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ABSTRACT

In array interpolation, the optimal design of the virtual array ge-

ometry is still an open question. It is usually done heuristically

by placing a virtual ULA into the center of the original array and

fitting orientation and aperture by rule of thumb. In this paper,

we parameterize the array manifold by its arc length and use this

representation for the design of a virtual array manifold that opti-

mally matches the directional properties of the original array. We

verify the advantages of our new design method by simulation re-

sults and give some deeper understanding about the interrelation

between the interpolation error, the condition number of the inter-

polation matrix and the DOA estimation bias.

1. INTRODUCTION

Arrays with special arrangements of sensors allow the applica-

tion of simplified and computationally less demanding implemen-

tations of high-resolution direction finding methods. For example,

the structure of single or multiple uniform linear arrays (ULA)

is exploited in the formulation of the computationally efficient

search-free root-MUSIC [1] and RARE [2] algorithms. Similarly,

sensor arrays with shift-invariances facilitate search-free formula-

tions of subspace methods like conventional and multiple invari-

ance ESPRIT [3].

The idea of array interpolation techniques is to make search-

free DOA estimation methods applicable to the general class of

“non-structured” arrays. The original idea proposed by Friedlan-

der [4] is a linear transformation of the real array manifold to a

desired virtual ULA manifold over a preliminary defined direc-

tional sector. This method is bounded to small interpolation sec-

tors and its DOA estimation performance is severely limited by a

strong bias. Polynomial rooting needs to be performed for each

interpolation sector individually, so the ability to choose large in-

terpolation sectors is of high interest for the further reduction of

computational effort.

The specification of the virtual ULA parameters, i.e. center

position, orientation, number of sensors and inter-element spacing,

is usually done heuristically. The aperture of the virtual array is

chosen to be approximately as large as the original aperture, the

virtual array is positioned into the center of the original array and

the orientation is chosen perpendicular to the current interpolation

sector or (if the original array has some specific orientation) like

the original array.

In many cases, the directional properties of the original array

and the virtual ULA differ significantly. For example, consider a

plane circular-like arrangement of sensors. While the aperture size

“seen” from different directions is nearly constant for the physi-

cal array, the effective aperture of the virtual linear array changes

from the whole length of the array (seen from broadside) to zero

(seen from the endfire directions). As the real and virtual arrays

show a quite different directional behavior in this case, array inter-

polation over a large interpolation sector will obviously be a severe

problem.

After introducing the signal model and briefly reviewing the

principle of array interpolation, we will discuss in more detail

some problems arising in the design of a virtual array. More spe-

cific, we will give some insight into the effect of the interpolation

error and the condition number of the interpolation matrix on the

DOA estimation bias. We will then introduce the arc length repre-

sentation of the array manifold and use it for the development of

a new procedure for the design of the virtual array manifold. A

virtual Vandermonde structure is created that can be exploited by

the root-MUSIC algorithm and optimally matches the directional

properties of the original array. As in [5], the resulting virtual ar-

ray can not be interpreted as a physically existing sensor array, but

it has the mathematical properties needed for the application of

several efficient DOA estimation algorithms.

2. ARRAY SIGNAL MODEL

In this paper, we use the common signal model

x(t) = A(θ) s(t) + n(t), (1)

where s(t) is a vector containing the complex signal envelopes of

L narrowband signal sources located in the x-y-plane, n(t) is a

N×1 vector of zero-mean spatially white sensor noise of variance

σ2
n and the columns of the steering matrix A(θ) are the steering or

array response vectors a(θl) corresponding to the unknown source

DOAs θ1, . . . , θL. The steering vector associated with direction θ
is given by

a(θ)=
[

ejk(x1 cos θ+y1 sin θ), . . . , ejk(xN cos θ+yN sin θ)
]T

, (2)

where (·)T denotes transposition and k is the wavenumber. The

covariance matrix corresponding to (1) is

R = E
{

x(t)xH(t)
}

= A(θ)SA
H(θ) + σ2

nI (3)

where S = E
{

s(t)sH(t)
}

is the source covariance matrix.
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3. ARRAY INTERPOLATION PRINCIPLE

In array interpolation, the real array manifold is linearly trans-

formed onto a preliminary specified virtual array manifold over

a given angular sector Θ. That is, an interpolation matrix B is

designed in order to satisfy

Ba(θ) ≈ ã(θ) ∀ θ ∈ Θ, (4)

where a(θ) and ã(θ) are the N×1 and Ñ×1 steering vectors of the

real and virtual array, respectively, and Ñ is the number of virtual

sensors. The virtual array manifold ã(θ) usually corresponds to a

uniform linear array.

