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Abstract— Experts assume that accidents caused by drowsi-
ness are significantly under-reported in police crash inves-
tigations (1-3%). They estimate that about 24-33% of the
severe accidents are related to drowsiness. In order to develop
warning systems that detect reduced vigilance based on the
driving behavior, a reliable and accurate drowsiness reference
is needed. Studies have shown that measures of the driver’s
eyes are capable to detect drowsiness under simulator or
experiment conditions. In this study, the performance of the
latest eye tracking based in-vehicle fatigue prediction measures
are evaluated. These measures are assessed statistically and
by a classification method based on a large dataset of 90
hours of real road drives. The results show that eye-tracking
drowsiness detection works well for some drivers as long as
the blinks detection works properly. Even with some proposed
improvements, however, there are still problems with bad light
conditions and for persons wearing glasses. As a summary,
the camera based sleepiness measures provide a valuable
contribution for a drowsiness reference, but are not reliable
enough to be the only reference.

Keywords: drowsiness detection, blinking behavior, eye-tracking,
driver monitoring, classification, KSS.

I. I NTRODUCTION

A. Motivation

According to the National Highway Traffic Safety Ad-
ministration (NHTSA), annually, about 100,000 crashes in
the USA are the result of driver sleepiness. The 100-Car
Study, performed in 2006 by the NHTSA [1] and Virginia
Tech Transportation Institute (VTTI), states that drowsiness
increases the driver’s risk of a crash or near-crash by at
least a factor of four. Drowsy driving is assumed to be
significantly under-reported in police crash investigations (1-
3% in [2]) as it can’t be measured as easily as alcohol
consumption for instance. Experts assume that about 24-
33% of the severe accidents are related to drowsiness [3]–[6].
Reyner and Horne [7] found that cold air and radio as “in-
car” countermeasures have not shown to significantly reduce
the number of lane departures during sleepiness. They are
at best temporary expedients to reduce driver drowsiness,
enabling drivers to find a suitable place to take a break
and avail themselves of caffeine and a brief nap, which had
been shown to be more effective [8], [9]. Emerging driver
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monitoring systems, such as the Mercedes BenzAttention
Assistor the VolvoDriver Alert Controlare systems that aim
to reduce sleepiness-related road crashes caused by fatigued
and distracted drivers by using series production sensors.In
order to develop and optimize such systems, a reliable and
accurate sleepiness reference is needed. There are several
common ways to “measure” the driver’s vigilance state:

• The most common reference measure for drowsiness is
the driver’s subjective self-estimation according to the
Karolinska Sleepiness Scale (KSS) [10] in Tab. I.

TABLE I

KAROLINSKA SLEEPINESSSCALE (KSS)

KSS Description
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, no effort to stay awake
8 Sleepy, some effort to stay awake
9 Very sleepy, great effort to keep awake, fighting sleep

Several thousand real road drives have been recorded
with over 900 briefly instructed drivers. The KSS was
interrogated every 15 minutes as a trade-off between
high temporal resolution and avoiding intrusive feed-
back. As a consequence, the KSS was not capable to
record sudden drowsiness variations caused from differ-
ent situations. A large number of drives were invalid due
to implausible KSS entries by the drivers. The reasons
range from unmotivated drivers to missunderstanding of
the KSS. Schmidtet. al. [11] demonstrated that drivers
have difficulties in judging their fitness, especially after
about three hours of continuous monotonous daytime
driving and with increasing drowsiness. For these rea-
sons, it is not sufficient to record solely the KSS.

• The Electroencephalogram (EEG) is another common
way to predict driver fatigue by measuring the elec-
tric brain activity in the alpha and gamma band. The
Electrooculogram (EOG) monitors eye blinking and
movement. However, the recording of the EEG and
EOG is too laborious for such a large number of drives.

• Additionally to these methods, this paper studies the
performance of an eye-tracking camera for in-vehicle
fatigue detection, since no wiring of drivers or repeated
interrogation is required.



Another major benefit of an eye-tracking system is the
detection of short- and mid-term distraction by the gaze
direction (eyes of road). The 100-Car Study by NHTSA [1]
found that about 80% of crashes involve driver distraction,
at least as a second reason.

