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Abstract— In automotive tracking applications, us- Certain driver assistance systems are designed to
ing two separate linear state space models for longitu- react in situations where the observing vehicle is fol-
dinal and angular movement of objects is a widely ap- |owing other vehicles in the same or nearly the same
plied simplification. The separation is possible if the ob- direction. With these limitations. movements of an
served targets are positioned straight ahead and mov- object in longitudinal direction reI:ative to the observ-
ing in approximately the same direction as the observer, . J : g : L
like in adaptive cruise control (ACC) systems. However, N9 vehicle (in x-direction in Fig. 1) are caused by
in more general scenarios of future tracking applica- acceleration/deceleration of one vehicle, either ob-
tions, object motion may not be limited to certain di- ject or observer. On the other hand, movements in
rections. In inner-city and intersection situations, othe  transversal/angular direction occur if one of both ve-
road users are passing even perpendicular to the ob- hjcles changes its driving direction. With these facts
serving vehicle. Most tracking systems of today are not mind, the two different types of relative object mo-
prepared to handle those situations, as the simplified tion can be separated. In the tracking implementation
modeling is no longer appropriate. . L : '

this separation is reflected by the use of two separate

In the paper on hand we will review the commonly , .
used models and state their main drawbacks. The con- linear Kalman filters, one for longitudinal and one for

clusion of these drawbacks is the use of a motion model transversal movement [1] [2]. The filter parameters,
which reflects a more natural description of typical ob-  specifically the input variances of the Kalman filters,
jects to be considered in automotive applications. All can be derived by considering the average accelera-
mathematical expressions necessary for an implemen- tjon/deceleration and the average change in driving
tation using an extended/unscented Kalman filter are yirection (gyro rate) that are likely to occur in typical

provided. , road traffic scenarios.
The state space model was designed for radar target
tracking but is not limited to radar. With modifications Y

to the measurement equations, the model can be used
for camera-based systems as well as for ultrasonic sen-
sors or laserscanner systems.
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I ndex Terms—Radar tracking, Radar signal process-
ing, Road vehicle radar

Fig. 1. Typical mounting positions and fields of view

. INTRODUCTION o )
In more advanced applications such as blind spot

Many of today’s automotive driver assistance syssurveillance and driver assistance in inner-city situa-
tems are focusing on the area in front of the obsertions, there is the need for an extension of the sensor’s
ing vehicle. More specific, objects to be considerefield of view all around the vehicle. Clearly, the lim-
as dangerous or relevant for speed adaptation are @ations of the object movement mentioned above are
pected to be positioned in the own predicted way afio longer acceptable. Even objects that are moving
travel. The sensors to monitor this region are mountgaerpendicular to the own driving direction have to be
in the front of the vehicle and are directed to the frontonsidered. In that case, transversal movement is no
(Fig. 1 shows the principal fields of view of three sentonger solely caused by a change in driving direction
sors as an example). of object or observer. The two types of influence of a



driver on the vehicle movement (turning the steeringvith state transition matrix

wheel and accelerating/braking) are no longer separa- 1 -7 7 _1* 1°
ble in the same way. o1 0 T ¢

Due to this fact, we propose using a different mo- A=lo o 1 0 T @)
tion model with a more general description of object 00 0 1 0
movement. In this model, movement is no longer 00 0 0 1

modeled in terms of longitudinal/transversal motion
relative to the sensor coordinate system. Instead, tA8d cycle timeT'. Changes in the accelerations of
tangential speed and the heading angle/driving direebserver and object are modeled by thel2vector
tion are represented by state variables. The modei noise processes(k), whose elements are mapped
equations are simplified by using a fixed (global) cot0 the last two state variables by the matrix
ordinate system where both the observing vehicle and 000 1 07
the observed objects are moving through. Clearly, the B = [0 00 0 J
state and measurement equations are nonlinear. All - _
equations and expressions necessary for the imple-The state transition equations for the angular dy-
mentation of an extended or unscented Kalman filtdl@mics model (index) has the following form:
are given in the appendix. alk+1 0

Ingthe next secggn the commonly used state spacexa(k+1) - {agkilg] = Xa(k) + M wa(k) (4)
model and its main drawbacks are described in de- . } .
tail. The proposed state space model is introduced {t€re: (k) is the relative angle from the vehicle (or
section I1I: additional comments on the choice of th&€NSOr) axis to the object ardk) is the angular ve-
global coordinate system are given in section IV. AflOCity Or gyro. Changes of the angular velocity over

ter some words about the problem of track initializaym\;\iﬁlre mode:efl bty the_g‘P“t n0|s§ pro(;:e,gyf:t)). th
tion in section V, a comparison between the perfor- e the state transition equation describes the

mance of both models is given by simulation resultgno'uor1 of an object in general, _the mea§ure_ment
in section VI. equation depends on the sensor in use. Like in our
case, in [1] the tracking system is designed for au-
Il. COMMON STATE SPACE MODEL tomotive radar sensors. These measure the distance
A. Model equations and reIg’Flve speeql to objgcts |r15|de their field of view.

