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ABSTRACT

Experts state that driver drowsiness is responsible for about
30% of severe traffic accidents. Driver monitoring systems,
such as the Mercedes-Benz Attention Assist aim to reduce these
road-crashes caused by fatigued drivers using standard equipment
sensors. In this article, new measures (features) for detecting
drowsiness are proposed in addition to promising features in
literature. Most studies in literature are based on driving simulator
data, whereas this article focuses on real world driving. External
influences such as road condition, road bumps and cross-wind are
furthermore taken into account. The presented results are based on
a large selection of the Mercedes-Benz drowsiness database which
covers over 1.2 million kilometers of measurements. Features are
analyzed for their correlation with the subjective Karolinska Sleepi-
ness Scale (KSS). The performance of a combination of features
is assessed by sophisticated classifiers and dimension reduction
techniques. Even after these improvements, the classification
results do not reach the results obtained in a driving simulator.

1. INTRODUCTION

The vast majority of road accidents are primarily related to mistakes
by the driver. According to the 100-Car Study, performed in 2006
by the National Highway Traffic Safety Administration (NHTSA,
VTTI) [20] drowsiness increases the driver’s risk of a crash or near-
crash by at least a factor of four. The NHTSA recognizes driver
drowsiness as one of the major causes of single and multiple car
accidents in the US. Drowsy driving is assumed to be significantly
under-reported in police crash investigations (1-3% in [17]) as it
can not be measured as easily as alcohol consumption for instance
(breathalyzer). Experts assume that about 24-33% of the severe ac-
cidents are related to drowsiness, especially when the driver falls
asleep and does not attempt to avoid the crash [5, 6, 15]. Truck
driver fatigue is more prevalent than either alcohol or drugs in fatal
accidents [12]. Young people under 30 are four times more endan-
gered than elder groups [13]. Especially young males are involved
in drowsy-driving crashes five times more likely than females [28].
Cold air, loud music and energy-drinks have not been demonstrated
to reliably help against fatigue. Two cups of coffee have been shown
to initially increase alertness after a break [19,23]. The most effec-
tive countermeasure against sleepiness is sleeping, for instance by
taking a 15-20 minutes break or letting a passenger drive [19].

1.1 Literature review

There were many studies about driver monitoring over the last
decades. Most studies were based on data from driving simula-
tor data since in-vehicle drowsiness experiments require a tremen-
dous amount of efforts. Wierwille [8, 14] proposed a set of features
based on driving simulator data. Schmitz [27] proposed improve-
ments to suppress intended lane departures. Altmiiller [2] analyzes
the deadband rate in the steering velocity, based on 44 simulator
drives. Berglund [4, 11,21] used multiple regression on in-vehicle
steering and lane data variables to accurately (87%) classify drowsi-
ness, based on 22 truck simulator drives. Eskandarian et. al. [7,25]
found the steering activity and lane data, among other variables to
be a good candidate to correlate with drowsiness using simulator
data and artificial neural networks (ANN). They achieve an accu-
racy of 89% for the class awake and 85% for drowsy.
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1.2 Objectives of the current study

In addition to known variables in literature, introduce further
drowsiness related features based on CAN-data.

Propose more efficient feature extraction methods.

A thorough investigation of their performance in a large number
of realistic road drives.

Adaption to varying driving styles and environment conditions.
Propose a feature similar to Degree-of-Interaction but without
the need of the steering moment and an alternative method for
detecting zig-zag events [21].

1.3 Database

The database used within this study covers over 10300 real drives
with a total number of 1.23 Mio km (courtesy of Merceds-Benz).
After filtering this database for drives over 30km, with valid and
plausible self-rating (KSS), valid lane-tracking data and without
measurement errors, 52 768km of real drives remained:

e 204 drives (45 by women; 36 night experiment drives)

e 10 vehicles (Six E- and four S-Class)

e 54 drivers

Figure 1: Map of drives: Green lines indicate awake driving sec-
tions, orange indicate questionable and red drowsy drives (see 2).

