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Abstract— The tracking of radar targets in automo-

tive applications often relies on certain constraints to

the movement of objects. For example, the objects of

interest in an ACC system (adaptive cruise control) are

other vehicles that are positioned straight ahead and

moving in approximately the same direction as the ob-

server. In this case, a single radar measurement (dis-

tance to target, bearing angle and Doppler velocity)

contains – neglecting measurement noise – full infor-

mation about the position (by distance and angle) and

the movement state. Thus, the initialization of tracks

can be done based on a single measurement.

Without the mentioned assumption, no information

about the movement direction of the object is con-

tained in a single measurement. Theoretically, at least

two measurements are necessary to extract information

about the object movement direction. But due to se-

vere measurement noise and quantization, even three

or more measurements may contain misleading infor-

mation about the movement state.

In this paper we present an initialization procedure

for radar target tracking without any constraints to

object movement. In the first cycles of a new track,

the state estimation is computed by a linear regression

method. After that, the track state is handed over to a

Kalman filter which does the tracking for the rest of the

track’s lifetime.

Index Terms—Radar tracking, Radar signal process-

ing, Road vehicle radar

I. INTRODUCTION

In applications of automotive radar of today, cer-

tain object movement constraints are made in order

to facilitate the tracking of radar targets. The objects

of interest in ACC (adaptive cruise control) systems

are straight ahead and moving in the same (or nearly

the same) direction as the observer. In a parking aid

application, only static objects are considered. And

in blind spot surveillance or lane departure warning

systems, again objects with approximately the same

driving direction have to be detected.

If the movement direction of objects is fixed by

a certain assumption, the movement state of an ob-

ject can – aside from measurement noise – be derived

from a single radar measurement (distance to target,

bearing angle and Doppler velocity). The position of

the object relative to the sensor can be computed by

distance and bearing angle, while the object speed is

given by the combination of own vehicle speed (mea-

sured by inertial sensors) and measured Doppler ve-

locity. A situation like that is shown in Fig. 1. The

circle marks the detected target position and the at-

tached arrow shows the direction of the measured ra-

dial Doppler velocity.

Fig. 1. Typical vehicle-following situation

The given assumptions about object movement fa-

cilitate the tracking algorithm. However, objects that

do not follow these assumptions, like vehicles cross-

ing the own driving lane or moving perpendicular to

the own driving direction, will likely be tracked erro-

neously or not at all. But in future applications, for

example designed to assist the driver in more com-

plex situations, like intersections in urban areas, such

movement constraints can not be used anymore.

Without assumptions about the movement direc-

tion, the initialization of tracks is a serious problem.

In the situation shown in Fig. 2, where a vehicle is

crossing the own driving lane, a single radar mea-

surement does not contain full information about the

movement state of the object. The measured Doppler

velocity reflects only the component of the object

speed vector projected on the line from the sensor to

the position of the detection.

The Kalman filter is widely used for target tracking

[1, 2]. In many applications, the initial state estima-



Fig. 2. Object vehicle crossing the own driving lane

tion can directly be derived from the initial measure-

ment. The Kalman filter is often robust against errors

in the initial state, but this is not true in our case. We

are interested in a precise state estimation after as few

cycles as possible, and the initial state has strong in-

fluence on the first state estimations. If the object’s

movement direction is initialized with large error, the

tracking filter will very likely diverge. In case of di-

vergence, the track will not receive any new measure-

ments in the data association step. While it may be

kept alive during some cycles, the next measurements

originating from the same object will be used to form

a new track, where the initialization may be better or

lead to another diverging track.

In section II below, we will present a method to es-

timate the target state in the first cycles of a tracks’s

lifetime by fitting a straight line through the measured

positions instead of using the standard Kalman filter

initialization procedure. After that, we will show in

section III how the state estimation can be handed

over to the Kalman filter which then performs the

state estimation until the track is deleted. Some re-

sults with real radar measurement data are presented

in section IV.