' By additionally using the inertial speed measurement

The separated state space model referred to in tb%o(k), the following measurement equation for the
introduction is presented in [1]. In contrast to thgongitudinal model results:

cited paper, here we will state all variables in discrete

3)

time with time indexk. dg(’f) 1 0000
In a simple model for the longitudinal motion, oneY (k) = Urrﬁzl(k) =10 -1 10 0| x(k) +v(k).
would include the distance to the object, the rela- vegd ) 01000

tive speed between object and observer and, option- _
Measurements are marked by the superséhpith-

ally, the relative acceleration. Using the inertial mea~"~"° ' ) ]
surements of the own velocity as additional informaise, they could be mixed with the corresponding

tion about the motion of the own vehicle, this modeftate variables. In [1], measurements of the own ac-
can be enhanced. The model for the Iongitudinéielerat'on are additionally used. But as these are not
movement as in [1] then includes the following stat@ctually measurements but derived from the inertial

variables: The distance between observer and oBP€€d measurements, we do not use them here. The
jectd(k), the speeds of the observeg(k) and ob- vectorv(k) represents white Gaussian measurement

jectvopi(k) as well as the corresponding acceleration'goli;’e' ing diff b d lvina th
dego(k) andaopi(k). Summarizing, the motion can be =Y USING ererit beams and appiying te mono-

described by the state transition equation pulse/sequential lobing principle [3], automotive ra-
dar sensors are able to estimate the relative angle to

d(k+1) the observed object. Using this information, the mea-
surement equation for the angular model (4) is

ya(k) = aM(k) = [1 O] Xa(k) +va(k)  (6)

with the angle measurement noise process).

x(k+1) = | vopj(k+1
(



B. Model Drawbacks as it can easily be seen in (5) and (6). However, ap-

As stated above, the given system model can be dilications that use the object information as an input
pected to work well under the limitation that the ob"€€d the object position and speed in the vehicle co-
served object is moving in nearly the same directiofrdinate system. Thus, a transformation from sensor
as the observing vehicle. In the future applications, 48 Vehicle coordinate system is necessary. If more

stated above, this limitation will no longer be accepttan oneé sensor is used, different nonlinear transfor-
able mations from different sensor coordinate systems to

As an example, we will have a look at a Situationvehicle coordinates are necessary. While the positions
where an object passes with a constant distance Jfd SPeeds can easily be transformed, this is not the
10 m in z-direction perpendicular to the observing case for the state variances used in the Kalman fil-

vehicle with a speed of 30 km/h. The resulting dister- This is because a Gaussian distribution — all error
istributions are usually assumed to be Gaussian in

tance and relative angle are shown in Fig. 2. Botﬂ I filter : | ian distrib
distance and relative angle are changing in a nonline§!Man filtering —is no longer a Gaussian distribu-

way, even if the observed object has a constant motié‘r?ﬁn after a nonllnehar tlraagsf;)rmztlon. AS }he S_ata I(')f
state. These nonlinear changes were artificially intrd!ferent sensors should be fused to a single object list

duced by the definition of the state space model a[mafore forwz_glrding to the ap_plication, this fact makes
mean additional work for the tracking filters. the processing more complicated and error-prone.

E 90 I1l. A MORE GENERAL STATE SPACE MODEL
§ We can summarize the discussion of the common
% 10 motion model in the last section as four requests for a
S . . . more generally applicable motion model:

! 1 5 3 4 time’[s] 1. The two distinct types of movement changes

A (acceleration/deceleration and steering) shall be

well separated.
& VT 2. Constant object motion shall be represented by
IS) ; ; ; ; > a constant motion state in the model.
g 1 3 4 time [s] 3. Ego- and object motion information have to be
—50 ¢ considered in a correct way.
4. All sensors should be working in the same co-

Fig. 2. Vehicle driving perpendicular to observer ordinate system.

