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Abstract—In the field of automotive radar signal

processing, often real data is used from the beginning

in the development of algorithms, even if simulated

data offers several advantages, for example providing

an exact reference and allowing to reduce the number

of measurement campaigns. However, a radar simu-

lation, for example based on a ray-tracing model, is

very complex to implement and needs extremely large

computational resources.

In [1]–[3], we have introduced a simulation model

for automotive radar target lists that is able to run in

real-time on an up-to-date personal computer. The sim-

ulation imitates the 24 GHz near-range Pulse-Doppler

radar sensor as described in [4], but can be adjusted

to other sensors with similar resolution capabilities. In

this paper, we present two extensions to the existing

model. The first extension improves the simulation of

the sensor’s resolution capabilities in situations where

two targets at the same distance and Doppler velocity

melt into a single phantom target. The second new

module considers the radar clutter before the sensor-

internal tracking.

I. REVIEW OF THE SIMULATION MODEL

In order to build a radar target list simulation

model, we have reviewed a large amount of real

radar measurements. Our experience shows that the

reflections of an object vehicle mainly stem from

the four vehicle corners and the four wheel houses.

Further, the car body reflects radar energy if it

impinges perpendicular. These observations lead to

a representation of a vehicle by eight point reflection

centers and four plane reflectors, as described in

detail in [1] and [2].

While we have designed this model based on our

experience with real radar data, in [5] a similar model

has been derived by performing a ray-tracing simula-

tion and clustering the resulting reflection points. In

[6], again a point reflector model is derived. But both

models do not include plane reflectors which help to

provide more realistic results in certain situations and

to reduce the computational effort of the simulation.

Based on the reflection center model of objects, an

ideal target list in bearing, range and Doppler veloc-

ity can be computed by geometrical considerations

for a given traffic situation. With the term ideal target

list we refer to a target list that would be returned

by a hypothetical sensor without any measurement

noise and unlimited resolution.

The ideal target list is independent of the specific

type of sensor. It is transformed into a realistic target

list by applying a specific sensor model. In our case,

we are dealing with a model of the automotive radar

sensor in [4].

In the sensor model, first the measured amplitude

is computed by considering distance, antenna pattern,

object RCS and multipath propagation [3]. If this

amplitude exceeds a certain threshold, a target is said

to be detected. In sections II and III, we will present

how the sampling and detection is done in a real

sensor and how it can be simulated realistically but

with low computational effort.

The real data sets we have been using so far in

the design of the simulation model were recorded

with the internal tracking switched on and included

practically no clutter at all. However, as we recently

had the chance to record data with the internal track-

ing switched off in a special software configuration,

we decided to extend the model to simulate both the

pre-tracked final sensor output and the intermediate

measurements before the sensor-internal tracking. In

sections IV and V, we will present the analysis and

simulation of clutter caused by ground reflections.

II. SAMPLING AND DETECTION

The procedure of sending pulses and sampling

the echoes in a typical automotive radar sensor is

very well described in [7]. For each distance cell,



a number of pulses (e.g. 128 or 1024) is trans-

mitted, received, downmixed, quadrature-modulated

and sampled. The complex samples (I/Q) are then

transformed into a Doppler spectrum using the FFT.

For each distance-velocity- or R-v-cell, a complex

FFT value results. The detection is usually done in

the Doppler domain, where the FFT magnitudes are

compared to an adaptive threshold. All FFT values

that exceed the threshold are candidates for being

caused by real objects.

For the angle estimation using the sequential lob-

ing principle [4], two different antenna patterns are

used and the so-called additive sensing ratio is com-

puted. If there are two objects present in a single R-

v-cell, but at different angles (e.g. two vehicles with

equal velocity driving ahead on different lanes), the

contributions of both targets superimpose and can not

be distinguished. The result of the angle estimation

will be a single angle, typically in the middle between

the targets.
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Fig. 1. Target distance measurements over time

For tracking algorithms that process the radar

signals to form an object list, it is important to take

this “angle error” into account. Thus a simulation,

which is used for algorithm development, has to

represent the melting of targets realistically. In the

following section we present how the sampling and

interpolation in distance is reflected in our simu-

lation. First, however, the real radar measurements

which form the basis of our simulation development

are discussed.

In one measurement experiment, we used two

corner reflectors as targets. One was standing straight

ahead of the observing vehicle, while the other reflec-

tor was positioned a little closer to the sensor in an

angle of about 24◦ to the left. We moved the second

reflector in steps of some centimeters away from

the sensor, so that both reflectors were lying in the

same R-v-cell during the middle of the measurement

experiment.