Fig. 1 shows a map with the drives in Europe. A typical night ex-
periment is conducted on a low-traffic, monotonous motorway with
limited speed from about 120 to 140 km/h. Drivers were moni-
tored by specially trained supervisors, capable to drive the vehicle
from the passenger seat with a second set of pedals [26]. The par-
ticipant’s self-rating (KSS), blinking behavior and EEG were con-
stantly recorded and monitored. The drives were aborted with the
onset of severe drowsiness according to the driver’s responsibility
or by the supervisor, based on fixed criteria. The rest of the drives
were regular road drives with drivers well trained to estimate their
KSS drowsiness level. There are big differences between free drives
and simulator or night drives. The behavior in the simulator, un-



der restricted conditions and under supervision is more strained and
calmer than in free drives. A lot of variation is introduced by dif-
ferent routes, road types, lane markings, curvature, traffic density,
driving styles and vehicles. As drives on public roads must be inter-
rupted in an early phase of sleepiness for safety reasons, the drowsi-
ness related patterns are rare and not as significant as in a simulator
where drivers often become very sleepy.

1.4 Drowsiness Reference
Different measures were recorded as drowsiness reference:
e The subjective self-estimation using the Karolinska Sleepiness
Scale (KSS) [1] for all drives (Tab. 1).

Table 1: Karolinska Sleepiness Scale (KSS)
KSS | Description

1 Extremely alert

Very alert

Alert

Rather alert

Neither alert nor sleepy

Some signs of sleepiness

Sleepy, no effort to stay awake

Sleepy, some effort to stay awake

Very sleepy, great effort to keep awake, fighting sleep
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e Eye-tracker cameras to record blinking behavior and gaze.
e Electroencephalogram (EEG), to measure electric brain activity
and Electrooculogram (EOG) to monitor eye blinking behavior.
EEG, EOG and eye-tracker are not considered in the present pa-
per, because they were not available for all drives. The KSS was
interrogated every 15 minutes as a trade-off between high tempo-
ral resolution and avoiding intrusive feedback. As a consequence, it
was not capable to record sudden drowsiness variations caused from
different situations. The KSS was used anyway for several reasons:
e The technical KSS recording is very reliable and relatively accu-
rate, whereas EEG and eye-tracking did not work for everybody.
e Recording EEG and blinking signals is laborious, which made
them unsuitable for the large number of free drives.
e The system is desired to provide plausible warnings to the driver
concerning his self-estimation.

2. DROWSINESS-RELATED FEATURE ACQUISITION

The basic principle of feature extraction is to detect drowsiness-
related patterns in the data and reduce the input signals (101) to a
few variables that strongly correlate with drowsiness and, if pos-
sible, nothing else. Drowsiness can result in different patterns for
different drivers or situations. The task of classification is to com-
bine these different patterns to a single continuous-valued drowsi-
ness measure or the discrete classes awake (KSS < 6), question-
able (6 <KSS < 8) and drowsy (8 < KSS). In practice, the extracted
features still depend on the road conditions, the driver and other fac-
tors. The simplest approach to cope with this problem is to use a so-
phisticated classifier that automatically adapts to these conditions.
The present work investigates to understand these relationships and
consider them already during the feature extraction. A selection of
48 important features is listed in Tab. 2. Features with superscript !
are baselined and superscript 2 are newly introduced. Features are
grouped into classes LANE if they require camera-based lane infor-
mation, STW for steering wheel angle and CAN if they are based
on other CAN-bus signals such as lateral or longitudinal accelera-
tion, wheel rotation etc. We further propose to distinguish between
causal and a-priori features. Causal features result from specific
patterns that the driver causes because he is drowsy. A-priori fea-
tures (e.g. DAYTIME) simply say that it is probable for the driver to
become drowsy in certain situations. Causal features are the most
selective, and thus important ones. However, a-priori features are
also important as they can provide a significant contribution to the
system performance. For instance, road exits are very probable to
result from sleepiness in a monotonous driving situation. Another
grouping of features can be made by classifying them into event-
based and continuous. The latter can be calculated permanently
(e.g. LANEDEV), whereas zig-zags or road exits occur seldom.
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Table 2: Selection of Features
ID | CLASS [ Feature Name [ Description

