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Abstract— In automotive tracking applications, us-
ing two separate linear state space models for longitu-
dinal and angular movement of objects is a widely ap-
plied simplification. The separation is possible if the ob-
served targets are positioned straight ahead and mov-
ing in approximately the same direction as the observer,
like in adaptive cruise control (ACC) systems. However,
in more general scenarios of future tracking applica-
tions, object motion may not be limited to certain di-
rections. In inner-city and intersection situations, other
road users are passing even perpendicular to the ob-
serving vehicle. Most tracking systems of today are not
prepared to handle those situations, as the simplified
modeling is no longer appropriate.

In the paper on hand we will review the commonly
used models and state their main drawbacks. The con-
clusion of these drawbacks is the use of a motion model
which reflects a more natural description of typical ob-
jects to be considered in automotive applications. All
mathematical expressions necessary for an implemen-
tation using an extended/unscented Kalman filter are
provided.

The state space model was designed for radar target
tracking but is not limited to radar. With modifications
to the measurement equations, the model can be used
for camera-based systems as well as for ultrasonic sen-
sors or laserscanner systems.

Index Terms—Radar tracking, Radar signal process-
ing, Road vehicle radar

I. I NTRODUCTION

Many of today’s automotive driver assistance sys-
tems are focusing on the area in front of the observ-
ing vehicle. More specific, objects to be considered
as dangerous or relevant for speed adaptation are ex-
pected to be positioned in the own predicted way of
travel. The sensors to monitor this region are mounted
in the front of the vehicle and are directed to the front
(Fig. 1 shows the principal fields of view of three sen-
sors as an example).

Certain driver assistance systems are designed to
react in situations where the observing vehicle is fol-
lowing other vehicles in the same or nearly the same
direction. With these limitations, movements of an
object in longitudinal direction relative to the observ-
ing vehicle (in x-direction in Fig. 1) are caused by
acceleration/deceleration of one vehicle, either ob-
ject or observer. On the other hand, movements in
transversal/angular direction occur if one of both ve-
hicles changes its driving direction. With these facts
in mind, the two different types of relative object mo-
tion can be separated. In the tracking implementation,
this separation is reflected by the use of two separate
linear Kalman filters, one for longitudinal and one for
transversal movement [1] [2]. The filter parameters,
specifically the input variances of the Kalman filters,
can be derived by considering the average accelera-
tion/deceleration and the average change in driving
direction (gyro rate) that are likely to occur in typical
road traffic scenarios.
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Fig. 1. Typical mounting positions and fields of view

In more advanced applications such as blind spot
surveillance and driver assistance in inner-city situa-
tions, there is the need for an extension of the sensor’s
field of view all around the vehicle. Clearly, the lim-
itations of the object movement mentioned above are
no longer acceptable. Even objects that are moving
perpendicular to the own driving direction have to be
considered. In that case, transversal movement is no
longer solely caused by a change in driving direction
of object or observer. The two types of influence of a



driver on the vehicle movement (turning the steering
wheel and accelerating/braking) are no longer separa-
ble in the same way.

Due to this fact, we propose using a different mo-
tion model with a more general description of object
movement. In this model, movement is no longer
modeled in terms of longitudinal/transversal motion
relative to the sensor coordinate system. Instead, the
tangential speed and the heading angle/driving direc-
tion are represented by state variables. The model
equations are simplified by using a fixed (global) co-
ordinate system where both the observing vehicle and
the observed objects are moving through. Clearly, the
state and measurement equations are nonlinear. All
equations and expressions necessary for the imple-
mentation of an extended or unscented Kalman filter
are given in the appendix.

In the next section the commonly used state space
model and its main drawbacks are described in de-
tail. The proposed state space model is introduced in
section III; additional comments on the choice of the
global coordinate system are given in section IV. Af-
ter some words about the problem of track initializa-
tion in section V, a comparison between the perfor-
mance of both models is given by simulation results
in section VI.

II. COMMON STATE SPACE MODEL

A. Model equations

The separated state space model referred to in the
introduction is presented in [1]. In contrast to the
cited paper, here we will state all variables in discrete
time with time indexk.

In a simple model for the longitudinal motion, one
would include the distance to the object, the rela-
tive speed between object and observer and, option-
ally, the relative acceleration. Using the inertial mea-
surements of the own velocity as additional informa-
tion about the motion of the own vehicle, this model
can be enhanced. The model for the longitudinal
movement as in [1] then includes the following state
variables: The distance between observer and ob-
ject d(k), the speeds of the observervego(k) and ob-
jectvobj(k) as well as the corresponding accelerations
aego(k) andaobj(k). Summarizing, the motion can be
described by the state transition equation
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and cycle timeT . Changes in the accelerations of
observer and object are modeled by the 2×1-vector
of noise processesw(k), whose elements are mapped
to the last two state variables by the matrix

B =

[

0 0 0 1 0
0 0 0 0 1

]T

. (3)

The state transition equations for the angular dy-
namics model (indexa) has the following form:

xa(k+1) =

[

α(k+1)
α̇(k+1)

]

= xa(k) +

[

0
1

]

wa(k) (4)

Here,α(k) is the relative angle from the vehicle (or
sensor) axis to the object andα̇(k) is the angular ve-
locity or gyro. Changes of the angular velocity over
time are modeled by the input noise processwa(k).