The computation of the interpolation matrix B is done by

choosing K representative directions θ1, . . . , θK from the interpo-

lation sector and minimizing the sum of the quadratic interpolation

errors in these directions,

F(B) =

K
∑

i=1

�

�Ba(θi) − ã(θi)
�

�

2
=

�

�BC − C̃
�

�

2

F
, (5)

with respect to B. In the last equality, we used the matrices C

and C̃ containing the steering vectors of the real and virtual ar-

rays associated with the K sample directions. The solution of this

least-squares optimization is B=C̃C
H(CC

H)−1 if the involved

inverse exists. Note that this calculation of high computational

effort has to be done only once in the design phase, not in the

“online” phase as proposed in [6]. In the algorithm application,

the incoming data vectors are left-multiplied by the interpolation

matrix as x̃(t) = Bx(t). By using a noise-prewhitening matrix,

the well-known root-MUSIC algorithm [1] can be applied to the

transformed data. For more details, refer to [4].

4. VIRTUAL ARRAY DESIGN ISSUES

In the following, we give some deeper understanding of problems

arising in the design of the virtual array geometry. With aid of sim-

ulation results, we explain the interrelation between the interpola-

tion error defined in (5), the condition number of the interpolation

matrix and the resulting DOA estimation bias. Especially the con-

dition number of the interpolation matrix is very hard to describe

in terms of the array geometries. Instead of going deep into the

theory, we give visual statements and motivation.
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Fig. 1. Geometry of original array and virtual ULA

For the simulation, we used the array geometry depicted in fig-

ure 1. The circles show the positions of the N =13 original sensors

(with the center of gravity of the sensor locations given at the ori-

gin), while the stars show the position of a virtual ULA (Ñ = N )

used for comparison. The directions-of-arrival of three equipow-

ered signal sources (DOAs fixed to 26.1◦, 77.9◦ and 130.3◦) were

estimated using the original interpolation method with the ULA as

virtual array over the large sector Θ = [0◦, 180◦]. In several simu-

lation runs, we changed the sensor spacing according to d = ηd0,

where d0 is the sensor spacing of the virtual ULA shown in the

figure and η is a parameter to be varied between 0.85 and 1.15.

In each simulation run, we calculated the DOA estimation bias,

i.e. the RMSE with no sensor noise being present. Further, we

calculated the interpolation error according to (5).

From numerous simulations with Friedlander’s interpolation

approach, it becomes apparent that a small interpolation error it-

self does not guarantee a low bias in the DOA estimation. If the

condition number is high - which means that the interpolation ma-

trix is close to being singular - the DOA estimation gives poor

results. Only if the interpolation matrices calculated by different

approaches have comparable condition numbers, the interpolation

error can be used to conclude on the expected DOA estimation

bias. In figure 2, the interpolation error, condition number and

bias are shown over the parameter η. The meaning of the dashed

lines will be discussed later.
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Fig. 2. Interpolation error, condition number and bias

Next, we explain the situation when the inter-element spacing

is less or equal to the starting value d0 (i.e. 0.85≤ η ≤1). Let us

regard the array interpolation - by its original meaning - as a sim-

ple interpolation problem. Looking at a single virtual sensor, the

given interpolation task is to approximate a complex function in

the parameter θ (i.e., a function of the form ejk(x cos θ+y sin θ)) by

a linear combination of a set of complex “basis”-functions, i.e. the

elements of the original steering vector (2). If the virtual sensor el-

ement is lying very close (in space) to one real sensor, the complex

functions of both elements will also be very similar. The approxi-

mation will mainly rely on this element and only marginally on the

other elements. When the aperture of the virtual array gets smaller,

all virtual sensors will be close to some of the inner sensors of the

real array. The approximation can be done very well by a linear

combination depending on those sensors. If the sensor spacing of

the virtual ULA is decreased, the real sensors being closest to a

specific virtual sensor will change, but the interpolation error can

be expected not to change too much. This is validated by the up-

permost graph of figure 2 showing the interpolation error.

On the other hand, the outer, more distant sensors of the real

array are less useful for the approximation, because the complex

functions of the virtual sensors and the real sensors differ signif-

icantly. The linear factors associated with these sensors will be

very small. As it can easily be verified by (4), each row of the in-

terpolation matrix contains the linear factors for the interpolation

of one virtual sensor, and, in turn, each column of the interpola-
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tion matrix contains the interpolation factors associated with one

of the real sensors. When very small values for the interpolation

are associated with some of the sensors of the real array according

to all of the virtual sensors, the interpolation matrix will contain

columns with very small elements. This, however, means that the

interpolation matrix will be close to singular. In the center graph of

figure 2 this claim is validated by the significantly rising condition

number at decreasing sensor spacing.