B. Literature review

Within the last years, a lot of effort has been made to
investigate driver monitoring based on blinking behavior.In
[12], the measure referred to as PERCLOS [13] (cf. III-C)
was found to be the most reliable and valid determination of
a driver’s alertness level. Batista [14] presents a framework
for face localization and eyelid movement parameters. While
focusing on facial detection algorithms, he also calculates the
measures PERCLOS and AECS (cf. III-H) without further
investigating them. Hargutt [15], [16] attached electric spin-
dles to the eyes in order to analyze vigilance and attention
within a driving context. He stated that a combination of
blinking related parameters is necessary for estimating every
vigilance stage. He found the blink duration to be related to
sleepiness and verified his results by conducting a driving
simulator study with 12 participants. The baselining he
applied made the effects more stable. Picot [17] recently
proposed a fuzzy logic algorithm for drowsiness detection
in high frame rate videos. In 60 h of driving with 20 drivers,
it detects 80% of the drowsiness states. Thorslund and Svens-
son [18], [19] use EOG to estimate the driver’s alertness in
regard to the subjective self-rating and EEG. Using simulator
drives, Svensson reaches a 70% correspondence towards the
self-rating and 56% for the EEG.

C. Objectives of the current study

Starting from the output signals of a recent camera-
based eye-tracker, we study their potential as a reference for
drowsiness detection under real road driving conditions. We
review some popular features extracted from the eye signals
and propose new ones. We investigate their properties and
relationship to the KSS measure. We also use these features,
trying to predict the current KSS value. Further contributions
of this paper are:

• Propose improved algorithms for feature extraction,
such as the EWMA explained in App. A

• Cope with deficites [11] of self-ratings (KSS) such as
low temporal resolution and subjectivity

• Assess the signal quality for drivers with glasses
• Suppress looks to the dashboard that are often accom-

panied with eye blinks
• Include vehicle signals to suppress low speed, lane

changes and vehicle operation

D. Database

The database used within this project covers over 10 300
real drives with a total number of 1.23 Mio km (courtesy of
Mercedes-Benz). Thereof, three night experiments and some
free drives were performed with the latest camera algorithms.
In total, 30 real road drives with valid self-rating (KSS) and
without measurement problems are available:

• 23 real road night experiment drives (7,054 km)
• 7 normal free daytime drives (2,607 km)
• 23 drivers (8 with glasses)

The conduction of night experiments and regular drives is
explained in [11], [20].

E. Driver State Sensor

The latestDriver State Sensor 3.0algorithm fromSeeing
Machines [21] was used for the recording of the eye-
and head signals. The system covers an IR-Camera unit
(640×480 pixels) and two IR-pods for illumination. The
camera was installed in the instrument cluster and both IR-
pods were mounted such that reflections on the glasses were
minimized. The essential pre-processed signals (Tab. II) are
recorded over an USB-drive by a portable computer unit.
GPS signals were obtained from an external USB device. The
obtained signals were relatively good, especially for drivers
without glasses.

TABLE II

USED SIGNALS FROM THEDRIVER STATE SENSOR

Description Signal DSS Signal Name
Eye closure l/r el ,r LEFT / RIGHT EYE CLOSE
Eye confidence l/r cl ,r LEFT / RIGHT CLOS CONF
3D head position x,y,z HPOSFILT X / Y / Z
3D head rotation ϕ ,ψ,γ HROT PITCH / YAW / ROLL
3D head confidence ch HPOSCONF
GPS time τ GPSGMT TIME
GPS longitude λ GPSLongitude
GPS latitude θ GPSLatitude
GPS veh. speed v GPSSPEEDKM H

II. PROCESSING OF THEEYE SIGNALS

This section presents several pre-processing steps that are
involved in extracting individual drowsiness-related patterns
from the raw signals.

A. Pre-processing

The recorded camera data are converted, synchronized and
time offset is compensated with the vehicle CAN data using
the extrapolated GPS GMT-time and velocity signal which
is sufficiently accurate. The data obtained from the camera
have a frame rate of 60Hz. The detection of eye blinks works
well for this frame rate but the calculation of the blinking
velocity becomes more inaccurate. Svensson [19] stated that
the sampling frequency should be high (at least 500Hz)
when blinking related characteristics like blink duration
are measured. The camera frame rate often dropped and
introduced measurement gaps of up to half a second. These
gaps were lineary interpolated in order to keep the timestamp
synchronized. Next, both eye signalsel ander are combined
to a single eye signalec by weighting and normalization with
the confidence valuescl andcr of both eyes. The system is
defined to be active for head yaw angle|ψ| ≤ 15◦ to suppress
lane changes (5-20%) and for a high enough combined
confidence(cl + cr)/2 ≥ 55%. Furthermore, vehicle speed
v ≤ 30 km/h and lane changes are suppressed. An average
active time of about 70-90% remained for most drives. For
some drivers with glasses it was lower (≈ 60%).