While the state transition equation describes the
motion of an object in general, the measurement
equation depends on the sensor in use. Like in our
case, in [1] the tracking system is designed for au-
tomotive radar sensors. These measure the distance
and relative speed to objects inside their field of view.
By additionally using the inertial speed measurement
vm

ego(k), the following measurement equation for the
longitudinal model results:
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x(k) + v(k).

(5)
Measurements are marked by the superscriptm; oth-
erwise, they could be mixed with the corresponding
state variables. In [1], measurements of the own ac-
celeration are additionally used. But as these are not
actually measurements but derived from the inertial
speed measurements, we do not use them here. The
vectorv(k) represents white Gaussian measurement
noise.

By using different beams and applying the mono-
pulse/sequential lobing principle [3], automotive ra-
dar sensors are able to estimate the relative angle to
the observed object. Using this information, the mea-
surement equation for the angular model (4) is

ya(k) = αm(k) =
[

1 0
]

xa(k) + va(k) (6)

with the angle measurement noise processva(k).



B. Model Drawbacks

As stated above, the given system model can be ex-
pected to work well under the limitation that the ob-
served object is moving in nearly the same direction
as the observing vehicle. In the future applications, as
stated above, this limitation will no longer be accept-
able.

As an example, we will have a look at a situation
where an object passes with a constant distance of
10 m in x-direction perpendicular to the observing
vehicle with a speed of 30 km/h. The resulting dis-
tance and relative angle are shown in Fig. 2. Both
distance and relative angle are changing in a nonlinear
way, even if the observed object has a constant motion
state. These nonlinear changes were artificially intro-
duced by the definition of the state space model and
mean additional work for the tracking filters.
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Fig. 2. Vehicle driving perpendicular to observer

Next, we will examine the measurement equation
for the relative speed, i.e. the second row of equation
(5),

vrel(k) = vobj(k) − vego(k). (7)

This equation is only true or approximately fulfilled
for the case of nearly equal driving directions, as was
assumed during the design of the given model. In
general, the relative speed between sensor and object,
which can be measured, for example, with radar sen-
sors, depends on the angle between the driving direc-
tions. The ego motion information should definitely
be considered in the model to improve the tracking
system, but in a different way. Only thanks to the
well-known robustness of the Kalman filter, the track-
ing might still work even with this erroneous state
space model.

In the commonly used, separated motion model,
the state of an object is defined in sensor coordinates,

as it can easily be seen in (5) and (6). However, ap-
plications that use the object information as an input
need the object position and speed in the vehicle co-
ordinate system. Thus, a transformation from sensor
to vehicle coordinate system is necessary. If more
than one sensor is used, different nonlinear transfor-
mations from different sensor coordinate systems to
vehicle coordinates are necessary. While the positions
and speeds can easily be transformed, this is not the
case for the state variances used in the Kalman fil-
ter. This is because a Gaussian distribution – all error
distributions are usually assumed to be Gaussian in
Kalman filtering – is no longer a Gaussian distribu-
tion after a nonlinear transformation. As the data of
different sensors should be fused to a single object list
before forwarding to the application, this fact makes
the processing more complicated and error-prone.

III. A MORE GENERALSTATE SPACE MODEL

We can summarize the discussion of the common
motion model in the last section as four requests for a
more generally applicable motion model:

1. The two distinct types of movement changes
(acceleration/deceleration and steering) shall be
well separated.

2. Constant object motion shall be represented by
a constant motion state in the model.

3. Ego- and object motion information have to be
considered in a correct way.

4. All sensors should be working in the same co-
ordinate system.

Fulfilling the first two requests is possible by de-
scribing the movement of an object by its absolute
(i.e. tangential) speed and its current heading direc-
tion. The resulting state transition equation is the fol-
lowing:
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The state vectorx(k) consists of the position(sx(k),
sy(k)), the tangential speedv(k), the heading angle
ϕ(k) and the accelerationa(k). The variableδ(k)
represents the steering wheel angle and is used to
model changes in the driving direction. Again, a2×1-
vector of input noise processesw(k) is used to model
changes in acceleration and steering wheel angle.



As stated in the introduction for the separated
model, also here the parameters can be chosen based
on the typical values of acceleration/deceleration and
changes in driving direction. But here, in contrast,
the representation is more general and not limited to
a special case.

