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Abstract— It is assumed that approximately one third of reference measure for drowsiness is the driver's subgectiv
severe car accidents are related to drowsiness. Warning systems self-evaluation according to the Karolinska SleepinessieSc
such as the Mercedes Benz Attention Assist try to tackle (KSS) [6] in Tab. I.
this problem by analyzing the driving style. Previous work
investigated the estimation of measures (features) from lane TABLE |
data that correlate well with impaired driving. Unfortunately, KAROLINSKA SLEEPINESSSCALE (KSS)
these features require a lane-tracking camera, which is not
available in many cars. Furthermore, the lane data signals
are often affected from missing road markings, bad sight etc.
Some lane-based features such as LANEDEV or ZIGZAGS do
not require the absolute distance to the lane markings, but
only depend on the lateral deviation within the lane. Our idea
is to exploit odometric data (yaw rate and vehicle speed) to
estimate this measure. The vehicle trajectory is a composition
of the lurching between lane markings and the disturbing road
curvature. Thus, we remove this curvature by a filter since its
frequency is lower than the vehicle deviation. We compare the ) . . . )
correlation between features based on lane data and odometric ~ Previous work [7], [8] investigated the estimation of
data as well as their relationship with sleepiness. An excerpt features from lane data that correlate well with impaired
of the Attention Assist database with 294 drives and over driving. The problem about these features is that they requi

76 000 km is used. We show that some lane-based features can ; PR ; ;
be approximated well. The zero-crossing rate (LATPOSZCR) a Ia_ne-trac!ﬂng camera, which is only available as SpeCIal
performs even better than its lane-based pendant. equipment in few vehicles. Furthermore, thellane data gna
_ are often affected due to missing road markings, bad weather
odometric data, 4 jight conditions or a miss-calibrated camera. Some lane
based features such as LANEDEYV, ZIGZAGS and others do
I. INTRODUCTION not require the absolute position towards the lane markings
A. Motivation It is sufficient to know the deviation within the lane. Thus,
(5his article investigates the use of odometric vehicle data
nly to calculate the classical lane-based features withou
the need of a lane-tracking camera. We also refer to the
sensor signals of odometric data iasrtial data. The basic

KSS [ Description

Extremely alert

Very alert

Alert

Rather alert

Neither alert nor sleepy

Some signs of sleepiness

Sleepy, no effort to stay awake

Sleepy, some effort to stay awake

Very sleepy, great effort to keep awake, fighting sleep

CoOoO~NOUhWNE

Keywords: drowsiness detection, driver monitoring,
tracking, extended kalman filter, classification.

The vast majority of road accidents are primarily relate
to mistakes by the driver. The 100-Car Study, performed i
2006 by the National Highway Traffic Safety Administra-

tion NHTSA [1] and Virginia Tech Transportation Institute ) X . .
[1] g P assumption behind this approach is that the curvature of the

(VTTI), state that drowsiness increases the driver’s risk o : . .
crash or near-crash by at least a factor of four. According {cg) ad can be .e snmqte_d from the odometrl_c data. As described
the NHTSA about 100,000 crashes are annually the reSLgI} [.9]’ thgre IS a mihimum curvature radius fqr every speed
%mt. For instance the minimum curvature radius at 120km/h
750 meters. In general, this is considered during road

Qnstruction, SO we can assume that the road curvature has

of driver sleepiness. Experts assume that about 24-33
of the severe accidents are related to drowsiness [2]—[5

Emerging driver monitoring systems, such as the Merced ¢ ies in th hicle traiect The | deviali
Benz Attention Assistare systems that aim to reduce sIeepi-OW rebquenc(ljef In the vet icle hrer\:.e%or):c. € lane ema_tt|
ness related road crashes caused by fatigued and distra W observed lo occur at much higher irequencies, So It can
cP extracted by a high-pass filter. To estimate the vehicle

drivers by using standard equipment sensors. In order ¢ tended Kal filt d hicl
develop and optimize such systems, a reliable and accuré@ggnox’o‘év; use an extended raliman fifter and a venhicle

sleepiness reference is needed. There are several commd - . L
n addition to yaw rate and vehicle speed, the vehicle’s

ways to record the driver’s vigilance state. The most commoapS position is also included. GPS was converted to UTM
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Many other aspects in regards to drowsiness detection
profit by this improved vehicle position. Short lane-traxki
gaps can be filled and road-condition analyses benefits from
this improved spatial resolution.