Fulfilling the first two requests is possible by de-
Next, we will examine the measurement equatioscribing the movement of an object by its absolute
for the relative speed, i.e. the second row of equatidiie. tangential) speed and its current heading direc-

(5), tion. The resulting state transition equation is the fol-
Urel(k) = Uobj(k) - Uego(k’)' (7) lowing:

This equation is only true or approximately fulfilled (so(k +1)]

for the case of nearly equal driving directions, as was sy(k+1)

assumed during the design of the given model. In v(k +1)

general, the relative speed between sensor and objec?f,(k +1) = ok +1) |~ f(x(k)) +Bw(k). (8)

which can be measured, for example, with radar sen- a(k +1)

sors, depends on the angle between the driving direc- | 6(k+1) |

tions. The ego motion information should definitely
be considered in the model to improve the trackin@he state vectox(k) consists of the positiofs, (k),
system, but in a different way. Only thanks to thes,(k)), the tangential speed k), the heading angle
well-known robustness of the Kalman filter, the tracky (k) and the acceleration(k). The variabled(k)
ing might still work even with this erroneous staterepresents the steering wheel angle and is used to
space model. model changes in the driving direction. Agair:al-

In the commonly used, separated motion modelector of input noise processegk) is used to model
the state of an object is defined in sensor coordinatehanges in acceleration and steering wheel angle.



As stated in the introduction for the separated As the steering wheel angle was chosen as a state
model, also here the parameters can be chosen basadable, a model that relates the steering wheel angle
on the typical values of acceleration/deceleration artd the driving direction is needed. A simple but suffi-
changes in driving direction. But here, in contrastciently accurate model is the two-point bicycle model,
the representation is more general and not limited iike it is also used in [4] and [5]. The state transition
a special case. equation for the driving direction results in

Obviously the transition functiofi(x(k)) is non-
linear. The computational effort is thus larger com- (k4 1) = (k) + T 5(k)v(k) + wa(k). (10)
pared to the common motion model. But the correct L
consideration of the measured ego- and relative speR@te that the wheel bagk, i.e. the distance between
is not possible using only linear equations. Functiofront and rear wheels of the imaginary bicycle, is
f (x(k)) is derived in appendix A. needed in this equation. Clearly, the true wheel base
of an object observed by the sensor will not be avail-
able. But as using a fixed default value for the wheel
base of all objects will only result in a scaled steer-
o(k) ing wheel angle, the model is generally applicable for
tracking purposes.

The two-point bicycle model provides the advan-
tage that it inherently relates changes in driving direc-
tion to the object speed. This avoids random changes
in the driving direction of slowly moving objects due
to measurement noise. As tracked objects can be as-
sumed to be either some sort of road vehicle or fixed
objects, the steering angle can be limited to a maxi-
observer mum value. Changes in the moving direction of vehi-
cles (driving forwards or backwards) are then repre-
sented by a change of the sign of the tangential speed.

The coordinate system in which the object position

Fig. 3 shows the main state variables used to mod(ﬁw(k,)’ Sy(k)? is measured was ngt specifigd yet. One
the motion of observer (superscriff®) and object possible choice is to use the inertial coordinate system

For sake of simplicity, the relative angle(k) and of the observer. This would fulfill request 4 stated

distanced(k) are sketched as if the sensor were ijpefore, but still the positions of objects'would haye_ to
the center of the observer and the object were a poin? transformed in cevery cycle_ according t_o p93|t|on
target. changes of the observing vehicle. To avoid this, we

The sensors under consideration measure distanBEPOSE to use a fixed (or global) coordinate system.

relative angle and Doppler speed. The resulting meAl system startup, the origin of this coordinate system
surement equation is thus can be defined arbitrarily, for example as the current

position of the observer. The own vehicle motion is

Ya

object

&V

Fig. 3. State and measurement variables

dM(k) modeled using the same set of state variables and the
y(k)=|aM(k)| =gx(k)) +v(k), (9) same state transition equation (8), but with the inertial
vy (k) measurements of speed and steering angle instead of

the radar measurements. As both observed objects
and observing vehicle are moving through the same
fixed coordinate system, the ego motion is considered

the measurement noise in al three dimensions. correctly and the state transition equation is greatly
The choice of the state variables allows a 1-to-1 Gilitated

mapping of what we might call a constant motion

state of a vehicle in colloquial words to a constant

state in the motion model. If the driver keeps the V. GLOBAL COORDINATES WITHOUTGPS?
steering wheel and the accelerator pedal fixed, con- A possible point of critics to our proposed model is
stant acceleration (k) and constant steering wheelthe choice of a global coordinate system. The observ-
angled (k) will result. ing vehicle is moving through this coordinate system

and is as well nonlinear. Functign(x(k)) is givenin
appendix A. The &1-vectorv(k) is used to model



and thus has to keep track of its own position. Withis needed. Here, we use radar data that was generated
out using a system delivering a global position estiby our own radar target list simulation which delivers
mation, like GPS, there is no other possibility tharvery realistic radar data [6] [7]. We have chosen a
to integrate the measurements of the inertial sens@senario in which a point target moves with a speed
(speed and steering angle or gyro rate) over time (aled about 10 km/h on a circle of 15 m radius through
called “dead reckoning”). Unfortunately, as the senthe view field of a front-mounted short-range radar.