II. INITIAL STATE ESTIMATION

Without measurement noise, the vector that con-

nects the measured positions in two consecutive cy-

cles would exactly represent the movement direction

and speed of the object. However, under the influ-

ence of measurement noise and quantization, the con-

structed vector can point into a completely wrong di-

rection, especially if the object is only slightly mov-

ing relative to the own vehicle.

As an example, in Fig. 3 a trace of twelve real radar

measurements is shown as crosses (some are hidden

by others), transformed from the original representa-

tion in bearing and distance to cartesian coordinates

(note that the scalings in x- and y-direction are dif-

ferent). The observing vehicle, equipped with two

Tyco Electronics M/A-Com 24 GHz short range radar

sensors as presented in [3], was looking to the right,

i.e. in x-direction. An object vehicle was driving per-

pendicular to the observer, i.e. in negative y-direction.

The measurements are severely quantized in bearing

with a quantization step of 1◦, thus the measurements

seem to be lying on five distinct levels in y-direction.
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Fig. 3. First detections of vehicle moving from top to bottom

Clearly, the first three measurements on the top,

which have the measured bearing angle of 5◦ in com-

mon, pretend a movement of the object in direction

towards the observer. A Kalman filter, initialized with

the movement direction formed by the first two or

three measurements, would typically show a signifi-

cant delay in following the next measurements until

the correct movement direction of the object is esti-

mated.

Due to this problem, we propose to use a regression

procedure as follows. During the first (up to 10) cy-

cles of a track, a regression line is constructed through

the measured target positions. As typical cycle times

in automotive radar sensors are around 30 − 50 ms,

the movement during the first cycles can be approxi-

mated as being linear. The computation of the motion

state is done in two separate steps. First a regression

line is computed using a Total-Least-Squares (TLS)

approach. After that, estimates for the movement di-

rection, velocity and object position, which is lying

on the regression line, are computed.

A. Regression line computation

The computation of a regression line using a Total-

Least-Squares criterion can be found in the literature.

However, we will give the solution to this optimiza-

tion in detail here, as some readers might not have the

solution of the TLS optimization problem in mind.

As shown in Fig. 4, we define a regression line by

the two-dimensional vector p, which is perpendicular

to the regression line itself and ends on the point of

the regression line that is closest to the origin. The

task at hand is now to find the vector p which mini-

mizes the sum of squared distances between the last

N measured positions y1, . . . ,yN and the regression



line. The number N increases over time as more mea-

surements are assigned to the current track.
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Fig. 4. Regression line computation using Total Least Squares

Let the vector u be the unit vector in direction of p,

i.e. u = p/||p||. Then the distance dn from measure-

ment vector yn to the regression line can be obtained

as the scalar product between the measurement vector

itself and vector u, minus the distance of the regres-

sion line from the origin. With r = ||p||, this results

in

dn(r,u) = ||yT
nu − r||. (1)

By gathering all measurements (column vectors) in a

N × 2-matrix Y = [y1,y2, . . . ,yN ]T , the sum of the

squared distances can be written as

F (r,u) =
N

∑

n=1

d2

n(r,u) = ||Yu − r1||2 (2)

with the N × 1-vector 1 = [1, 1, . . . , 1]T . Setting the

derivatives of this expression by r and u to zero re-

sults in the following intuitive solution: The estimate

û for the vector u is the eigenvector of the smaller

eigenvalue of the 2 × 2-matrix

Cxy =

[

σ̂2
x ĉxy

ĉxy σ̂2
y

]

, (3)

where σ̂2
x and σ̂2

y are the sample variances of the x-

and y-coordinates of the measurements and ĉxy is the

sample covariance between those. The eigenvector

to the larger eigenvalue points into the direction of

the regression line. Due to the parametrization of the

regression line, we here need the second eigenvector

that is perpendicular to the regression line.

Note that matrix Cxy can be updated with low com-

putational effort when a new measurement is added in

the next cycle. The estimate for the length r of vector

p can finally be computed as the length of the projec-

tion of the mean measurement vector (the center of

the cloud of points) on the vector û, i.e.

r̂ = ûT 1

N

N
∑

n=1

yn (4)

B. Speed and position estimation

After computing the regression line, the speed

and position of the observed object are estimated.