Obviously the transition functionf (x(k)) is non-
linear. The computational effort is thus larger com-
pared to the common motion model. But the correct
consideration of the measured ego- and relative speed
is not possible using only linear equations. Function
f (x(k)) is derived in appendix A.
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Fig. 3. State and measurement variables

Fig.3 shows the main state variables used to model
the motion of observer (superscriptego) and object.
For sake of simplicity, the relative angleα(k) and
distanced(k) are sketched as if the sensor were in
the center of the observer and the object were a point
target.

The sensors under consideration measure distance,
relative angle and Doppler speed. The resulting mea-
surement equation is thus

y(k) =





dm(k)
αm(k)
vm

rel(k)



 = g (x(k)) + v(k), (9)

and is as well nonlinear. Functiong (x(k)) is given in
appendix A. The 3×1-vectorv(k) is used to model
the measurement noise in all three dimensions.

The choice of the state variables allows a 1-to-1
mapping of what we might call a constant motion
state of a vehicle in colloquial words to a constant
state in the motion model. If the driver keeps the
steering wheel and the accelerator pedal fixed, con-
stant accelerationa(k) and constant steering wheel
angleδ(k) will result.

As the steering wheel angle was chosen as a state
variable, a model that relates the steering wheel angle
to the driving direction is needed. A simple but suffi-
ciently accurate model is the two-point bicycle model,
like it is also used in [4] and [5]. The state transition
equation for the driving direction results in

ϕ(k + 1) = ϕ(k) +
T

L
δ(k) v(k) + w2(k). (10)

Note that the wheel baseL, i.e. the distance between
front and rear wheels of the imaginary bicycle, is
needed in this equation. Clearly, the true wheel base
of an object observed by the sensor will not be avail-
able. But as using a fixed default value for the wheel
base of all objects will only result in a scaled steer-
ing wheel angle, the model is generally applicable for
tracking purposes.

The two-point bicycle model provides the advan-
tage that it inherently relates changes in driving direc-
tion to the object speed. This avoids random changes
in the driving direction of slowly moving objects due
to measurement noise. As tracked objects can be as-
sumed to be either some sort of road vehicle or fixed
objects, the steering angle can be limited to a maxi-
mum value. Changes in the moving direction of vehi-
cles (driving forwards or backwards) are then repre-
sented by a change of the sign of the tangential speed.

The coordinate system in which the object position
(sx(k), sy(k)) is measured was not specified yet. One
possible choice is to use the inertial coordinate system
of the observer. This would fulfill request 4 stated
before, but still the positions of objects would have to
be transformed in every cycle according to position
changes of the observing vehicle. To avoid this, we
propose to use a fixed (or global) coordinate system.
At system startup, the origin of this coordinate system
can be defined arbitrarily, for example as the current
position of the observer. The own vehicle motion is
modeled using the same set of state variables and the
same state transition equation (8), but with the inertial
measurements of speed and steering angle instead of
the radar measurements. As both observed objects
and observing vehicle are moving through the same
fixed coordinate system, the ego motion is considered
correctly and the state transition equation is greatly
facilitated.

IV. GLOBAL COORDINATES WITHOUT GPS?

A possible point of critics to our proposed model is
the choice of a global coordinate system. The observ-
ing vehicle is moving through this coordinate system



and thus has to keep track of its own position. With-
out using a system delivering a global position esti-
mation, like GPS, there is no other possibility than
to integrate the measurements of the inertial sensors
(speed and steering angle or gyro rate) over time (also
called “dead reckoning”). Unfortunately, as the sen-
sors are subject to noise (especially the gyro sensor),
the error in the own position will be constantly grow-
ing. The question arises if this means that the pro-
posed motion model mandatory requires a GPS sys-
tem.

The answer to this question is no. Of course
the error in the estimated vehicle position will soon
reach dimensions where it is everything else than ne-
glectable. But as the measurements of the target posi-
tions (using radar, ultrasonic, laser scanner or video)
are still relative to the observing vehicle, the error in
the position of the observed objects will be exactly
the same as the error in the observer position. This
means that the position errors will just cancel out each
other. The global position(sx(k), sy(k)) itself is not
of any help, but using the global coordinate system
facilitates the motion model equations.

V. TRACK INITIALIZATION

The initialization of tracks is a special problem
when objects moving in all possible directions have
to be considered. While a single measurement vec-
tor of a radar sensor (measuring distance, bearing and
Doppler speed) includes information about the object
position, it includes only partial information about
the movement – if no assumptions about the object
motion, like that it is moving into the same direc-
tion as the observer, are made. Movement direction
and speed can not be initialized reliably with a single
measurement. Due to measurement noise and severe
quantization in certain sensor types, even two or three
radar measurements may provide no or misleading in-
formation about the object motion. Thus, a special
treatment is necessary for the initialization of tracks.
Several measurements have to be collected before the
Kalman filter can be started.