B. Detection of Blinks

Another important pre-processing step for most features
is the detection of blinks. At first, blinking candidates
are searched by applying an adaptive threshold to the eye
signal ec. Then the system active signal was applied. It is
also important to suppress the blink during a head rotation
or at the same moment as the confidence signal dropped
below a threshold. A major problem is vertical looks to
the dashboard, instrument cluster or head-unit. Such eye
movements often occur with short blinks. For this reason, a
minimum blink duration of 130 ms was defined to neglect
these looks. Then, each blinking candidate that fulfilled
several other criteria (min/max duration, shape and minimum
amplitude) was labeled as a valid eye blink.

C. Driver Adaption (Baselining)

An essential contribution to the feature performance is the
baselining. The variation between drivers has a severe impact
on the features and overlays the drowsiness-related patterns.
We assume that the drivers are usually awake during the first
15 minutes of a drive. Themeanor maximumof features
during this time is then used for normalization of features.

D. Feature Extraction

For many drowsiness measures, the increased rate and
intensity of patterns is of relevance. Processing steps as
described in App. A and [20] can often be applied to the
signals, such as:

• Moving average, median or exponentially weighted
moving average (EWMA)

• Standard deviation, interquartile-range or exponentially
weighted moving variance (EWVAR)

• Digital polynomial smoothing- and differentiation [22]
These methods, have several advantages in regards to per-
formance and computation time towards the common imple-
mentation in literature.

III. F EATURE EXTRACTION

From the eye signals returned by the camera system, we
now extracted 18 features for drowsiness detection as listed
in Tab. III. They will be briefly explained in this section.

TABLE III

EYE FEATURES

ID CLASS Feature Name Description
74 EYE AECS Average eye closure speed
75 EYE APCV Amplitude/velocity ratio
92 EYE APCVBL APCV with regression
76 EYE BLINKAMP Blink amplitude
77 EYE BLINKDUR Blink duration
95 EYE BLINKDURBL BLINKDUR baselined
78 EYE BLINKFREQ Blinking frequency
80 EYE EC Energy of blinking
98 EYE ECBL EC baselined
85 EYE MICROSLEEP Microsleep event 0.5 s rate
94 EYE MICROSLEEP1S Microsleep event 1.0 s rate
81 EYE EYEMEAS Mean square eye closure
84 EYE MEANCLOS Mean eye closure
88 EYE PERCLOS70 Percentage eyes>70% closed
89 EYE PERCLOS80 Percentage eyes>80% closed
99 EYE PERCLOS70BL PERCLOS70 baselined
100 EYE PERCLOSEWBL PERCLOS80 EWMA baselined
90 EYE HEADNOD Head nodding

A. Blink Duration

Different methods to estimate the blink duration
(BLINKDUR) have been evaluated as illustrated in Fig. 1.
In this article, the blink duration is calculated in the same
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way as for EOG. In EOG, the blink duration is defined as
the time difference between the beginning and the end of a
blink, each at the point where half the amplitude is reached.
A better definition is the sum of half the raise time and the
fall time [18], [19], [23]. Also theplateauduration (Fig. 1)
of an eye blink was calculated.

B. Eye Closure

One of the simplest measures for drowsiness is the MI-
CROSLEEP event rate. Events are defined as eye closures
longer than 0.5s (1s for MICROSLEEP1S). The opening
duration is calculated in the same way as for BLINKDUR.
MICROSLEEP events occur in an advanced phase of drowsi-
ness.

C. PERCLOS and EYEMEAS

PERCLOS is the most common blinking based measure
for drowsiness, first defined by Wierwille et al. [24]. It is
the proportion of time in three minutes that the eyes are at
least 80% closed. Of the drowsiness-detection measures, it
was found to be the most reliable and valid determination
of a drivers alertness level [12]–[14]. Today, there are also
other PERCLOS measures: PERCLOS70, which is the same
but with a threshold of 70%; EYEMEAS, which is the
mean square percentage of the eyelid closure rating. EC
is the averaged energy of blinks and is closely related to
PERCLOS. PERCLOSEWBL is the same as PERCLOS80
but using EWMA for averaging (App. A).

Fig. 2 shows PERCLOS for a night drive. The driver
(ID=340) has entered the KSS more frequently and with
more care than usual. Thus, it can be seen how well
PERCLOS correlates with the KSS (ρp = 0.74) and EEG
(ρp = 0.67) measures [11]. As the KSS entry is retrospective



and EEG / PERCLOS are filtered with a three minute moving
average filter, all signals are delayed. This is one of the major
weaknesses that PERCLOS detects fatigue too late and fails
to detect participants that are drowsy with eyes wide open.