According to Fig. 5, the model for a linear two-

dimensional movement can be written as

xn = p̂ + û⊥ · (d0 + v n T ), (5)

where xn is the position at time instance n, the vector

û⊥ is a unit vector in direction of the estimated re-

gression line, v is the speed to be estimated, T is the

cycle time and d0 specifies the position of the object
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Fig. 5. Estimation of position and speed based on regression line

at time n = 0 and has to be estimated as well. The

criterion to be minimized is thus

F (d0, v) =

N
∑

n=1

||yn − p̂ − û⊥(d0 + n v T )||2, (6)

where yn are again the measurements of the true

states xn. The derivatives of equation (6) by d0 and v
are

∂F

∂d0

= −2

N
∑

n=1

(

(û⊥)Tyn − (d0 + n v T )
)

and (7)

∂F

∂v
= −2

N
∑

n=1

n
(

(û⊥)Tyn − (d0 + n v T )
)

, (8)

where the orthogonality between û⊥ and p̂ has been

used. Setting both derivatives to zero results in the

linear system of equations
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for d0 and v.

The current object position estimation is finally

x̂N = p̂ + û⊥ · (d̂0 + v̂ N T ) (10)

with the estimates d̂0 and v̂. This expression needs

to be evaluated only once. As we used the index n
to number the cycles in the tracks’s lifetime, index

n = N corresponds to the current cycle. The position

estimates for past time instances are not needed and

likely to change when a new measurement is added

in the next cycle. If, however, no new measurement

is assigned to the current track, the same estimates

can be used to extrapolate the state estimation. In this

case, equation (10) has to be evaluated for N + 1.

Note that the estimation of movement direction,

speed and position can also be jointly formulated as

one optimization problem, instead of two consecutive

optimizations as described before. The solution will

be slightly different, but the resulting optimization

problem will be nonlinear and most probably only to

be solved iteratively, which is not favorable in a real-

time system.

C. Computational effort

The regression procedure is computationally not

very demanding. The update of matrix Cxy from

equation (3) requires less than ten additions and ten

multiplications. The eigenvalue decomposition of a

2×2-matrix can be done analytically and also requires

only a low number of operations. For the evaluation

of equation (4), intermediate values from the update

of matrix Cxy can again be exploited and only few

more operations are needed.

The inverse of the matrix on the left side of equa-

tion (9) can be precomputed, as the number of differ-

ent values of N is limited. The most computational

effort arises in the computation of the right side of the

equation, as the vector û⊥ changes in each iteration.

Here, around 3N multiplications and 2N additions

have to performed. But as the maximum number of

N is usually less than or equal 10, the whole compu-

tational effort for the regression line computation and

the position and speed estimation is reasonably low.

D. Selection of the coordinate system

The regression can be done either in the sensor

coordinate system or in a global coordinate system,

where both the own vehicle and the object are mov-

ing through. In both cases it might happen that all

measurements gather around one point. When work-

ing in the observer’s coordinate system, this occurs

if observer and object are moving in the same direc-

tion with the same speed; when using a global coordi-

nate system, the measurements of fixed objects are ex-

pected to cumulate at a single point. In both cases, the

computation of a regression line does not make sense,

as its direction will randomly change with each new

measurement incorporated and the estimated speed v
will be close to zero.

In order to save the computational effort for the re-

gression procedure, we first determine if the distance

between any measured position and the average of all

measured positions exceeds a certain threshold. The

threshold depends on the coordinate system in use.

When computing the regression line in the sensor co-

ordinate system, our experiments show good perfor-

mance if the regression procedure is started after ei-

ther the bearing angle has changed about at least 3◦

or the measured distance has changed about 20 cm. If

the threshold is not exceeded, the position estimate in

the selected coordinate system is set to the average of

all positions and the speed is set to zero.
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Fig. 6. Object state variables in global coordinate system

III. HANDOVER TO KALMAN-FILTER

After the number of measurements N associated

to the given track reaches a given limit (for exam-

ple 10 as stated before), the state estimation task shall

be handed over from the regression procedure to the

Kalman filter. In the initialization of a Kalman fil-

ter, four things have to be set: the input (or driving

noise) covariance matrix, the measurement noise co-

variance matrix, the initial state and the initial state

covariance matrix. The first two elements can be set

in a standard way and are not affected by particular

initialization conditions. For the latter two, we first

take a short look at the Kalman filter motion model

we are using. It is described in detail in [4] and [5].