In this study, an excerpt of the Mercedes Benz Attention
Assist database with 294 drives and over 76 thousand kilo-
meters was used.

B. Literature review

Within the last years, a lot of effort has been made to
investigate driver monitoring based on steering behavior,
lane-keeping and blinking behavior. For a review on driver
monitoring literature see [7], [8]. There are many appr@sach
for vehicle tracking with inertial vehicle data. Hasber@]1
uses splines and a Kalman filter for online estimation oftrai
tracks. Bihren [11] investigated the tracking of vehicle target
lists by radar. Miksch et. al. [12] used a vehicle motion mode §
to estimate the ego-motion for motion compensation. How- |
ever, no literature was found that analyzed the estimatfon o
lane-based features from inertial vehicle data.

C. Obijectives of the current study
Fig. 1. Map of drives: green lines indicad@vakedriving sections, orange

This study is focusing on the following objectives: indicatequestionableand reddrowsysections

» Estimate the relative lateral lane position (deviation

within the lane) by using odometric CAN-data such a% S Signal d Svnchronizati
the yaw rate and wheel rotation speed. - SENSor Signais and synchronization

« Provide mathematical background on how to estimate The yaw rate sensor has a sampling frequencyrof

the vehicle trajectory. 1/T ~ 50Hz. The GPS signals were available with a sam-
« Compare the performance of odometric features ar@ing rate ofFs=1/T ~ 1Hz and not always valid. Every
their classical lane-based pendant. second, when new GPS data were available, an additional

« The goal isnot to find new features based on odometrionodified Kalman iteration is called to update the position
data, but to compare and replace proven lane-basedcording to the GPS data. This way, the Kalman filter takes
features without the need of a lane-tracking camera. over the weighting between inertial data and GPS data.

B. State Space Model

Fig. 2 illustrates the motion model used in this article. As
The database used within this project covers over 17 8@iescribed in [11], [12], the vehicle motion can be modeled as
real-road drives with a driven distance of over 1.67 Mio knfollows. We choose the system model with the state tramsitio
(courtesy of Merceds-Benz). After filtering this database f equation
drives over 30km, with valid and plausible drowsiness self-

D. Database

rating (KSS), valid lane-tracking data and without measure X(k+1) = Ax(k) (1)
ment errors, 76 215km of real drives remained. with the state vectox(k) at instantk. Refer to App. A for a
« 294 drives (37 night experiment drives) summary of the used symbols. The second part of the system
« 11 vehicles (Seven E- and five S-Class) model is the measurement equation
« 94 drivers 2(k+1) = Hx(K) @

Fig. 1 shows a map of the drives in Europe. . _
The conduction of night experiments and regular drives i¢ith themeasurement vecta(k) at instank. The movement

explained in [7], [13]. of the vehicle can then be described as
sc(k+ 1)] _ [s((k) T [cos(tp*)} 3
Il. | MPLEMENTATION DETAILS [Sy(kJrl) sy(K) k) sin(yt) ] 3

In order to obtain the lateral lane position signal fromThereby we defined

odometric data, the processing steps presented in thisisect + T +_ T
are proposed. v =v(k) +a(k) > and " =¢+y 5
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Fig. 2. Motion Model

with the cycle timeT and the state vector

[sx(k+1)] x-position m
sy(k+1)| y-position im]
Y(k+1)| yaw angle f]
x(k+1)= [@(k+1)| yaw rate £/9
@(k+1)| yaw jerk P/s
v(k+1) | longit. velocity [m/s]
a(k+1) | longit. acceleration rf)/s?]