In Fig. 1, the distance measurements are displayed

over the time. Every column of the displayed image

represents a histogram of the distance values. The

detections forming a staircase are those caused by

the moving corner reflector. At a distance of about

9.22 m, there are detections of the static reflector vis-

ible at the beginning and the end of the measurement.

In the middle, the two targets can not be separated

and thus only the staircase can be seen. The distance

resolution in this particular case can be derived from

this measurement. At around 45 s, the distance of the

two targets differs by 26 cm and the targets can just

be separated, so the resolution is approximately equal

to this distance.

The amplitude measurements of the same data set

are plotted over the measured distance in Fig. 2. The

measurements are quantized with 2 dB in amplitude

and 1 cm in distance. For a better visibility, we

added uniform noise between −0.75 and 0.75 dB in

amplitude and between −2.5 and 2.5 mm in distance

before plotting. The time is encoded by the gray

level: the darkest dots are from the beginning of the

measurement, the detections shown in lighter gray

level were recorded later. The vertical lines mark the

positions where the stepwise moving reflector was

standing (compare to the staircase levels in Fig. 1).
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Fig. 2. Target amplitudes over distance

The detections of the standing corner reflector are

lying between about 9.1 and 9.3 m and below 14 dB.

Here, some very dark dots and many light dots are

visible, but no dots with an intermediate gray level.

This confirms the observation of Fig. 1, where there

are no detections of the standing reflector visible in

the middle of the measurement.



The remaining amplitude values are those caused

by the moving reflector. The reason for the increase

of the amplitude from below 10 up to 24 dB with

increasing distance is multipath propagation. As the

road surface acts as a reflector for the radar waves,

different propagation path from sensor to object exist.

As analyzed in detail in [3], the different delays on

the different paths cause severe interference effects

that can even lead to nearly complete cancellation.

In our measurement experiment, the moving corner

reflector was (unintentionally) placed into a rising

edge of the interference pattern.

As the amplitudes of the two reflectors are quite

different, the resolution value derived above from

Fig. 1 is only applicable in this particular case. If

the reflectors were placed at different positions of the

interference pattern, a different behavior might result.

However, as the resolution is mainly determined by

the pulse width, similar values can be expected.

III. MODEL OF SAMPLING AND DETECTION

In the following, we will describe how the sam-

pling and detection is represented in our simulation

model. One possible way would be to generate com-

plex samples based on the ideal targets list for every

single received pulse. However, this would mean a

very large computational effort. Instead, we apply

some simplifications – without losing much accuracy

– and only simulate a small number of samples.

In our measurement experiment introduced in the

last section, it was possible to create a scenario where

two objects had the same relative velocity (0 m/s) and

reached the same distance during the measurement by

moving a corner reflector step by step. Based on this

data we can conclude about the resolution in distance.

The creation of a scenario where we can estimate

the resolution in relative velocity would need much

more effort and was not realized during this work.

Due to this, we do an abstraction of the resolution

capability in relative velocity. If two entries in the

ideal target list differ less than a threshold in relative

velocity, they are marked as candidates for melting

into a single target, otherwise not. The threshold was

chosen to 0.12 m/s based on our experience with

other measurements.

In the simulation, we next check which of the

ideal target list entries with similar relative velocity

are closer than 0.6 m in distance. For each of such

groups, as well as for single targets, we simulate

the (complex) samples in distance dimension. In

a range between 15 cm below the minimum true

distance of the involved targets and 15 cm above

the maximum true distance, the interesting part is

sufficiently covered.

Unfortunately we do not have detailed information

about the sensor internals, which makes system iden-

tification an integral part of our work. What we know

is that the sampling is done on a grid of 5 cm and that

an interpolation between three consecutive samples is

done in order to estimate the target distance.
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Fig. 3. Simulated samples

For the sampling simulation, we need the pulse

form and width. A Gaussian-shaped pulse offers

the advantage of an optimal time-bandwidth-product.

However, forming Gaussian-shaped pulses requires

some technical effort in the radar sensor. Thus we

assume that in favor of reduced production costs,

rectangular-shaped pulses are realized by switching

the HF-energy on and off very quickly [7]. The

pulses after the receiving matched filter will then

have triangular shape. Due to limited bandwidth in

transmitter and receiver and non-ideal switches, the

pulse form will not be ideally triangular, but some-

thing in between a triangular and a Gaussian pulse.

However, we use triangular pulses in the simulation,

expecting that the results will not be affected very

much by the exact pulse form. The radar bandwidth

is known to be 5 GHz, thus the pulse width has to

be around 200 ps.

