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ABSTRACT

In common automotive radar tracking systems, simple linear models

are used to track targets separately in longitudinal and angular di-

rection relative to the own vehicle (or sensor) position. Under the

special condition that the observed targets are straight ahead and

moving nearly in the same direction as the observing vehicle, like

in adaptive cruise control (ACC) systems, those models work well.

In more general scenarios, where movements of other vehicles have

to be tracked in all possible directions and all around the vehicle (e.g.

in inner-city or intersection situations), the modeling is insufficient.

In this paper we review the drawbacks of the commonly used

models and present a more general motion model for automotive

tracking systems. All necessary expressions for an implementation

using an extended or unscented Kalman filter are given. Even if

designed for radar systems, the state model is not limited to a special

type of sensor. It can be used for ultrasonic or laser scanner systems

as well as for vision-based systems with a different measurement

model.

Index Terms— Radar tracking, Radar signal processing, Road

vehicle radar

1. INTRODUCTION

The automotive driver assistance systems of today often focus on the

area in front of the vehicle, especially on the predicted way of travel.

The sensors are mounted in the front of the vehicle and are directed

to the front so that their field of view is in the driving direction (Fig.

1 shows a typical constellation with one far- and two near-range sen-

sors). Further, those driver assistance systems are designed to react

in situations where the observing vehicle is following other vehicles

in the same or nearly the same direction. Under these conditions, a

longitudinal object movement relative to the observing vehicle (i.e.

mainly in x-direction, Fig. 1) is caused by an acceleration or decel-

eration of either the observing vehicle or the observed vehicle. A

relative movement in angular or transversal direction, on the other

hand, is caused by a change of the steering wheel angle of either

vehicle. These facts allow a computationally very simple model by

separating the two types of movement (acceleration/deceleration and

steering). They are mapped on two separate linear Kalman filters for

the longitudinal and angular directions [1] [2]. The input variances

needed for the Kalman filter can be derived by examining the maxi-

mum (or average) expected acceleration/deceleration for the longitu-

dinal dynamics and by finding the maximum (or average) expected

change in driving direction (gyro rate) of a vehicle for the angular

dynamics.

Future applications of automotive radar will entail the need to

extend the field of view to other regions around the vehicle, e.g. for

blind spot surveillance and lane change assistance. Additional as-

sistance functions for special traffic situations like intersections are
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Fig. 1. Typical mounting positions and fields of view

already under consideration. This motivates tracking systems that

are not limited to objects that are in front of the observing vehicle

and move in the same direction, but also objects that are, for exam-

ple, moving perpendicular to the own driving direction. In this case,

a transversal movement (i.e. a change in the relative angle to the ob-

ject) is no longer solely caused by turning the steering wheel. While

in the restricted situation stated above the two forms of movement

are well separated, this is clearly not the case in general. For this

reason, we propose to use a different motion model that describes

object movements not by longitudinal and angular speeds (and ac-

celerations, respectively) relative to the sensor, but by the tangential

speed and the heading angle/driving direction. This model formu-

lation is simplified by using a global (i.e. fixed) coordinate system

where both the observing vehicle and the observed objects are mov-

ing through. The state and measurement equations of this model are

clearly nonlinear. We will present the equations and expressions nec-

essary for an implementation with an extended or unscented Kalman

filter.

In section 2 the commonly used state space model and its main

drawbacks are described in detail. The new state space model is pre-

sented in section 3. Further discussion of the choice of the global

coordinate system is done in section 4. Finally, in section 5 simu-

lation results are presented in order to compare the two models and

to show the ability of the proposed model to track objects all around

the observing vehicle.

2. COMMON STATE SPACE MODEL

2.1. Model equations

The common state space model that was mentioned in the introduc-

tion is presented in [1]. In contrast to the cited paper, we will state

all variables and equations in discrete time with time index k. In the

longitudinal direction, a simple state space model would include the

distance between own vehicle and object, the relative speed and the

relative acceleration. But as in most vehicles a measurement of the

own velocity is available (as it is necessary for the ESP system), this

state model can be enhanced by taking this additional information
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into account. In [1], the final model for the longitudinal dynam-

ics consists of the following state variables: Distance to the object

d(k), inertial speeds of the own vehicle vego(k) and the object vobj(k)
and the corresponding accelerations aego(k) and aobj(k). With these

states, the state transition equation

x(k+1) =

2
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4
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= Ax(k) + Bw(k) (1)

with the state transition matrix
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and the cycle time T results. Here, w(k) is a 2×1-vector of noise

processes that model the change of the accelerations of the observing

vehicle and the object, and B is the noise input matrix that maps the

elements of w(k) to the last two state variables.