sors are subject to noise (especially the gyro sensor),Both state space models discussed before were
the error in the own position will be constantly grow-ysed to track the simulated targets. The tracking
ing. The question arises if this means that the prezgorithm with the common motion model was im-
posed motion model mandatory requires a GPS sygtemented as described in [1]. For the new motion
tem. model, we used an extended Kalman filter. Due to
The answer to this question is no. Of coursene mentioned problems in the track initialization, the

the error in the estimated vehicle position will soonknown true state was used as initialization. The eu-
reach dimensions where it is everything else than ng-,

glectable. But as the measurements of the target p
tions (using radar, ultrasonic, laser scanner or vide@ 0.4
are still relative to the observing vehicle, the error mv
the position of the observed objects will be exactl}o 0.3
the same as the error in the observer position. Thg
means that the position errors will just cancel out eack 0.2
other. The global positiofs,.(k), s,(k)) itself is not 9 501
of any help, but using the global coordinate systerﬁ;
facilitates the motion model equations.

common motion model
new motion mode\

\/

ab

0

0 1 2 3 4 )
time [s]

V. TRACK INITIALIZATION

The initialization of tracks is a special problem
when objects moving in all possible directions havé'
to be considered. While a single measurement vec-
tor of a radar sensor (measuring distance, bearing anlidean distance between the estimated track position
Doppler speed) includes information about the obje@nd the true object position is shown for both mod-
position, it includes only partial information aboutels in Fig. 4. Note that the comparably large error at
the movement — if no assumptions about the objetite beginning is due to large measurement errors at
motion, like that it is moving into the same direc-the edge of the radar sensor’s field of view. The fig-
tion as the observer, are made. Movement directiaire shows that the position error with the new motion
and speed can not be initialized reliably with a singlenodel is lower over nearly the whole track lifetime.
measurement. Due to measurement noise and severe
quantization in certain sensor types, even two or three
radar measurements may provide no or misleading in-
formation about the object motion. Thus, a special
treatment is necessary for the initialization of tracks.
Several measurements have to be collected before théVe have presented a motion model for tracking in
Kalman filter can be started. automotive radar applications that is superior to com-

The initialization problem is not specific for themonly used linearized models. A global coordinate
proposed model, but naturally arising when objectsystem allows the simple fusion of data of different
moving in all possible directions are to be trackedsensors mounted on one vehicle. Further, by using
However, as the topic of this paper is the state spatiee tangential vehicle speed and the driving direction
model and not the whole tracking process, we will noas state variables, the two types of movement changes

ig. 4. Absolute position error of circular moving object

VIl. CONCLUSION

provide any more details here. (acceleration/deceleration and change of driving di-
rection) of vehicles are well separated and allow a
VI. SIMULATION RESULTS natural description of object movement. Simulation

In order to be able to compare the performance o&sults show that the new motion model outperforms
both models objectively, data with an exact referenatie commonly used approach.



APPENDIX vehicle axis. The following equations can then easily
A. Model Functions be derived:

In this section, the state transition and measure- sy(k)—sze”> _e90 gsen (1)

ment functions according to the introduced motion a(k) = arCtan<W

model are derived. ’
For the derivation of the state transition function d(k) = \/(sx(k) _ Ssen)2+(8y(k) _ Ssen)? (17)

f(x(k)), we use a continuous-time representation of ’ v

some variables (denoted by indexfor the moment. (k) — 2990 (alk) + 0%

With this, the exact equation for the position variables sen . eqgo

s, ands, at time indexk + 1 or timet = (k + 1)T'is —v(k) cos (a(k) + 95"+ o= o(k))  (18)

(k+1)T Equations (16), (17) and (18) represent the measure-
{sx(k‘ + 1)] _ [sx(kz)] N / oelt) [Cos(gpc(t))] q  Ment functiong(x(k)) of the proposed motion model

N sin(pe(t)) in equation (9).
(11) As stated before, the error in the estimated global

with the time-continuous speed(t) and driving di- positi_on WiII_ grow over time. This i_s reflected_ by
rectionp.(t). As all estimations are later done fromdrowing variances of the corresponding states in the

cycle to cycle, it is straightforward to assume tha&(alrgan :‘lltefr. Hovlvgvlgr, j[hese_ %/arlancesdare nﬁver
speed and driving direction are linearly changing iﬁse (onyatebr_mutlp |(;aft.|ondW|t| zero) an_dcan tﬂus
an interval of lengti”. But this assumption leads to e setto an arbitrary and fixed value to avoid overflow

complicated and numerically unfavorable state trans?—mblems'
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The measurement equations can be derived with
help of Fig. 3. Let(s3*" s;°") be the current sensor
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rent driving direction of the observer ané"the look

direction of the sensor with respect to the longitudinal