In Fig. 3, a snapshot of the samples in a situation

with two close targets is shown. The ideal pulse

forms of the targets are represented by the gray

lines, the sum of these by the solid black line. The

pulse amplitudes have been determined before in the

simulation, considering antenna patterns, multipath

propagation etc. [3]. The circles in Fig. 3 mark the

simulated samples, i.e. the absolute values of the

ideal pulse form plus artificial, complex noise. The



variance of the noise has been derived by comparing

real and simulated data sets.

After the simulation of the noisy samples, the next

step is to find the relative maxima that exceed a

detection threshold. They are then worked through

in decreasing order of magnitude. For each relative

maximum, the distance is estimated by considering

the maximum sample and the samples left and right

of it. For the interpolation, different approaches are

possible, for example fitting a parabola that passes

through all three points and using the maximum of

this parabola as the distance estimation. As we know

the exact pulse form, here we use a least-squares fit

of a triangular pulse with fixed width. The result is

shown in Fig. 3 as dashed line. The interpolation

allows a distance accuracy significantly below the

size of the distance cells.

In all real measurements with the internal tracking

switched off, we observed that two returned targets

with the same relative velocity were always at least

15 cm separated in distance. We conclude that this

is a limit set explicitly in the detection algorithm.

Otherwise, relative maxima that are very close to

each other and are caused only by the noise (like the

one at 9.1 m in Fig. 3) would be returned as separate

targets. Thus also in our simulation, after doing the

distance interpolation for one relative maximum, we

only proceed if the other maxima are at least 15 cm

away from the current one.
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Fig. 4. Simulated target distance measurements over time

At this point, noisy target distance measurements

were simulated by the interpolation of noisy samples.

For the relative velocity, a weighted average of the

true relative velocities of all targets that contribute

to the current detection is used. In order to simu-

late measurement noise, we add artificial noise with

a variance that depends linearly on the simulated

amplitude in dB, a relation that was derived from

real data of other measurement experiments. For the

amplitude, we use the height of the least-squares-

fitted triangular pulse.

Finally, the bearing angle has to be estimated. This

is done, as mentioned before, by the sequential lobing

method [1]. The samples simulated so far were those

received with the sum antenna diagram. For the angle

estimation, we use the relative maximum sample of

the sum diagram and additionally simulate a noisy

complex sample of the delta diagram. These two

noisy samples are forwarded to the angle estimation,

which results in realistic statistical errors and realistic

angle errors when two or more targets are in the same

R-v-cell.
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Fig. 5. Simulated target amplitudes over distance

The statistical errors in the relative velocity were

modeled explicitly by adding artificial noise of a

given variance. The only other noise that we inserted

was the complex noise on the simulated samples. It

is important to note that this single source of noise

generates realistic noise variances (comparing real

and simulated data) in three different dimensions:

distance, bearing angle and amplitude. This fact is

a strong argument of justification for our simulation

model, even if some sensor internals might not be

modeled absolutely correct.

For a comparison of simulated data with the real

measurements, we simulated the situation of our

measurement experiment described in section II. The

resulting distance measurements are shown in Fig. 4,

their real counterparts have been presented in Fig. 2

before. As can be seen, the agreement between real

and simulated data is good. Deviations are visible in

the regions around 10 and 40 s. Here, the distance

resolution in the simulation seems to be a bit too

good. The sparse detections that are visible above



the staircase in the real measurements in Fig. 2 are

caused by the person moving the corner reflector,

who was not considered in the simulation scenario.

Also the amplitudes are simulated realistically, as

can be seen in Fig. 5. In the region around the first

vertical line at about 9 m, the simulated detections are

much stronger than the real ones. This only indicates

that the simulated and the real interference patterns

do not perfectly agree.

IV. CLUTTER ANALYSIS

In Fig. 6, the measured distances of two sensors in

an experiment with sensor-internal tracking switched

off are shown as dots. The two decreasing lines mark

the region where the detections of a corner reflector,

which was used as target for other purposes, had to

be removed. The remaining detections are all caused

by spurious ground reflections and are the basis

of our clutter analysis. During the measurements,

the ground was wet. A comparison with data sets

recorded in different weather conditions was not

possible during this work.
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Fig. 6. Clutter targets over distance

A clutter detection occurs if the detection threshold

is randomly exceeded. In every of the many R-v-

cells, a clutter detection will occur with a very small

probability. Thus the rare occurrence of clutter can

be modeled as a Poisson process. A histogram of the

number of clutter targets per cycle is shown in Fig. 7.