15 LANE LANEDEVT Lane deviation

17 | LANE ZIGZAGS! Num of zig-zag events

19 | LANE LATMEAN! Lateral mean

29 | LANE LNMNSQ' Lane mean squared

32 | LANE LANEX! Lane exceeding

33 LANE LNERRSQ' LANEX squared

34 | LANE ORA! Overrun area

35 LANE TLCIMIN! Time-to-lane crossing

36 LANE VIBPROP! ‘Warnings

16 | LANE LATPOSZCR'? Lateral pos. ZCR

30 | LANE LNIQR'? IRQ of lateral position

31 | LANE LNCHGVEL'? Lane change velocity

37 LANE DELTADUR'? Duration between infl. points
38 | LANE DELTALATPOS'? Lateral displacement

39 LANE DELTALATVELMAX'?2 Max lateral velocity

14 | LANE LANEAPPROX'? Approximation to lane

40 LANE LANEAPPROXADP!? Adaptive LANEAPPROX

42 STW ELLIPSE! Steering angle and velocity abs.
50 | STW NMWRONG' Num. of times stw. is corrected
69 | STW NMRHOLD! Num. of times stw. is hold

48 | STW AmpD2Theta' Amp_D2_Theta

72 | STW VHAL! Ratio high/low stw. corrections
71 STW MICROSTEERINGS! Small steering adjustment rate
18 | STW STWZCR!? Steering ZCR

25 | STW STWVELZCR!? Steering vel. ZCR

52 | STW STV25'2 Steering vel. 1% Quartile

53 | STW STV50'2 Steering vel. 2™ Quartile

54 | STW STV75'2 Steering vel. 3" Quartile

44 CAN ACTIVE System active

24 CAN LNACTIVE Lane signals active

41 CAN VEHSPEED Vehicle speed [km/h]

47 | CAN DAYTIME Seconds since midnight

66 CAN TOT Time-on-task

22 CAN DEGOINT! Degree of interaction

23 | CAN REACTIM! Reaction time

45 | CAN CIRCADIAN'? Circadian weighting

51 | CAN STWEVNT!? Steering event rate

55 | CAN CROSSWIND'2 Cross-wind / warping intensity
58 CAN DYNDRIVINGSTYLE!? Dynamic driving style

59 CAN MONOTONY!? Monotonous driving

61 CAN OPERATION? Vehicle operation

63 | CAN ROADBUMPS? Road bump detection

67 | CAN TOTMONO? Monotonous TOT

68 | CAN TOTSPEED? TOT around 130km/h

70 | CAN LIGHT? Light intensity (day/night)

26 | CAN TRFECDENS? Traffic density

27 CAN TURNINDADVANCE!? Blinking time before In change
28 | CAN TURNINDDUR!? Turn indicator duration

In the following, the features are described according to the ba-
sis features, they are based on. In general, for event-based features,
the presence of a single pattern does not directly indicate a drowsy
driver. The increased rate and intensity of these events is of rele-
vance. For this reason, further processing steps are generally ap-
plied to the basis features, such as:

e Moving average, median or exponentially weighted moving av-

erage (EWMA) (c.f. 3.3)

e Standard deviation, interquartile-range or exponentially

weighted moving variance (EWVAR) (c.f. 3.3)