The state vector x(k) is defined as

x(k) =
[

sx(k) sy(k) v(k) ϕ(k) a(k) δ(k)
]T

, (11)

where (sx(k), sy(k)) is the global vehicle position,

v(k) and ϕ(k) are tangential speed and movement di-



rection (see Fig. 6) and a(k) and δ(k) represent the

acceleration and steering wheel angle.

The initialization of the state estimation is straight-

forward from the regression line computation intro-

duced before. The initial position (sx(k), sy(k)) is

set to the result of equation (10), while the object ve-

locity v(k) was computed by solving the system of

equations (9). The driving direction ϕ(k) can be ob-

tained using the arctan function on the regression line

parameters. About the last two state variables, the ac-

celeration a(k) and the steering wheel angle δ(k), no

information is available, not even through the regres-

sion line procedure. We set these values to 0 and leave

the task of estimating them to the Kalman filter. In

the further development of our tracking system, cur-

rently we are investigating if the acceleration and/or

the steering angle can be left away without reducing

the performance.

The initialization of the state covariance matrix,

in contrast, requires to take sensor characteristics

into account. In most automotive radar sensors, the

distance can be measured quite precisely, while the

bearing angle is subject to considerable measurement

noise and quantization. This means that the initial es-

timate for the x-position – relative to the sensor – of

an object straight ahead is better than the estimated

relative y-position. Further, in a vehicle-following

situation as shown in Fig. 1, the tangential speed esti-

mation will be better than the estimate for the driving

direction. The opposite is true if an object is moving

perpendicular to the own driving direction.

Next we will express these qualitative statements in

numbers. The desired way would be to directly com-

pute the variances and covariances of all state variable

estimates. However, the computation of these terms

is very complicated, as an eigenvalue decomposition

and nonlinear functions are involved. Due to this, we

do some heuristical approximations for the values we

want to find.

For the computation of an approximation for the

variances of and covariance between x(k) and y(k),
we consider the measurement variances in distance

and bearing and compute the before mentioned val-

ues for the simplified situation of estimating the posi-

tion in cartesian coordinates from a single radar mea-

surement. We define a random variable R for the

distance measurements with the expected (true) value

E(R) = R̄ and variance Var(R) = σ2

R. Further, let

α be a random variable describing the bearing angle

measurements, with E(α) = ᾱ and Var(α) = σ2
α.

The transformation from polar coordinates (R, α) to

cartesian coordinates (x, y) is

[

x
y

]

= R

[

cos(α)
sin(α)

]

≈ R

[

cos(ᾱ) − (α−ᾱ) sin(ᾱ)
sin(ᾱ) + (α−ᾱ) cos(ᾱ)

]

.

(12)

We will now use this approximation in order to com-

pute an approximation for the covariance matrix Cxy

of the vector [x, y]T . With

E

[

x
y

]

≈ R̄

[

cos(ᾱ)
sin(ᾱ)

]

(13)

we get

[

x − Ex
y − E y

]

≈

[

(R − R̄) cos(ᾱ) − R(α − ᾱ) sin(ᾱ)
(R − R̄) sin(ᾱ) + R(α − ᾱ) cos(ᾱ)

]

.