Applying a χ2-test of level 0.03 confirms that this

discrete distribution is indeed similar to a Poisson

distribution with parameter λ = 0.62.

The distribution of the clutter distance values can

roughly be seen in Fig. 6. Below a minimum distance

of about 2.9 m, not a single clutter detection is

visible. This can be explained by the focusing of the

radar sensor in elevation direction. Below a certain
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Fig. 7. Histogram of number of clutter targets per cycle

distance, nearly no radar energy will hit the ground.

For larger distances, the distribution of the clutter

target distances is nearly uniform.

In Fig. 8, a histogram of the measured clutter

angles is shown. In the main direction there is more

clutter than at the edges of the visibility area. The

reason for this is that due to the focusing in azimuth

direction, more spurious energy will be collected in

the main lobe area. The black curve in Fig. 8 is pro-

portional to the squared antenna pattern in azimuth

direction, as it can be derived by the information

given in [4]. It fits to the histogram quite well,

except the significantly large peak at 0◦. The peak

can be explained by the applied sequential lobing

angle estimation method. Here, an amplitude ratio

is computed using two switchable antenna diagrams,

where the second has a zero at 0◦. As the dynamic

range of the digital-to-analog-converter is limited, the

second antenna diagram will return an amplitude of

zero even if the radar target is not exactly at zero

direction. This leads to an angle estimation of 0◦ in

a certain region around the main direction.

angle [◦]
0-20-40 20 40

Fig. 8. Histogram of clutter angle

The measured relative velocities of the clutter

targets are in good approximation uniformly dis-

tributed over the whole range between −22 and

22 m/s (due to limited space, we omit a histogram

here). As the clutter targets are caused by randomly



exceeding the detection threshold due to the collected

spurious energy, there is no reason to expect any

other distribution of the measured relative velocity

values.

V. CLUTTER SIMULATION

In this section, we will present how we simulate

clutter targets. In the simulation of sampling and

detection, as described in section III, no clutter

targets will occur, as there are only true reflectors

considered. We will add clutter targets to the sim-

ulated detections based on the analysis in the last

section.

First of all, in every sensor and every measurement

cycle, we will draw the number of clutter targets

as a random number from a Poisson distribution

with parameter λ = 0.62. The first ten probability

values (n = 0, . . . , 9) of this discrete distribution

are given in Table I. The last values are very small

and decrease roughly about one order of magnitude

from one value to the next. Thus we can approximate

the Poisson distribution, which theoretically extends

until infinity, by a distribution of limited extension

(e.g. until n = 5) without noticeable error. This

is possible because the parameter λ is very small.

A more sophisticated method to generate Poisson

random numbers for larger λ is given in [8].

n = 0 n = 1 n = 2 n = 3 n = 4

0.538 0.334 0.103 0.0214 0.00331

n = 5 n = 6 n = 7 n = 8 n = 9

4.11 e-4 4.24 e-5 3.76 e-6 2.91 e-7 2.01 e-8

Table I. First probability values of Poisson distribution

After the number of clutter targets was determined,

the values of distance, angle and relative velocity for

each target are also drawn randomly from continuous

distributions and then quantized. For the distance,

we use a uniform distribution between the minimum

observable clutter distance of 2.9 m and the radar

range of 30 m. The PDF of the distribution of angles

is approximated by the curve in Fig. 8. The peak

at 0◦ is omitted, as the impact on the consecutive

processing and the final target list is very small.

Generating random numbers from this distribution is

done by drawing a random number from a uniform

distribution on [0, 1] and then using the inverse of

the cumulative distribution function (CDF) on this

value (so-called inversion method). Finally, another

uniform distribution is applied to simulate the relative

velocity values between −22 and 22 m/s.

The clutter that is simulated as described in this

section can nearly completely be removed by a sim-

ple data association procedure in the sensor-internal

tracking. However, it is important to consider the

effect of clutter in this simulation model, as the radar

target list processing algorithms being developed

with this simulation have to be tested in scenarios

as realistically as possible.

VI. CONCLUSION

In this paper, we have presented extensions to our

existing radar target list simulation model. The effect

of two or more targets melting to a single phantom

target in one R-v-cell is now well represented by

simulating the complex samples that the detection is

based on. By simulating the interpolation between

several samples in distance, realistic statistical errors

in the simulated distance measurements are gener-

ated.

The clutter that can be observed before the sensor-

internal tracking stage has been statistically analyzed.

By a simulation model involving only a small num-

ber of random generators, clutter can be simulated

realistically and in a very efficient way.
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