a curved section of 1.1 km with right-only curve

radii varying from 0.4 km over 0.3 km to 0.2 km. The drives

were carried out with cruise control set to 80 km/h on the right

of two one-way lanes. The subjects had prior knowledge about

the track.

All drives were carried out using a Mercedes-Benz E class

vehicle and accompanied by a trained expert driver1.

In the following, the test drives are labeled according to

the visible field of view with far for visible far-region field of

view (first drive, Fig. 3(a)), near for visible near-region field of

view (second drive, Fig. 3(b)) and with ref for the unoccluded

reference drive, respectively. Moreover, within the drives, the

first track sections on the straight are labeled as straights and

the curved track sections as curves.

IV. RESULTS

Processing of experiment data is only performed after

rejection of disturbed drive data with introductory and final

lane changes, vehicle speeds below 60 km/h or invalid lane

tracking signals. All models and analyses are applied to

moving windows of N = 200 (4 seconds) samples of the

vehicle and lane trajectory data from II-B with a window shift

of 50 samples (1 second).

A. Experiment and Driving Behavior

The driving behaviors induced by the occlusion drives and

the reference drive are evaluated using the standard deviation

of lateral offset, a common driving performance measure.

The sample standard deviation σd,N of dk is computed for

each window. Figure 4 shows a box and whisker plot of

σd,N grouped by drives. The influence of track segments is

disregarded in view of similar tendencies. The three runs with

far-region perspective far, near-region perspective near and

reference ref result in significantly different driving behaviors

1Experiment and data courtesy of Daimler AG.
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Fig. 4. Lateral offset standard deviation σd,N for respective drives ref, near

and far (box range: 25th to 75th percentile; median: red bar; notches: 95%
confidence interval of median; whiskers: 1.5 times interquartile range; outliers:
”+”; dashed lines: clipping to 95% of data for visualization)
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Fig. 5. Medians of coherence function γ2(f) in relevant frequency range

over all drivers, since in Figure 4, each confidence interval (CI)

notch contains only its group’s median (in particular: Kruskal-

Wallis test p ≪ 0.001).

B. Driver Model Identification

The model Glat(q, θ) and two variants of Gpre(q, θ) are

applied to the data. For the two occlusion setups far and

near, respective preview times are calculated using the vehicle

reference speed and the respective minimum and maximum

viewing distances (see section III) such that

1st drive, far field view: Tfar = 1.08 s,

2nd drive, near field view: Tnear = 0.54 s.

Two corresponding preview point inputs ρ(Tfar) and ρ(Tnear)
are computed according to section II-B.

Thus, the driver models analyzed in the following are

lateral offset: δ̂lat,k = Ĝlat(q) dk, (7a)

Tfar preview: δ̂pre,far,k = Ĝpre,far(q) ρk(Tfar), (7b)

Tnear preview: δ̂pre,near,k = Ĝpre,near(q) ρk(Tnear). (7c)

For linearity check of the model input-output pairings in

(7), the coherence function γ2(f) [12] – the normalized cross-

correlation function in the frequency domain – is computed

for every data window. Figure 5 depicts a low-frequency

section of the medians over all windows of γ2(f) for selected

track and input combinations. γ2(f) ≈ 1 corresponds to high

linearity and γ2(f) ≈ 1 to low linearity at a frequency f .

Comparing uk = ρk(Tfar) and uk = dk, it is notable that the
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Fig. 6. Exemplary input-output data and model simulations (t = kTs)

choice of Tp influences linearity. This may be due to delay

and acausality effects introduced by improper preview times

when modeling a previewing driver. Track segments, however,

have greater influences on linearity as shown by the large

difference between the median of γ2(f) for curves and for

straights. The occlusion setting also influences linearity in that

with decreasing viewing distance from far to near linearity

degrades, as shown here for straights. So-called complacency

[10] may account for nonlinearity by perception thresholds

on or negligence of small control errors, particularly when

excitation by the reference signal is low as on straights.

Moreover, disturbances then have a comparatively large impact

and the SNR is poor. For identification of driver models, linear

model estimation is justified: γ2(f) shows sufficient linearity

for the relevant frequencies up to 0.8 Hz ≈ 5 rad/s [14].

For every window, after subtraction of its mean, ARX

and output error identification are conducted resulting in the

models Ĝlat(q), Ĝpre,near(q), Ĝpre,far(q), respectively. Figure

6 shows an exemplary data window and predicted responses of

an ARX model Ĝlat(q) and a Tfar preview model Ĝpre,far(q)
both identified from the depicted input-output data.

The upper plots show the input data with lane deviation

dk and preview angle ρk(Tfar), respectively. The lower plots

depict the measured steering wheel angle δk, as well as the

simulated steering wheel angle over the depicted window using

the model in (7a) and (7b). Comparing Figures 6(a) and 6(b),

the benefits of the output error approach for driver model

identification are obvious.