2.1 Steering Wheel Angle-based Features

In contrast to the lateral lane position, the steering wheel angle is
directly related to the driver’s control action. The steering signal
contains higher frequencies and higher resolution of the desired ve-
hicle track. In order not to flatten steering peaks, the steering ve-
locity is calculated with a Digital Polynomial Smoothing- and Dif-
ferentiation Filter, described in [24]. The STWZCR (zero-crossing
rate) is the number of steering direction changes per second. In a
broader sense, the ZCR can also be related to the frequencies in the
steering signal. It provides several advantages in comparison to the
Fourier-transform of the steering signal as the frequencies are very
low. A classification of different driving styles has also shown that
the STWZCR is very characteristic for different drivers. STV50 is
the median and STV25 and STV75 are the 1% and 3™ quartiles of
the EWMA windowed steering velocity. The ELLIPSE feature is



calculated as the magnitude of steering wheel angle and velocity
against their means [4]. According to Wierwille [14], NMWRONG
is defined as the number of times the steering angle is quickly cor-
rected. NMRHOLD is the rate that the steering wheel angle is hold
below 0.5° for longer than a given time. The STWEVNT is a quite
sophisticated combination of a deadband phase without steering,
followed by a sudden steering correction [2]. Thresholds are adap-
tive to the driving situation and other criteria, such as correction
intensity, vehicle speed and monotony. Events are suppressed for
cross-wind, rough road sections, sporty driving style, lane changes
and other disturbing influences. VHAL is the ratio of high against
low steering corrections and increases with reduced vigilance. The
idea of MICROCORRECTIONS is that an alert driver permanently
makes small steering corrections whereas a drowsy driver has a
more sloppy steering behavior without small steering corrections.

2.2 Lane-based Features

The lateral lane position is rather a result of the low-passed reaction
of the vehicle to the steering signal and road condition. The major
information about the lateral lane data is the knowledge of the abso-
lute position in the lane. One other benefit is that lane changes can
be detected even if the driver doesn’t use the turn indicator. Data
of a calibrated serial lane tracker (LDW) were used which provided
over 35 signals with high accuracy. The availability of LDW signals
is lower than other sensor signals as good lane markings are needed.

2.2.1 Lane Position

There is a large number of features associated to the vehicle’s devi-
ation in the lane. LATMEAN is the average lateral position within
the last minutes, calculated with the EWMA proposed in 3.3. It was
observed that sleepy drivers tend to drive closer to the right lane
boundary as they are afraid of drifting into the left lanes and crash
with an overtaking vehicle. LANEDEYV, LNIQR are the standard
deviation (EWVAR) and interquartile range of the lateral position
against the driver-dependent lateral mean. Using the lane middle
was less performant. In the parameter optimization, an exponential
weighting of the lateral position has shown to be beneficial. The
overrun area (ORA) is the average overridden surface and an al-
ternative to LANEDEV. DELTADUR is the duration, DELTALAT-
POS the amplitude and DELTAVELMAX the maximum velocity
between lateral inflection points. These are also used as criteria for
detecting ZIGZAG events, which are oscillations within the lane
with an amplitude of 0.7 - 1.2 meters and a duration between 2.5 -
17.5 seconds. LNCHGVEL is the velocity of lane changes and
TURNINDADVANCE is the duration between turn indicator uti-
lization and lane change. Both features are very driver dependent.

2.2.2 Unintended Lane Approximation and Exceeding

LANEAPPROX and -ADP are features that describe the number
of times any part of the vehicle is entering in a proximity-zone of
the lane bounds. The latter is using a driver adaptive zone size.
This can be interpreted as an ‘almost’ lane departure. The advan-
tage is that these occur much more often than real lane departures
and thus allow a higher temporal resolution. LANEX, LNERRSQ
and VIBPROP [21, 30] are based on the intensity and frequency of
lane departures (dashed road markings) and road exits (solid road
markings). Unintended lane departures are suppressed if the driver
was steering towards the lane or acc-/decelerated [27]. Different
weightings for curves and lane types have shown to be practical. It
was observed that some drivers almost never exit the lane bound-
aries whereas others have over 50 lane exits per hour. For some
drivers, lane departure warnings LANEX and VIBPROP have been
observed to be very helpful during the onset of drowsiness. Thus, it
is proposed to adapt the LDW warning sensibility to the driver state.
2.2.3 Time-to-Lane-Crossing (TLC)

TLC is the estimated time remaining until any part of the vehicle
crosses the lane boundary if no other steering correction is made [9,
18]. TLC model 1 is the simplest method calculated from the lateral
position y and velocity y as TLC = % Model 2a and 2b takes the
road curvature and vehicle track into account. The inclusion of the
second clothoid parameter ¢, has not shown any improvement. Due
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to calibration problems, model 1 was used as it has shown better
and more robust results. TLCIMIN is the number of TLC values
below a threshold.