Fig. 2. Drive (ID=14 589) with KSS, PERCLOS and EEG

D. Amplitude-Velocity Ratio

Hargutt and Kr̈uger [25] found that the ratio of amplitude
and maximum blinking velocity (APCV) can be used well
for drowsiness detection.

E. Blinking Rate

BLINKFREQ is the blinking frequency. According to
Andreassi [23], a relaxed person blinks about 15-20 times per
minute, which drops to 3 blinks per minute when performing
cognitive tasks [19]. According to Hargutt and Krüger [25],
an increased blinking rate indicates reduced vigilance. Italso
increases with driving duration (time-on-task) [15]. It was
observed that it varies severely for different drivers and is
also related to the air humidity in the vehicle.

F. Mean Eye Opening

MEANCLOS measures the mean eye opening between
blinks. We observed that drivers often do not completely
open their eyes any more when they become sleepy.

G. Head Nodding Frequency

An often observed sign of drowsiness is head nodding
(HEADNOD). It is calculated from the head pitch angleϕ
with the EWVAR as described in App. A. The estimation
of ϕ was quite accurate. Drivers often start moving in the
seat and move their head to fight sleep. A second reason for
head nodding is related to microsleep events when a driver
lets his head fall and hastily pulls it up when he realizes his
absence.

H. AECS

AECS is the average eye closure speed [14], [17], which
was estimated by the maximum eye opening speed.

IV. FEATURE EVALUATION

The above features were analyzed in different ways. Be-
sides statistical tests (ANOVA, F-Test), theBravais-Pearson
correlation coefficientρp, Spearman correlation coefficient
ρs and theFisher-metricMDA [26] were used as metrics.ρp

is calculated to estimate the linear correlation between the
featureF and the interpolated, smoothed KSS:

ρp(F,KSS) =
cov(F,KSS)

√

var(F) ·var(KSS)
, (1)

wherecov is thecovarianceandvar thevariance. ρs describe
how well the relationship between two measures can be
described by amonotonicfunction. High positive/negative
values mean strong positive/negative correlation, whereas
a value near zero indicates a random relationship. The
correlation coefficients of good features are listed in Tab.IV.
Scatter plots, class histograms and boxplots [27] were also
used to get a visual impression of the features. In Fig. 3, the
Spearman correlation coefficients of all drives for the feature
EC are shown in a histogram. It can be seen that there is a
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Fig. 3. Histogram ofρs coefficient for all drives (EC ID=80)

tendency towards the right, that indicates that most drivesare
positively correlated with drowsiness. The feature’s correla-
tion coefficient isρs = 0.22, which is relatively good for a
causal feature [20]. The boxplots in Fig. 4(a) to 4(c) show the
relationship between different features and the KSS. All plots
show that the classes are severely overlapping which pose a
lot of difficulties for the drowsiness classification. Thereare
no drives with KSS below 3, so these were neglected.

V. CLASSIFICATION

The task of drowsiness classification is to combine these
different features to a single continuous-valued drowsiness
measure or the discrete classesawake (KSS≤ 6), ques-
tionable (6<KSS< 8) anddrowsy (8≤KSS). All features
were downsampled to a samling frequency of 0.5 Hz, as we
assume that the blinking behavior change is much slower
than that. An artificial neural network (ANN) was used for
classification (V-B).
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Fig. 4. Boxplot of three features

A. Feature Selection

In theory, using more features incorporates more informa-
tion is incorporated. But, if the number of features gets too
high, the need for more training data can’t be fulfilled any
more (curse of dimensionality). For this reason, dimension
reduction techniques were applied. Principle Component
Analysis (PCA) and Fisher transform (LDA) are methods to
transform a given feature space to a lower dimensional one.
The sequential floating forward selection(SFFS) algorithm,
introduced in [28], was applied to select the most promising
features for a classifier. The advantage of SFFS over feature
transform techniques is its high transparency as the selected
features remain without any change. In our study, PCA and
LDA have shown poor results in comparison to SFFS. Hence
we only report results achieved by SFFS. Tab. IV shows the
most often selected features.