C. Evaluation and Comparison of Driver Model

A validity measure is constructed, such that identified driver

models are only evaluated if they are stable, the identifi-

cation residuals ǫk(θ̂lat) and ǫ̃k(θ̂pre) are independent of

the model input in terms of temporal correlation and the

model fit in terms of percentage of explained variance is

nonnegative [12]. Moreover the respective identification MSEs

V (θ̂lat) and Ṽ (θ̂pre) are required to be sufficiently small

(V (θ̂lat), Ṽ (θ̂pre) < 10−3). In total, 2230 models Ĝlat(q),
1374 models Ĝpre,near(q) and 1292 models Ĝpre,far(q) are

valid and analyzed in the following.
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Fig. 7. Distributions of natural frequencies f0 with respect to driver field of
view and drive segments

The performance of driver models to describe the driver

behavior is evaluated using natural frequency and cross-

validation simulation residuals.

For calculating the natural frequency, the poles zn of

the denominator polynomial Â(z) of discrete-time transfer

function representation Ĝ(z) of Ĝ(q) are determined. Transfor-

mation of zn to time-continuous equivalents sn = ln(zn)/Ts
and subsequent polynomial expansion yields the denominator

polynomial Ân(s) of the continuous-time transfer function rep-

resentation Ĝn(s) [10]. The natural frequencies f0 = ω0/2π
are extracted for every window and all identified models from

Â(s) = s2 + 2ζnω0 s+ ω2
0 .

Figure 7 depicts the distributions of f0 in groups. As

an overall result, the natural frequencies of Ĝlat(q) provide

weak discrimination of the occlusion settings. However, for

Ĝpre,near(q) and Ĝpre,far(q) the notch intervals overlap and

thus no distinction is possible using natural frequencies of

these models. A major reason for this are the smaller numbers

of valid output error models resulting in less certain median

CIs and thus larger notch intervals. Moreover, f0 shows major

dependency on the track segments straight and curve.

A different approach to assess driver models and driver

behavior uses the simulated responses of the identified driver

model instead of exploiting its parameters [10]. For all models

Ĝlat(q), Ĝpre,near(q) and Ĝpre,far(q), the simulation MSEs

Ṽ (θ̂lat), Ṽ (θ̂pre,near) and Ṽ (θ̂pre,far) are computed in a

cross-validation approach adopted from [11]. The models are

identified from a window of input-output data and are simu-

lated on the successive window partly containing previously

unseen data. The resulting cross-validation simulation MSEs

are depicted in Figure 8 in logarithmic scale. Within a track

segment, all models show comparable performance. Discerning

the occlusion setting near from far and from ref is possible

with significance with all models on straights, since the notch

intervals are distinct. This doesn’t hold for the distinction of far

and ref and fails to become significant for curves, where only
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Fig. 8. Cross-validation simulation MSEs (outliers clipped at dashed line)

the Ĝlat(q) exhibits weak differences in MSE medians. In turn,

Ĝlat(q) exhibits larger performance variations in comparison

with the output error models. However, the track segments are

also a major influence on the overall model performances in

cross-validation. The MSEs differ by more than two orders

of magnitude between curves and straights thus outweighing

driving behavior effects.

Comparing Figures 7 and 8, the cross-validation MSEs

exhibit slight advantages compared to the natural frequencies

in terms of discrimination of occlusion settings. Moreover, it

can be observed that the MSEs of the output error models

show a smaller number of outliers and more regular distri-

butions compared to the MSE of the model Ĝlat(q) and the

distributions of natural frequency in Figure 7.

V. DISCUSSION AND FUTURE WORK

The driving experiment presented in this paper successfully

constituted significantly different driving behaviors by partially

occluding the driver’s upper or lower field of view. The real-

world driving data collected under well-defined conditions

bridges a gap between measurements in driving simulators and

on public roads, but also reveals critical issues for real-world

application of driver models.

In capturing driving behavior with driver models, simu-

lations reveal advantages of the output error models over

the ARX model. However, in discerning the induced driving

behavior, all models show only weak results. Widely, track

influences on the models are larger than possible effects from

driving behavior. The potentially too simple second-order mod-

els reveal no convincing distinctions. The large variations of

the model performances within pairings of track segment and

occlusion setting may result from unmodeled dynamics and

nonlinearities in the driver, but also from disturbance effects,

e.g. road surface or vehicle nonlinearities. In evaluation of the

driver models, neither natural frequency nor simulation MSE

reveal clear tendencies, as both suffer from above influences.

With fewer outliers and a larger number of distinguished situ-

ations, the simulation MSE has slight explanatory advantages

compared to natural frequency. However, the latter is easier to

determine as no simulation is needed.

Systematic limitations are imposed by the simplified system

identification approach being a first choice during ongoing

research. The disregarded feedback effects may introduce

estimation bias in case the assumptions of good SNR and

small feedback are violated. Moreover, both noise models are

potentially oversimplified and likely to misjudge the noise

impacts. The recorded data is used in system identification

without prefiltering resulting in a model fit to frequencies far

above the range relevant for human manual control.

As this paper is part of work in progress on driver modeling

and driver state detection, the above limitations and drawbacks

are yet to be conquered in order to achieve feasible driver

modeling for real-world applications. In further works, special

emphasis is put on establishing a closed-loop identification

approach. Improvements are expected by identifying an accu-

rate noise model from the data and similarly by prefiltering

input-output data to relevant frequency ranges. Due to strong

nonlinear effects of misadjusted preview times, additional

driver preview strategies and preview preprocessing have to be

examined. Further investigation will also consider additional

driver models with higher a priori validity and stronger rela-

tions to human characteristics.
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