2.2.4 Driver-Vehicle Interaction
DEGOINT and REACTIM are originally defined as the degree-of-
interaction and the reaction time to lateral acceleration peaks [11].
The idea behind these features is that the driver has to continuously
react to lateral displacements caused by the road. As there was
no steering moment sensor available, this paper proposes a similar
method to obtain DEGOINT based on the steering wheel angle only.
Therefore, the measured lateral acceleration ay is compared to the
lateral acceleration dy calculated from the steering wheel angle &
using the single track model in Eqn. (1).
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dy is obtained by the velocity v, the steering ratio SR, the steer-
ing angle 6, = &;- SR and the self-steering gradient SG = l/vgh
with the vehicle’s characteristic velocity v, and the wheel base [.
ay and dy were smoothed by a 2" order Butterworth low-pass fil-
ter with corner frequencies 1 and 2 Hz. In order to compensate
road incline, the difference of Asy = ayp — dy p has been sub-
tracted from dy ;p = dy1p — Aay. The feature is then obtained by
DEGOINT = EWMA (ay,1p — ﬁ)gLP)

2.3 Road Condition

CROSSWIND measures the cross-wind and road-warping intensity
also from the measured and calculated lateral acceleration. ROAD-
BUMP continuously estimates the road condition from the wheel
rotation sensors and others.

2.4 Drowsiness Supporting Situations

Known factors that are related to reduced alertness are the time-
on-task (TOT), the time driving monotonously TOTMONO, DAY-
TIME and vehicle speed VEHSPEED. Also the LIGHT condition
was included as the daylight suppresses fatigue (melatonin). TRFC-
DENS measures the traffic density calculated from the lane change
rate, the vehicle operation and acc-/deceleration events. The driver
activity DRACTIVITY measures how dynamic or monotonous a
situation is. It was observed that the lower the activation (e.g. by
traffic) the higher the probability of becoming sleepy.

3. IMPLEMENTATION DETAILS

A number of pre-processing steps were done before extracting the
drowsiness-related features from the raw signals. The presented
methods have several advantages in performance and computation
time when compared to the common implementation in literature.

3.1 System Active State

There is a large number of driving states or events that decide if
the system is active or not. It is active between 80 and 180km/h
which selects most highways and country roads. Strong external
influences such as road-bumps, cross-wind and road-warping are
suppressed. Special driving situations such as lane changes, curves,
sporty driving, acc-/deceleration are suppressed as well. In order to
blind out short-term distraction, most vehicle operations (levers and
other buttons) are blinded out.

3.2 Driver Adaption (Baselining)

The variance between drivers has a severe impact on the fea-
tures and overlays the drowsiness-related patterns. For this reason
baselining provides an essential contribution to the feature perfor-
mance. It is assumed that the drivers are usually awake during the
first minutes. Hence, every baselined feature (2 in Tab. 2) is nor-
malized by the maximum of the first minutes active time. Using
parameter-optimization algorithms has shown the best results for
using the maximum and window sizes of up to 40 minutes.