(4)

: : of(x,q) .
Finally, we obtain for=3-":

10 —sin(@HwviT  —sing w2 0 cogy)T cos(w‘)%
0 1  cofgt VT cofgtWZ 0 sigHT  sin(gh) T
0 0 1 T 0 0 0
0 0 0 1 T 0 0
) 0 0 1 0 0
) 0 0 0 1 T
0 0 0 0 0 0 1

Then, the measurement matitik and vectorz(k) are

Y(k+1)
P(k+1)
v(k+1)
a(k+1)

In case that a new GPS sample is available, the measure-
ment matrixH and vectorz(k) were extended:

Ue(k+1)

0 Un(k+1)
1 P(k+1)
p(k+1)
| v(k+1)
ak+1)

whereUe andU, are theeastingandnorthing UTM coordi-
nates. The covariance matric€sand R have been chosen
by using the high-passed measurements.

1
H= |0

C. Optimal state estimation using the Kalman filter

The Kalman filter for linear systems is a tool to estimate
the state vector that can be observed through indirect mea-
surements which are disturbed by noise.

x(k+1) = Ax(K) + Bu(K) +w(K),
2(k+1) = Hx(K) +v(k)

(6)
(@)

Finally, we can write the following equation that describes

the state transition

The system is still non-linear so that the extended Kalman

[sc(K) +cos(yt) -v(K)T]|
sy(K) +sin(yh) -v(k)T

P+ dT
Gk + P(k)T
p(k)
v(k) +a(k)T
a(k)

The model noisen(k) and measurement noisék) were
found as additive normally distributed white noise

Ew(mw (k)] = W
Ev(nVvT (K] = V dw
p(w) O #(0,Q)
pw) O A (O,R)
with zero mean
Ew, = 0
Elvo) = 0.

filter (EKF) is required. For the EKF, we need to linearize the

non-linear, differentiable functiof in each working point,
which is the current system staték). For linearization, the

Jacobi-Matrix of the differentiable functionf : R" — R™ is

needed and defined

J()

by
of of
0 X2 OXn
i i
%o 0Xn

(®)

Model noise, measurement noise and initial states are uncor
related:

Ewnyv'(n)] = 0
Ew(mz'(n)] = 0
Ev(n)z"(n)] = O.

The validity of the requirements for the Kalman filter of the
yaw rate, vehicle speed and acceleration sensors can be read
in [11].



The linear Kalman filter state estimation is computed ithe lateral distancé(k). The lane is estimated by the low-
two steps:prediction and correction Details can be found pass filtered vehicle trajectory using #rder Butterworth

in [11], [14]. filter with cut-off frequency 0.05Hz. The relative lateral
displacementAl related to the lane is calculated for every
; ; sampling periodT. The lateral distance is then obtained
Measurement Update (‘Correct’) . . L. . .
. ——— by updating the estimated lateral position in each sampling
Time Update (‘Predict) (T) Compute Kalman Gain Factor period:
(1) Project the state ahead Kk =P HT(HP HT +R) ! ’
R = ARy +BUc (2) Update estimate [(K+1) = (k) +Al 10
(2) Project the error _ with measuremert ( ) ( ) (10)
covariance ahead R =R +Ki(z—HX)

P — AP,IAT +Q (3) Update the error covariance with _the initial conditioql (0)=0. The Iateral djstance signal
P — (I —KH)P; obtained from the vehicle model is again high-pass filtered
T‘ \_/ to remove accumulating errors. Furthermore, it was lowspas
filtered to remove noise and road influences witf'&@der
Butterworth filter with the cut-off frequency 0.1 Hz.

| Initial estimate forxg_; andPy_1 |

D. The Extended Kalman Filter Il1l. FEATURE EXTRACTION

The extended Kalman filter is necessary if the state transi- o, gverview about analyzed lane data based features

tion is non-linear, as in our case. Now the system is destribg, the methods how to extract them is described in [7].
by the non-linear, differentiable functiorisand h: This section will explain the features that were selected

k1) = f(x(K) . ulk). wik as potential features and for which the odometric data are
x(k++1) = F(x(k),u(k). w(K) ). (| 2 Poen
= Ix(K) +w(k),
A. Features
2(k+1) = h(x(k+ 1),v(k+ 1)) )