An opposite situation occurs when increasing the inter-ele-

ment spacing starting from d = d0, i.e., increasing η from 1 up

to 1.15. Now, the distances between the outermost virtual sen-

sors and any real sensor are getting larger. The “basis”-functions

differ more and more from the functions of the virtual sensors,

so the approximation quality will clearly get worse, leading to a

high interpolation error. In contrast to the former situation with

low virtual aperture, where it was quite clear which of the real

sensors are most useful for the approximation, here the linear fac-

tors are nearly unpredictable. The interpolation matrix will contain

“randomly distributed” numbers resulting in a good conditioning.

These facts are also approved by the simulation results in figure 2.

As a first conclusion, the lower of the three graphs affirms

our statement that both the interpolation error and the condition

number of the interpolation matrix account for the DOA estimation

bias. The graph looks in a way like the product of the other two

graphs, as there is a minimum in the middle and the bias is rising

at the edges.

Next, we will introduce the arc length of a sensor array and

use it to derive a design method that will lead to both a small in-

terpolation error and a well-conditioned interpolation matrix.

5. ARC LENGTH AND VIRTUAL ARRAY DESIGN

The complex steering vector a(θ) of a sensor array is usually

parameterized by the angle θ and describes a curve in the N -

dimensional complex space. As we can calculate the traveled way

of a moving object as the integral of its speed over the time, we can

calculate the arc length s(θ) of the curve by integrating the rate of

change of the steering vector (see [7]), i.e.

s(θ) =

∫ θ

0

ṡ(ϑ)dϑ =

∫ θ

0

�

�

�

�

da(ϑ)

dϑ

�

�

�

�

dϑ. (6)

The arc length can easily be calculated in the case of a uniform

linear array on the x-axis. Here, the nth element (n = 0, . . . , N−
1) of the steering vector is

[a(θ)]n = ejnkd cos(θ) , (7)

its derivative is

d

dθ
[a(θ)]n = −jnkd sin(θ)ejnkd cos(θ). (8)

The resulting norm of the derivative of the steering vector is

ṡ(θ) = µkd| sin(θ)| with µ2 =

N−1
∑

n=0

n2. (9)

This expression shows that two closely spaced sources imping-

ing on the array from broadside differ significantly more in their

corresponding steering vectors than two closely spaced sources in

the endfire directions. This is one way of justification for the well-

known fact that the accuracy of DOA estimation is best in the main

direction of an ULA. Finally, the arc length of the uniform linear

array can be calculated with (6):

s(θ) = µkd(1 − cos(θ)) , θ ∈ [0◦, 180◦] (10)

When a circular-like real array and a virtual ULA are used, the

rate of change of the real steering vectors is nearly constant, while

for the virtual sensors the rate varies in a sinusoidal manner. This

change in behavior can not be satisfactory accounted for by a sim-

ple linear transformation and thus gives poor results especially

over a large interpolation sector.

Our intention now is to find a virtual array manifold that has

a Vandermonde structure to be exploited by the root-MUSIC algo-

rithm and the same directional behavior as the original array. The

first condition can easily be fulfilled by constructing the virtual

steering vector as

ã(θ) =
[

1, ejg(θ), . . . , ej(Ñ−1)g(θ)]T
(11)

with an invertible function g(θ) to be defined in the following. As

a measure for the directional behavior, we use the rate of change

of the arc length. For this newly defined virtual steering vector, it

is

˙̃s(θ) =

�

�

�

�

dã(ϑ)

dϑ

�

�

�

�

= µ̃|ġ(θ)| with µ̃2 =

Ñ−1
∑

n=0

n2. (12)

Obviously, the function

g(θ) =
1

µ̃

∫ θ

0

�

�

�

�

da(ϑ)

dϑ

�

�

�

�

dϑ (13)

satisfies the second condition ṡ(θ) = ˙̃s(θ) (see (6)).

In opposite to the original array interpolation approaches,

where in some cases the number of virtual sensors has to be re-

duced in order to get a reasonably conditioned interpolation matrix

[4], we expect that with our design method this is not necessary at

all. However, if desired, the virtual array designer still has the

option to choose a smaller number of virtual sensors in order to

further reduce the computational effort.