3.3 Exponentially Weighted Moving Average and Variance

In literature, simple moving average filters are commonly used to
calculate event rates. A simple, but very powerful improvement
is the introduction of a recursive Exponentially Weighted Moving



Average (EWMA) filter. It has the property to take present values
more into account while storing only one value instead of an entire
window. Similarly, the sliding variance can be approximated by
the Exponentially Weighted Moving Variance (EW VAR) for a given
input signal x, as described in the following. The forgetting factors
Ay and A2 are used from the adjusted window sizes Ny, and N:
Ay = Neml o =Nl 2)
Ny Ng2
EWMA is obtained by EWMA,, = Ay, -EWMA,,_; + (1 = A4) - x,
with the initial value EWMA(. The EWVAR is approximated by
EWVAR,, = A2 -EWVAR,, | + (1 —252) - (x, — EWMA,)? with
the initial value EWVAR(. A second improvement is the use of
adaptive window sizes. For instance starting with N, = 5 and in-
creasing by 1 for every sample or event, depending on the feature.
The window size is again reduced if the driving condition quickly
changes, e.g. for a changed vehicle speed. Furthermore, the initial
values EWMAqy and EWVAR| are set to the mean of each feature.

4. FEATURE EVALUATION

Features were assessed and optimized in multiple ways. Beside
statistical tests (ANOVA, F-Test), the Bravais-Pearson correlation
coefficient py, Spearman correlation coefficient py and the Fisher-
metric MDA [29] were used as metrics. p), is calculated to estimate
the linear correlation between the feature F; and the interpolated,
smoothed KSS:

cov(F;, KSS
var(F;) - var(KSS)
where cov is the covariance and var the variance. High pos-

itive/negative values mean strong positive/negative correlation,
whereas a value near zero indicates a random relationship. The
correlation coefficients of often selected features from Tab. 2 are
listed in Tab. 3. Scatter plots, class histograms and boxplots [16]
were also used to get a visual impression of the features. As only
a few plots can be listed here, the STV50 class histogram can be
found in Fig. 2 as an example. It can be seen that the steering veloc-
ities decrease with increasing vigilance. In Fig. 3, the histogram of
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Figure 2: Class Histogram of feature STV50 (ID: 53)

pp=—0.30 (p=0.0); ps=-0.33 (p=0.0); MDA =16.9

the Spearman correlation coefficients of all drives are shown for the
feature NMWRONG. It can be seen that there is a tendency towards
the right, that indicates that most drives are positively correlated
with drowsiness. It’s correlation coefficient is ps = 0.25, which is
relatively good for a causal feature. The boxplots in Fig. 4(a) to 4(c)
show the relationship between different features and the KSS. All
plots show that the classes are severely overlapping which pose a
lot of difficulties for the drowsiness classification.

5. CLASSIFICATION

For classification, all features were downsampled to a step width of
5 seconds. As we could assume that the driver state change is much
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Figure 3: Histogram of p; coefficient for all drives (NMWRONG)

slower than that, a lot of computation time could be saved. Different
classifiers such as k-nearest neightbours, linear discriminant analy-
sis, Bayes classifier, Gaussian mixture models and artificial neural
networks (ANN) were compared. Results were obtained by cross-
validation with a training to test set ratio of 80 to 20 percent. It is
important to split the data by entire drives so that the drives in the
test set are completely unknown to the classifier. The results were
averaged over ten permutations of the training/test set to obtain a
more stable result.

5.1 Feature Selection

In theory, using more features is better as more information is in-
corporated. But, if the number of features gets too high, the need of
more training data can’t be fulfilled any more (curse of dimensional-
ity). For this reason, dimension reduction techniques were applied.
Principle Component Analysis (PCA) and Fisher transform (LDA)
are methods to transform a given feature space to a lower dimen-
sional one. The sequential floating forward selection (SFFS) algo-
rithm, introduced by [22], was applied to select the most promising
features for a classifier. The advantage of SFES over feature trans-
form techniques is its high transparency as the selected features re-
main without any change. PCA and LDA have shown poor results
in comparison to the SFFS, so that only SFFS was used here. Tab. 3
lists a statistic of the most often selected features after thirty SFFS
repetitions in combination with the Bayes classifier. It can be seen
that correlation coefficients of individual features are not necessar-
ily related to the performance of the features in combination.