The separate model for the angular dynamics (index a) looks as

follows:

xa(k+1) =

»

α(k+1)
α̇(k+1)

–

= xa(k) +

»

0
1

–

wa(k) (3)

Here, α(k) is the relative angle from the vehicle (or sensor) axis to

the object and α̇(k) is the angular velocity (often referred to as gyro).

The input noise process wa(k) models the change of the angular

velocity over time.

The measurement equation depends on the sensor in use. In [1],

the tracking system is designed for the use with automotive radar

sensors. These sensors typically deliver measurements of distance

and relative speed to targets inside their field of view. Using the iner-

tial speed measurement vm
ego(k), the resulting measurement equation

for the longitudinal model is thus

y(k) =

2

4

dm(k)
vm

rel(k)
vm

ego(k)

3

5 =

2

4

1 0 0 0 0
0 −1 1 0 0
0 1 0 0 0

3

5 x(k) + v(k). (4)

The superscript m helps to distinguish between the state variables

and the corresponding measurements. In comparison to [1], we ig-

nore the measurement of the own acceleration because it is not ac-

tually measured but derived from the inertial speed measurements.

The vector v(k) consists of white Gaussian random variables repre-

senting the measurement noise.

Further, by using different beams and applying the monopulse/

sequential lobing principle [3], the relative angle to the observed ob-

ject is estimated. With this, the measurement equation for the angu-

lar model (3) is

ya(k) = α
m(k) =

ˆ

1 0
˜

xa(k) + va(k) (5)

with the angle measurement noise process va(k).

2.2. Drawbacks

As stated above, the given system model is expected to serve well

for the case that the observed object is moving in nearly the same

direction as the observing vehicle. In the future, however, the need

for tracking systems that are able to cover more general object move-

ments, as they naturally occur, for example, in inner-city scenarios,

will arise. Here, the assumption of equal driving directions is not

motivated any more.

Let us have a look at a situation where an object is driving in a

constant distance of 10 m in x-direction perpendicular to the driving

direction of the observing vehicle with a speed of 30 km/h. The re-

sulting distance and relative angle are shown in Fig. 2. As is clearly

observable, both distance and relative angle change in a nonlinear

way, even if the observed object has constant speed and constant

driving direction. These nonlinear changes are not physically given

but were artificially introduced by the definition of the state space

model.
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Fig. 2. Vehicle driving perpendicular to observer

We now focus on the measurement equation for the relative

speed, i.e. the second row of equation (4),

vrel(k) = vobj(k) − vego(k). (6)

This equation is only true for the case of equal driving directions,

as it was mentioned before. In general, the relative speed between

observer (sensor) and object, which can be measured, for example,

with radar sensors, depends on the angle between the driving direc-

tions. The ego motion information is definitely expected to improve

the tracking system, but has to be considered in a different way. Only

due to the well-known robustness of the Kalman filter, the tracking

might still work even with this erroneous state space model.

In the common motion model, the state of an object is defined in

sensor coordinates, as it can easily be derived from the measurement

equations (4) and (5). Nearly every application that uses the object

state as an input (e.g. the adaptive cruise control) needs the object

position and speed in the vehicle coordinate system. Thus, a trans-

formation from sensor to vehicle coordinate system is necessary. If

more than one sensor is used, the transformations from the sensor co-

ordinate systems to the vehicle coordinate system are different. The

state variances can not simply be transformed to another coordinate

system, as a Gaussian distribution (all error distributions are usually

assumed to be Gaussian when using the Kalman filter) is no longer

a Gaussian distribution after a nonlinear transformation. This makes

the fusion of the objects of different sensors more complicated and

error-prone.

3. A GLOBAL STATE SPACE MODEL

The discussion of the common motion model in the last section can

be summarized as four requests for a more generally applicable mo-

tion model:

R1. The two types of movement changes shall be separated.
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R2. Constant motion shall result in constant movement state.

R3. Ego- and object motion have to be considered correctly.

R4. Common coordinate system for all sensors.