TABLE IV

CORRELATION COEFFICIENTS OF OFTENSELECTED FEATURES

ID Feature Name ρp ρs

74 AECS -0.46 (0.000) -0.48 (0.000)
75 APCV 0.50 (0.000) 0.53 (0.000)
76 BLINKAMP 0.18 (0.000) 0.14 (0.000)
77 BLINKDUR 0.16 (0.000) 0.27 (0.000)
78 BLINKFREQ -0.11 (0.000) -0.04 (0.000)
98 ECBL 0.21 (0.000) 0.19 (0.000)
81 EYEMEAS 0.07 (0.000) 0.08 (0.000)
90 HEADNOD -0.25 (0.000) -0.32 (0.000)
84 MEANCLOS 0.09 (0.000) 0.07 (0.000)
94 MICROSLEEP1S 0.01 (0.000) 0.07 (0.000)
99 PERCLOS70BL 0.27 (0.000) 0.40 (0.000)

B. Classification Results

The confusion matrix of the neural network classification
is given in Tab. V. The classification results were obtained
by cross-validation with a training to test set ratio of 80 to
20 percent. It is important to split the data by entire drives
so that the drives in the test set are completely unknown
to the classifier. The results were averaged over several
permutations of the training/test set to obtain a more stable
result. A feed-forward backpropagation algorithm with 25
neurons in one hidden layer was used. The total recognition
rate is 82.5%.

TABLE V

CONFUSIONMATRIX FOR ANN

given
Awake Questionable Drowsy

Awake 88.0 % 11.8 % 0.2 %
estimated Questionable 13.6 % 81.2 % 5.3 %

Drowsy 0.9 % 36.5 % 62.6 %

VI. D ISCUSSION ANDCONCLUSIONS

The presented results show that camera based drowsiness
detection works very well for some drivers, but is ill-posed
for others. Several of the analyzed features show good poten-
tial for fatigue detection. Features related to the eye opening
speed and PERCLOS perform best. Head movements also
seem to be early indicators for sleepiness. The blink duration
is also well related to the driver’s advanced drowsiness
level, but many of the vertical looks to the dashboard are
still recognized as blinks. One reason for the moderate
classification rate of the classdrowsy is certainly that only
1.6% of the data contain sleepiness at KSS 9 in which video
based approaches work best. Furthermore, the results can’tbe
better than the self-rated KSS reference which also contains
inaccuracy. One of its main deficites is the low temporal
resolution. It is well known, that the vigilance level varies
more quickly depending on the current situation and visual
“novelty”. During the night experiments, the blinking based
parameters were mostly observed to correspond well to the
actual driver state. The mean eye opening degree between
blinking intervals was also observed to be a good indicator
as the drivers often do not completely open their eyes any
more during sleepiness. Baselining was needed, as it was
observed that there are huge variations between different
drivers, especially regarding to blink duration and frequency.

As long as the blinking signals were correctly detected
(high confidence), the drowsiness could be estimated well
from the degrading of the blinking parameters for most
drivers. But even after many improvements, there are still
open issues regarding camera based drowsiness detection:

• Reflections on glasses lead to bad signal quality, see
Fig. 5(a)

• Varying light conditions during daytime driving pose
problems for the eye signal tracking, see Fig. 5(b)



(a) Reflections on glasses (b) Bad light due to sun backlight

Fig. 5. Image processing problems

Therefore, it is very important to know if the obtained signals
are valid. All confidence signalscl ,r,h were well related to the
data quality.

A. Future Work

Current work investigates the mentioned problems by:

• Improvement and validation of the algorithms based on
the large real road study that is currently conducted

• Improve camera, mounting and image processing algo-
rithms to be more robust with drivers wearing glasses
and under varying light conditions

• Use higher sampling frequency for a better estimation
of the blinking velocity

APPENDIX

A. Exponentially Weighted Moving Average and Variance

In literature, simple moving average filters are commonly
used to calculate event rates. A simple, but very powerful
improvement is the introduction of a recursiveExponently
Weighted Moving Average(EWMA) filter. It has the property
to take present values greater into account while storing only
one value from the past instead of values of an entire window.
Similary, the sliding variance can be approximated by the
Exponentially Weighted Moving Variance(EWVAR) for a
given input signal xn as described in the following. The
forgetting factorsλµ and λσ2 are used from the adjusted
window sizesNµ andNσ2:

λµ =
Nµ −1

Nµ
, λσ2 =

Nσ2 −1
Nσ2

(2)

The EWMA is obtained by

EWMAn = λµ ·EWMAn−1+(1−λµ) ·xn ,

with the initial valueEWMA0. The EWVAR is then approx-
imated by

EWVARn = λσ2 ·EWVARn−1+(1−λσ2) · (xn−EWMAn)
2 .

with the initial valueEWVAR0.
A second improvement is using adaptive window sizes

starting with e.g.λµ = 5 and increasing by one for every
sample or event, depending on the feature. The window size
is again reduced if the driving condition quickly changes, e.g.
for a changed vehicle speed. Furthermore, the initial values
EWMA0 andEWVAR0 are set to the average of each feature.
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