Tab. Il lists the selected features investigated in theequrr

In our case, the measurement equation stays as in (7). Tétedy. Lane data based and odometric features are caltulate
Extended Kalman filter state estimation is again computedith the same algorithms.

in two steps:prediction and correction but now with the

linearized function. TABLE I
SELECTION OFLANE-BASED FEATURES

/\M:asurement Update (‘Correct) ID | Feature Name Description

Time Update (‘Predict’) (1) Compute Kalman Gain Factor 15 | LANEDEV Lane deviation
. - -1 17 | ZIGZAGS Number of zig- t

(1) Project the state ahead Ky =Py HE (Hkpk HE +VkRkVI> umber ot zig-zag events
% =f(%_y,Uk_1,0) ) 29 | LNMNSQ Lane mean squared
L (S (2) Update estimate

) ; 34 | ORA Overrun area
(2) Project the error with measuremer | i

covariance ahead f= %+ Kk<zk _ h(xk,O)) 16 | LATPOSZCR Lateral position ZCR
P = AP 1AL + Wi QW] ) 30 | LNIQR IRQ of lateral position
k K Kk (3) Update the error covariance
P — Fl —KiHiPy 37 | DELTADUR Duration between inflection points
T \_/ X 38 | DELTALATPOS Mean lateral amplitude
39 | DELTALATVELMAX Max lateral velocity

| Initial estimate forxg_; andPy_1 |

E. GPS Data in UTM Coordinates B. System Active Signal

A standard GPS sensor was available for the recordedAS the lane changes are not detected by the camera
drives. The temporal resolution with 1Hz is not very high@nymore, the turn indicator lever signal was used to suppres
Also the absolute position is not very accurate. There are Jin€ changes. Three seconds before and ten seconds after
ten invalid sections from tunnels, synchronization proise !€ver operation have been suppressed. Yaw rgtes3°/s
insufficient signal quality or too few satellites. Furthems, have been neglected as well. Furthermore, the system was
there are severe outliers in the signal that are suppresseddefined to be active only at velocities over 80 km/h.

The UTM representation (cf. [10], [15]) of GPS has the
advantage that the units use a metric world-coordinatesyst
similar to the information obtained by the vehicle data. Map This section describes the comparison of the lane data
material from OpenStreetMaps was used for visualization.and inertial-data based signals on a physical basis. The
correlation of lane-based and odometric features is shown,
as well as the correlation between the odometric features

As illustrated in Fig. 2, the yaw angl¢(k) between the and KSS the drowsiness reference, using the Pearson and
vehicle and the lane must be known in order to calculat8pearman correlation coefficients.

IV. RESULTS

F. Estimation of the Lateral Distance



a similar way, just that non-linear correlation also result

02f _ in high correlation coefficients. The Spearman correlation
- Lane-tracking Odometric coefficient between the yaw rate derived features and the
0151 : , original lane-based features are shown in Tab. IV.
_ ! , S | TABLE IV
% 0.05f ] g N - SPEARMAN CORRELATION COEFFICIENTS BETWEENLANE DATA AND
:% - ‘ INERTIAL DATA BASED FEATURES AGAINST THE
§ oF f KAROLINSKA-SLEEPINESSSCALE
2 —005f =
8 - o [ eature Name [ ps Lane vs. KSS | ps Odom. vs. KSS
0 3 B 2 LANEDEV 0.211 0.046
- R - ZIGZAGS 0.318 0.080
-0.15F g : : LNMNSQ 0.177 0.080
- = ORA 0.325 0.105
-0.2 i ‘ ‘ ‘ ‘ ‘ LATPOSZCR 0.223 0.300
13:40 14:00 14:19 14:40 15:00 15:19 LNIQR 0.187 0.100
Time [mm:ss] DELTADUR 0.220 0.117
DELTALATPOS 0.239 0.079
DELTALATVELMAX 0.214 0.106

Fig. 3. Lateral position from lane-based (blue, solid) addroetric sensors
(red, dotted)

Fig. 4 shows the feature LANEDEV for a drive. The

A. Comparison of Lane Data and Inertial Data principal correlation between them can be roughly seen in
| this average example.