Using the virtual steering vector constructed in (11) instead of

the steering vector of a ULA, the original array interpolation pro-

cedure with the root-MUSIC algorithm can still be applied. The

only difference is that the DOA estimations θ̂n have to be cal-

culated from the roots ẑn of the root-MUSIC-polynomial by the

inversion formula

θ̂n = g−1(arg(ẑn)) (14)

instead of θ̂n = arcsin(arg(ẑn)/kd).

While this function can always be easily calculated analyti-

cally, it is generally not possible to invert it analytically like in the

ULA case. For this reason, representing the function g−1(θ) by

second-order splines is a reasonable approach. The spline inter-

polation error is deterministic and directly affects the DOA esti-

mation. It can be kept negligible in comparison to the stochastic

error caused by the sensor noise by selecting appropriately small

intervals for the spline representation.

6. SIMULATION RESULTS

In the following, we will illustrate the advantages of our new de-

sign method by the results of a second simulation using the same
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array geometry as before (figure 1). In this simulation, in each

of 1000 runs three source positions were chosen randomly. The

DOAs were estimated at the presence of Gaussian noise with an

SNR of 0 dB. First, Friedlander’s original interpolation approach

was applied with the sensor spacing d0 of the virtual ULA. Sec-

ond, we used our approach with the modified virtual array mani-

fold based on the arc length of the original array. In fact, due to

the centering of the original array to the origin, instead of (11) the

virtual array manifold

ã(θ) =
[

e−j
Ñ−1

2
g(θ), . . . , 1, . . . , ej

Ñ−1

2
g(θ)]

(15)

was used (with µ̃ appropriately modified). The interpolation sector

was again Θ = [0◦, 180◦].
The result shown in figure 3 was calculated as follows: First

all DOAs falling into intervals of 10◦ width (e.g. [30◦, 40◦)) were

collected. Then the RMSE of the corresponding DOA estimations

was calculated and gives the value at the interval center (e.g. at

35◦). It is remarkable that there is no difference in RMSE over

a large interval of the interpolation sector. Only close to the end-

fire directions, our proposed design method shows little advantage

over the common interpolation approach. However, in the RMSE

calculation all DOA estimates with an error larger than 20◦ were

omitted. With the virtual ULA, about 60 percent of the DOA esti-

mations for real DOAs lying in the intervals [0◦, 10◦) and [170◦,

180◦] were outliers. Using our proposed design method, we found

that there were less than 10 percent outliers. This result shows that

our proposed design method allows the use of very large interpo-

lation sectors, as the DOA estimation works well even close to the

endfire directions.
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Fig. 3. RMSE at SNR=0 dB

It has not been discussed yet, how the parameters of the vir-

tual ULA have been chosen, which - as was said before - is usually

done heuristically. The optimal center position of the ULA was

quite clear, as we placed the center of gravity of the sensor posi-

tions of both the original and the virtual ULA to the origin. The

inter-element spacing, on the other hand, could still have been cho-

sen slightly larger or smaller without hurting the condition that the

apertures of both arrays shall be of similar size. For this purpose,

we chose the inter-element spacing just in a way that the arc length

of original array and virtual ULA fitted best in a least-squares-

sense. This can easily be done, as the sensor spacing is a linear

factor in the arc length, see equation (10). Clearly, the RMSE val-

ues attained with the two different approaches do not differ very

much, because the steering vectors of both virtual arrays are very

similar to each other.

The former simulation presented in chapter 4 was once done

using the proposed virtual array manifold instead of the virtual

ULA as the interpolation target. The results (of course indepen-

dent of η) are shown in figure 2 by the dashed lines. Our method

of designing the virtual array manifold gains good values in the in-

terpolation error and the condition number and outscores the orig-

inal method by Friedlander in DOA estimation bias even in the

case where the parameters of the virtual ULA are chosen nearly

optimal.

7. CONCLUSION

In this paper, we first examine the interrelations between interpo-

lation error, condition number of the interpolation matrix and the

resulting DOA estimation bias. Motivated by the changing resolu-

tion capabilities of sensor arrays in different directions-of-arrival,

we propose a new method of designing the virtual array manifold

based on the arc length representation of the real sensor array. By

construction, it matches the directional behavior of the real array.

Only minor changes to the original DOA estimation procedure us-

ing a virtual ULA and the root-MUSIC algorithm are necessary.

In contrast to common approaches, this design method does not

require any of the properties of the virtual array geometry to be

chosen heuristically. Further, it provides the option to reduce the

dimensionality of the data by choosing a number of virtual sen-

sors less than the number of real sensors. Simulation results show

that our method outperforms Friedlander’s original approach and

allows the use of very large interpolation sectors.
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