(14)

The covariance matrix is

Cxy =

[

Var(x) Cov(x, y)
Cov(x, y) Var(y)

]

(15)

Using equation (14) and the assumption that R and α
are statistically independent, we can now compute the

elements of the covariance matrix:

Var(x) ≈ σ2

R cos2(ᾱ) + (σ2

R + R̄2)σ2

α sin2(ᾱ) (16)

Var(y) ≈ σ2

R sin2(ᾱ) + (σ2

R + R̄2)σ2

α cos2(ᾱ) (17)

If an object is located on the x-axis (ᾱ = 0), the vari-

ance of x is equal to the variance of R. The variance

of y is then σ2
y = (σ2

R + R̄)σ2
α; as expected it will

rise if the distance to the target increases. Finally, the

covariance between x and y results in

Cov(x, y) ≈ 1

2

(

σ2

R − (σ2

R + R̄2)σ2

α

)

sin(2ᾱ). (18)

The covariance is equal to zero if the target is located

on the x-axis, as here the line of constant bearing an-

gle and the tangents on the circles of constant radius

are parallel to the x- and y-axes.

We have now computed the covariance matrix of

the position vector given the true distance R̄ and the

true bearing angle ᾱ. As we do not know these val-

ues, we use the measurement values from the target

list instead. The involved sine- and cosine functions

will not change dramatically if the angle measure-

ment deviates from the true value by some degrees,

so we will get a reasonable approximation. The mea-

surement variances σ2

R and σ2
α finally are depending

on the sensor characteristics and the target RCS. For

example, with the near range sensors we are using

and a vehicle in a distance of 15 m, we calculate with

the standard deviations σR = 2 cm and σα = 0.75◦.

However, the possible range for these values in quite

large.



The computed covariance matrix, as said before,

corresponds to the situation where we use a single

measurement to estimate the object position. The

coordinate system our derivations have been done in

was the cartesian coordinate system of the sensor. In

order to get into the global coordinate system that we

are using in our tracking model, only a rotation of

this matrix about the angle between the global and

the sensor’s x-axis is necessary. Further, in the re-

gression line procedure, we used N consecutive mea-

surements to estimate the position. Thus the rotated

covariance matrix has to be divided by the number of

measurements N before it can be set as the upper-left

2× 2-submatrix of our 6× 6 state covariance matrix.

The derivation of the variances of the estimated

driving direction and relative speed is even more com-

plicated than for the position in x and y. Heuristically

tuned, fixed parameters allow good results in the most

cases, but we are currently also investigating possi-

ble approximations for the missing variances. At the

time, we propose to set all values except the upper-left

2 × 2-matrix and the lower four diagonal elements to

zero. As the remaining parameters of the state co-

variance matrix are subject to change during further

development of our tracking system, we do not give

numerical values here.

IV. RESULTS

In this section, we will present the result of the

regression line computation using the data already

shown in Fig. 3. Even if we proposed not to com-
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Fig. 7. Position estimations using regression line procedure

pute the regression line before the measured positions

leave a certain region, for generating this real data

example we started the regression already with the

second measurement. The position estimations are

marked in Fig. 7 as circles, while the measurements

are again shown as crosses. Note that we exchanged

the axes in this figure in order to allow a larger dis-

play. The first measurement is located in the upper

right corner in this figure.

The robust smoothing effect of the regression line

computation can well be observed. While the mea-

surements “jump” due to the quantization of the bear-

ing angle, the trajectory of the position estimations is

a good estimation for the true object trajectory.

A comparison of our proposed regression initial-

ization with a direct Kalman filter initialization would

be straightforward. However, as the performance of a

Kalman filter depends on many different parameters,

we have omitted such a comparison here.

V. CONCLUSION

In this paper, we have discussed the problems aris-

ing in the initialization of a Kalman filter for radar

target tracking in automotive applications. A single

radar measurement is not sufficient to initialize the

state of a Kalman filter, as it does not contain full in-

formation about the movement direction of the ob-

served object. We introduced an initialization pro-

cedure that is based on a regression line through

the measured object positions in the first cycles of

a track’s lifetime. A favorable smoothing effect on

the measurement positions was shown by results us-

ing real measurement data.

After some cycles, sufficient information about the

movement state, including the movement direction

and speed, was gathered. The result of the regression

procedure is then used to initialize a Kalman filter.

The initial covariance matrix is computed under con-

sideration of the different measurement variances in

distance and bearing angle.
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