Table 3: Correlation Coefficients of often Selected Features

ID [| Feature Name [ Selections T p, | P
45 CIRCADIAN 30 0.49 0.51
43 TOT 30 0.16 0.22
22 DEGOINT 30 -0.19 -0.22
29 LNMNSQ 30 -0.00 -0.00
51 STWEVNT 29 0.16 0.17
52 STV25 29 -0.30 -0.34
54 STV75 29 -0.32 -0.36
38 DELTALATPOS 19 0.01 0.01
39 DELTALATVELMAX 18 -0.02 -0.01
17 ZIGZAGS 17 0.02 0.00
34 ORA 14 -0.03 -0.04
40 LANEAPPROXADP 14 -0.05 -0.06
53 STVS50 14 -0.27 -0.32
33 LNERRSQ 13 -0.01 -0.08
35 TLCIMIN 11 0.06 0.07
30 LNIQR 9 0.06 0.06
14 LANEAPPROX 6 -0.00 -0.01
19 LATMEAN 5 -0.10 -0.11
36 VIBPROP 5 0.00 0.02
26 TRFCDENS 4 -0.33 -0.40
31 LNCHGVEL 3 -0.04 -0.11

5.2 Classification Results

A comparison of test errors for different classifiers is given in Tab. 4.
The results are based on the best 11 features that were selected by
SFFS in combination with the Bayes classifier. The detailed confu-
sion matrix of the neural networks classification results is given in
Tab. 5 (feed-forward backpropagation algorithm with 30 neurons in
three hidden layers).
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Table 4: Classification Error for three Classes REFERENCES

Classifier | Test Error
k-NN (k=5) 44.0%
GMM (3. Modes) 43.3%
Linear discriminant 32.4%
Bayes classifier + SFFS 36.6%
ANN 16.6%
Table 5: Confusion Matrix for ANN
correct
Awake  Questionable = Drowsy
Awake 76.0 % 24.0 % 0.0 %
estimated Questionable 8.4 % 89.9 % 1.7 %
Drowsy 0.0 % 454 % 54.6 %

6. CONCLUSIONS AND FUTURE WORK

It was observed that there are different types of drivers, those who
accurately keep the lane by lots of steering corrections and those
who do not hastily correct the lateral position and rather have a
loose lane keeping. Numerous features were analyzed for their cor-
relation with the KSS drowsiness reference. Many of them corre-
late relatively well, especially a-priori features, such as time of day,
time-on-task, monotony and traffic density. However, a-priori fea-
tures need to be treated with care as they are not sensitive to the real
driver condition. In general, lane based features were often selected
in combination with steering based features as they provide comple-
mentary information. Neural networks, LDA and the Bayes classi-
fier, in combination with SFFS feature selection, performed best for
the difficult features. Especially under real world conditions, the
suppression of external influences and adaption to the driver is very
important. But even with a large set of new and improved steer-
ing and lane based features, the classification performance is not
as good as the results reported in literature using a smaller amount
of data from a simulator or drives under testing conditions. Still,
we must expect that a certain percentage of the performance is due
to overfitting to this larger, but still limited number of drivers, ve-
hicles, driving conditions etc. Driving in a driving simulator and
under supervised conditions has a big influence on the driver’s be-
havior. It was observed that many awake drivers also drive sloppy
when the motorway is empty or if they are distracted by talking or
other actions. The driving behavior in these situations is the same as
for drowsiness and thus cannot be distinguished. For this reason, a
good strategy is to combine the detection of drowsiness with giving
the driver feedback about his objective driving performance (e.g. by
a bargraph). Usually, drivers tend to drive more aware if they have
a feedback of their driving performance.

6.1 Future Works
e EEG, eye-signals (such as PERCLOS [3, 10]) and a distraction
measure in addition to the KSS for a better temporal resolution
e Hidden Markov-models and Bayes networks to model temporal
aspects and expert knowledge
e Multi-level classification to adapt varying driving styles and
road conditions
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