Fig. 3 shows the lateral deviation ("distance”) signal ob-
tained after removing the offset. However, the mean dexiati

between the two signals is 38cm which indicates that thel 201
are certain different influences in the signal. 18l
The Spearman correlation coefficient between the ya
rate derived features and the original lane-based featuees 161
shown in Tab. Il1. B
Odometric
TABLE Il "
CORRELATION COEFFICIENTS BETWEENLANE-DATA AND ODOMETRIC §
©
FEATURES e
ID | Feature Name | py, [ ps
15 LANEDEV | 0.006 | 0.323
17 ZIGZAGS | 1.000 | 0.515
29 LNMNSQ | 0.064 | 0.670
34 ORA | 0.443| 0.416 2r KSS
16 LATPOSZCR | 1.000 | 0.770
30 LNIQR 0.359 | 0.693 0 0:50 1:06 1:23 1:40 1:56 2:13 2:30 2:46
37 DELTADUR | 0.573 | 0.389 Time [hh:mm
e ]
38 DELTALATPOS | 0.198 | 0.429
39 | DELTALATVELMAX | 0.593 | 0.536

Fig. 4. Drive with the KSS sleepiness scale and the lane diue,(solid)
and inertial data (red, dotted) based feature LANEDEV.

o ) ) Even if some features (ZIGZAGS and LATPOSZCR, zero-
Features were assessed and optimized in multiple way§ossing rate) correlate very well with the lane-based pen-
Beside statistical tests, tHéravais-Pearson correlation co- gant, they do not perform as good in regards to drowsiness

efficient pp, Spearman correlation coefficients and the  getection. Just the feature LATPOSZCR performs better.
Fisher-metricMDA [16] were used as metricg, is cal-

B. Feature Evaluation

culated to estimate the linear correlation between theifeat V. CONCLUSIONS ANDFURTHER WORK
F and the interpolated, smoothed KSS The basic motivation of the presented work is to estimate
cov(F,KSS) classical lane-based features solely from inertial sensor
Pp(Fi,KSS) = (11) stead from camera-based lane data. In this paper, we present

- )

Vvar(R)-var(KSs) a comparison of these two methods. This has the benefit, that
where cov is the covarianceand var the variance High odometric data is howadays found in almost every vehicle.
positive/negative values mean strong positive/negatae ¢ In contrast, lane tracking cameras are special equipmeht an
relation, whereas a value near zero indicates a randatmus still rarely available in today’'s fleet. Another major
relationship. The Spearman correlation coefficients wark iadvantage of inertial data is its independence from weather



camera calibration and lane-marking quality. This propert APPENDIX
highly increases the operability of the system. A motiom sympols

model for inertial sensor signals using the extended Kalman,
filter was presented to derive the lateral lane deviatiomfro
odometric data. For a comparison and visualization of lane
data and data derived from inertial sensors, GPS data wa
additionally used. As the GPS signal is only available everyQ
second whereas the CAN data has a cycle time of 2
ms, a method to include the GPS measurements into th
motion model was proposed. Inertial and GPS data have beeg(k)
converted to the UTM coordinate system to have the same

State transition matrixn(x n)

Control input transition matrixr(x o)
Measurement transition matrixn(x n)
Covariance of the state vector estimate.
Process noise covariance

Measurement noise covariance
Model/Process noise with covariance matvik
Measurement noise with covariance matvix

metric representation. This study shows that the features,, Dirac impulse i n:k_
extracted from odometric data correlate well with the lane- 0 otherwise
based features. A large set of data was compared. However,
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