One straightforward way to fulfill the requests R1 and R2 is to de-

scribe the movement of an object by its absolute (i.e. tangential)

speed and its current heading direction. The resulting state transi-

tion equation is the following:

x(k + 1) =

2

6

6

6

6

6

4

sx(k + 1)
sy(k + 1)
v(k + 1)
ϕ(k + 1)
a(k + 1)
δ(k + 1)

3

7

7

7

7

7

5

= f (x(k)) + Bw(k). (7)

The state vector consists of the position (sx(k), sy(k)), the tangen-

tial speed v(k), the heading angle ϕ(k) and the acceleration a(k).
The variable δ(k) is the steering wheel angle and models changes in

the driving direction. Changes in the motion state are modeled by

the 2× 1-input noise vector w(k) which consists of noise processes

for the acceleration and the change in driving direction.

Clearly, the transition function f (x(k)) is nonlinear, which is a

drawback compared to the common motion model. But the correct

consideration of the measured ego- and relative speed is not possi-

ble using only linear equations. The transition function f (x(k)) is

derived in appendix A.
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Fig. 3. State and measurement variables

Fig. 3 shows the main state variables for observer (superscript ego)

and object vehicle. For sake of simplicity, the measured angle α(k)
and distance d(k) are sketched as if the sensor were in the center of

the observer and the object were a point target.

The sensors we are considering here measure distance, relative

angle and relative speed. The resulting measurement equation,

y(k) =

2

4

dm(k)
αm(k)
vm

rel(k)

3

5 = g (x(k)) + v(k), (8)

is nonlinear as well. The function g (x(k)) is given in appendix

A. The 3×1-vector v(k) models the measurement noise in all three

dimensions.

The choice of the state variables allows a 1-to-1 mapping of what

we could call a constant motion state of a vehicle in colloquial words

to a constant state in the motion model. If the driver keeps the steer-

ing wheel and the accelerator pedal fixed, constant acceleration a(k)
and constant steering wheel angle δ(k) result.

As the steering wheel angle was chosen as a state variable, a

model that relates the steering angle with the change in driving di-

rection is needed. A simple and for tracking purposes sufficiently ac-

curate model is the two-point bicycle model, as it is also used in [4]

and [5]. The state transition equation of the driving direction results

in

ϕ(k + 1) = ϕ(k) +
1

L
· T · δ(k) · v(k) + w2(k). (9)

Note that the wheel base L, i.e. the distance between front and rear

wheel of the imaginary bicycle, is needed in the model. Clearly, the

true wheel base of an object observed by the sensor will never be

available. But as using a fixed standard value for the wheel base

for all objects will only result in a scaled steering angle, the model

is generally applicable for tracking purposes. The two-point bicycle

model has the advantage that it inherently relates the possible change

in driving direction to the object speed. This avoids random changes

in the driving direction of static objects. If a currently tracked object

is known to be some sort of vehicle, the steering angle can be limited

to a maximum value.

The coordinate system in which the object position (sx(k),
sy(k)) is measured was not specified yet. One possible choice is

to use the inertial coordinate system of the observer. In this case,

the object position would have to be transformed in every step ac-

cording to the new position of the observing vehicle. To avoid this,

we have chosen to use a fixed (or global) coordinate system. When

the tracking system is started, the origin of this coordinate system

can be defined arbitrarily, for example as the starting position of the

observer. The own vehicle motion is modeled using the same set

of state variables, but with different measurements (speed and gyro

rate/steering angle). As both the observed objects and the observing

vehicle itself are moving through the same fixed coordinate system,

the ego motion is considered correctly and the state transition equa-

tion is greatly facilitated.

4. GLOBAL COORDINATES WITHOUT GPS?

One argument against our proposed model might be the choice of

a global coordinate system. As the observing vehicle is moving

through this coordinate system, it has to maintain its own position.

Without using a system which delivers a global position estima-

tion, like GPS, the only way to keep track of the own position are

the inertial speed and gyro rate/steering angle sensors. As the cur-

rent vehicle position is computed by integrating the measurements

(sometimes called “dead reckoning”) and the sensors are corrupted

by measurement noise (especially the gyro sensor), the position er-

ror will clearly rise over time. Is the conclusion that the proposed

motion model will mandatory require a GPS system?