The initialization problem is not specific for the
proposed model, but naturally arising when objects
moving in all possible directions are to be tracked.
However, as the topic of this paper is the state space
model and not the whole tracking process, we will not
provide any more details here.

VI. SIMULATION RESULTS

In order to be able to compare the performance of
both models objectively, data with an exact reference

is needed. Here, we use radar data that was generated
by our own radar target list simulation which delivers
very realistic radar data [6] [7]. We have chosen a
scenario in which a point target moves with a speed
of about 10 km/h on a circle of 15 m radius through
the view field of a front-mounted short-range radar.

Both state space models discussed before were
used to track the simulated targets. The tracking
algorithm with the common motion model was im-
plemented as described in [1]. For the new motion
model, we used an extended Kalman filter. Due to
the mentioned problems in the track initialization, the
known true state was used as initialization. The eu-
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Fig. 4. Absolute position error of circular moving object

clidean distance between the estimated track position
and the true object position is shown for both mod-
els in Fig. 4. Note that the comparably large error at
the beginning is due to large measurement errors at
the edge of the radar sensor’s field of view. The fig-
ure shows that the position error with the new motion
model is lower over nearly the whole track lifetime.

VII. C ONCLUSION

We have presented a motion model for tracking in
automotive radar applications that is superior to com-
monly used linearized models. A global coordinate
system allows the simple fusion of data of different
sensors mounted on one vehicle. Further, by using
the tangential vehicle speed and the driving direction
as state variables, the two types of movement changes
(acceleration/deceleration and change of driving di-
rection) of vehicles are well separated and allow a
natural description of object movement. Simulation
results show that the new motion model outperforms
the commonly used approach.



APPENDIX

A. Model Functions

In this section, the state transition and measure-
ment functions according to the introduced motion
model are derived.

For the derivation of the state transition function
f(x(k)), we use a continuous-time representation of
some variables (denoted by indexc) for the moment.
With this, the exact equation for the position variables
sx andsy at time indexk + 1 or timet = (k + 1)T is

[

sx(k + 1)
sy(k + 1)

]

=

[

sx(k)
sy(k)

]

+

(k+1)T
∫

kT

vc(t)

[

cos(ϕc(t))
sin(ϕc(t))

]

dt

(11)
with the time-continuous speedvc(t) and driving di-
rectionϕc(t). As all estimations are later done from
cycle to cycle, it is straightforward to assume that
speed and driving direction are linearly changing in
an interval of lengthT . But this assumption leads to
complicated and numerically unfavorable state transi-
tion equations with two different expressions for the
cases where the steering angle is equal or not equal
to zero. Due to this, we approximate speed and driv-
ing direction as constant during one time interval of
lengthT and set them to the values that would result
at the interval centert = (k + 1

2)T in the linear case:

vc(t) = v̄(k) = v(k) + T
2 a(k) (12)

ϕc(t) = ϕ̄(k) = ϕ(k) + T
2L

δ(k) v(k). (13)

The following simplified transition equations results:
[

sx(k + 1)
sy(k + 1)

]

=

[

sx(k)
sy(k)

]

+T v̄(k)

[

cos(ϕ̄(k))
sin(ϕ̄(k))

]

(14)

Following our experience of numerous test runs, the
given approximations do not cause any noticeable er-
rors. The transition equations for the remaining state
variables speed, acceleration and steering angle are
linear:
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1 T 0
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v(k)
a(k)
δ(k)



 . (15)

Together, equations (10), (14) and (15) form the state
transition functionf(x(k)) of equation (8).

The measurement equations can be derived with
help of Fig. 3. Let(ssen

x , ssen
y ) be the current sensor

position in the global coordinate system,ϕego the cur-
rent driving direction of the observer andϑsenthe look
direction of the sensor with respect to the longitudinal

vehicle axis. The following equations can then easily
be derived:

α(k) = arctan

(

sy(k)−ssen
y

sx(k)−ssen
x

)

− ϕego
− ϑsen (16)

d(k) =

√

(

sx(k) − ssen
x

)2
+

(

sy(k) − ssen
y

)2
(17)

vrel(k) = vegocos
(

α(k) + ϑsen)

− v(k) cos
(

α(k) + ϑsen+ ϕego
− ϕ(k)

)

(18)

Equations (16), (17) and (18) represent the measure-
ment functiong(x(k)) of the proposed motion model
in equation (9).

As stated before, the error in the estimated global
position will grow over time. This is reflected by
growing variances of the corresponding states in the
Kalman filter. However, these variances are never
used (only after multiplication with zero) and can thus
be set to an arbitrary and fixed value to avoid overflow
problems.
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