The answer to this question is no. Of course, after a long ride,

the error in the estimated vehicle position will reach some hundred

meters or even kilometers. But as the measurements of the sensors

(radar, laser scanner or video) are still relative to the observing vehi-

cle, the error in the position of the observed objects will be exactly

the same as the error in the observer position. This means that the

position errors will exactly cancel out each other. The global posi-

tion (sx(k), sy(k)) itself is not of any help, but the choice of the

global coordinate system facilitates the motion model equations.

5. SIMULATION RESULTS

In order to be able compare the performance of both models ob-

jectively, data with an exact reference is needed. Here, we use radar

data that was generated by our own radar target list simulation which
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delivers very realistic radar data [6] [7]. We have chosen a scenario

in which a point target moves with a speed of about 10km/h on a

circle of 15m radius through the view field of a front-mounted short-

range radar.

The two above-mentioned models were used to track the simu-

lated radar target positions. The tracking algorithm with the com-

mon motion model was implemented as described in [1]. For the

new motion model, we used an extended Kalman filter.

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

ab
so

lu
te

p
o
si

ti
o
n

er
ro

r
[m

]

time [s]

common motion model

new motion model

Fig. 4. Absolute position error of circular moving object

The euclidean distance between the estimated track position and

the true object position is shown for both models in Fig. 4. Note that

the comparably large error at the beginning is due to large measure-

ment errors at the edge of the radar sensor’s field of view. The figure

shows that the position error with the new motion model is lower

over nearly the whole track lifetime.

6. CONCLUSION

We have presented a motion model for tracking in automotive radar

applications that is superior to commonly used linearized models. A

global coordinate system allows the simple fusion of data of differ-

ent sensors mounted on one vehicle. Further, by using the tangential

vehicle speed and the driving direction as state variables, the two

types of movement (acceleration/deceleration and steering angle) of

vehicles are well separated and allow a natural description of ob-

ject movement. Simulation results show that the new motion model

outperforms the commonly used approach.

A. MODEL FUNCTIONS

In this section, the state transition and measurement functions ac-

cording to the introduced motion model are derived.

For the derivation of the state transition function f(x(k)), we use

continuous-time versions of some variables (denoted by index c) for

the moment. With this, the exact equation for the position variables

sx and sy at time index k + 1 or time t = (k + 1)T is

»

sx(k + 1)
sy(k + 1)

–

=

»

sx(k)
sy(k)

–

+

(k+1)T
Z

kT

vc(t)

»

cos(ϕc(t))
sin(ϕc(t))

–

dt (10)

with the time-continuous speed vc(t) and driving direction ϕc(t).
Speed and driving direction can be assumed to be linearly changing

in an interval of length T . But as this assumption leads to com-

plicated and numerically unfavorable state transition equations, ap-

proximate speed and driving direction as constant during one inter-

val. They are set to the values that would result at the interval center

t = (k + 1
2
)T using linear models:

vc(t) = v̄(k) = v(k) + T

2
· a(k) (11)

ϕc(t) = ϕ̄(k) = ϕ(k) + T

2
·

1
L
· δ(k) · v(k). (12)

The following simplified transition equations results:

»

sx(k + 1)
sy(k + 1)

–

=

»

sx(k)
sy(k)

–

+ T v̄(k)

»

cos(ϕ̄(k))
sin(ϕ̄(k))

–

(13)

Up to our experience, the given approximations do not cause any

significant errors. The transition equations for the remaining state

variables speed, acceleration and steering angle are straightforward

and are omitted here. Together they form the state transition function

f(x(k)) of equation (7).

The measurement equations can be derived with help of Fig. 3.

Let (ssen
x , ssen

y ) be the present sensor position in the global coordinate

system, ϕego the current driving direction of the observer and ϑsen the

look direction of the sensor with respect to the longitudinal vehicle

axis. The following equations can then easily be derived:

α(k) = arctan

„

sy(k) − ssen
y

sx(k) − ssen
x

«

− ϕ
ego

− ϑ
sen

(14)

d(k) =

q

`

sx(k) − ssen
x

´2
+

`

sy(k) − ssen
y

´2
(15)

vrel(k) = v
ego cos

`

α(k) + ϑ
sen

´

− v(k) cos
`

α(k) + ϑ
sen + ϕ

ego
− ϕ(k)

´

(16)

Together, equations (14), (15) and (16) form the measurement func-

tion g(x(k)) of the new motion model.
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