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ABSTRACT

We address the problem of data independent robust array

interpolation over large angular sectors. Previous interpo-

lation methods apply the root-MUSIC principle to interpo-

lation data of a predefined virtual ULA manifold. These

methods either suffer from severely biased direction-of-

arrival estimates due to interpolation errors or rely on data

dependent interpolation matrix design. In this paper a new

interpolation approach is proposed. Instead of transform-

ing the original array geometry to the rather restrictive ULA

structure, here interpolation is performed with the objective

to create a virtual array manifold which is a shifted version

of the real array manifold. This artificial shift-invariance

can be exploited by the well-known ESPRIT algorithm. A

joint design of virtual array geometry and interpolation ma-

trix yields additional degrees of freedom which reduce inter-

polation errors and allow to increase the interpolation sector.

The new algorithm enjoys both simple design procedure and

fast implementation and offers reliable DOA estimation for

a wide range of different scenarios.

1. INTRODUCTION

Specific redundancies in array structures can be exploited

to simplify implementations of subspace direction find-

ing methods. For example, the Uniform Linear Array

(ULA) allows the formulation of the computationally effi-

cient search-free root-MUSIC and MODE algorithms [1],

[2]. Similarly, sensor arrays with shift-invariances facili-

tate search-free formulations of subspace methods, as for

example conventional and multiple invariance ESPRIT [3],

UCA root-MUSIC and UCA-ESPRIT [4], multiple invari-

ance root-MUSIC [5] and RARE [6].

The idea of array interpolation techniques is to make

search-free estimation methods applicable to the general

class of “non-structured” arrays. An early approach by

Friedlander [7] is based on a linear transformation of the

original array manifold to a desired ULA manifold over

a preliminary defined directional sector. Even though this

method has several attractive properties, it is bounded to

comparably small interpolation sectors and its DOA esti-

mation performance is severely limited by a strong bias in

the root-MUSIC estimates. The bias results from interpo-

lation errors between the interpolated and the desired array

response. Several authors have addressed this issue and nu-

merous methods have been designed to essentially reduce

the bias [8], [9]. Unfortunately, these methods incorporate

data measurements into the interpolation matrix design and

therefore require the matrix computation to be done “on-

line”, leading to increased computational complexity.

In this paper, we propose a new interpolation method

which is based on the idea of including the virtual array de-

sign into the interpolation matrix design procedure. Instead

of performing an interpolation onto a preliminary specified

array structure, in the new approach the virtual array is de-

signed to be a mathematically shifted version of the original

array. In contrast to [10], the virtual array manifold is not

limited to belong to a physically realizable array structure.

Note that this artificially generated shift-invariance does not

make any demands on the physical array structure like con-

ventional ESPRIT does.

Relaxation of the restrictions imposed on the virtual ar-

ray yields several important advantages: reduction of inter-

polation error and estimation bias which allows to increase

the extent of the sector that interpolation can successfully

be applied on, simplification of the interpolation design and

reliability of the solution in many different scenarios.

2. ARRAY SIGNAL MODEL

Consider a sensor array composed of N sensor elements

with the nth sensor located at the position dx,n and dy,n

in the x- and y-direction, respectively. Let L narrowband

plane waves impinge on the array from unknown DOAs.

For simplicity, we assume that all signal sources are located

in the x-y-plane where the DOA of the lth source signal is

fully represented by its azimuth angle θl∈ [0, 2π] measured

counterclockwise from the x-axis. The array response to a

source signal arriving from the DOA θ is given by a(θ) =
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[

e−jk(dx,1 cos θ+dy,1 sin θ), . . . , e−jk(dx,N cos θ+dy,N sin θ)
]T

where (·)T denotes transposition and k denotes the wave-

number. The array output vector can be modeled as

x(t) = A(θ) s(t) + n(t), t = 1, 2, . . . ,M (1)

where

A(θ) =
[

a(θ1), . . . ,a(θL)
]

(2)

is the (N×L) steering matrix, θ=[θ1, . . . , θL]
T

is the vector

of true source DOAs , s(t) is the (L×1) vector containing

the complex signal envelopes, n(t) is the (N × 1) vector

of zero-mean spatially white sensor noise of variance σ2
n

and M is the number of snapshots. The spatial covariance

matrix corresponding to (1) and its eigendecomposition are

given by

R = E
{

x(t)xH(t)
}

= A(θ)SAH(θ) + σ2
n
I

= EsΛsE
H
s

+ EnΛnE
H
n

(3)

where S = E
{

s(t)sH(t)
}

is the (L×L) source covari-

ance matrix, I is the identity matrix, (·)H denotes Hermitian

transposition and E {·} is the statistical expectation opera-

tor. The (L×L) and the (N−L)×(N−L) diagonal matrices

Λs and Λn contain the signal- and noise-subspace eigenval-

ues of R, respectively. In turn, the columns of the (N×L)
and N×(N−L) matrices Es and En denote the correspond-

ing signal- and noise-subspace eigenvectors. Similarly, the

sample estimate of the covariance matrix (3) can be decom-

posed as

R̂ =
1

M

M
∑

t=1

x(t)xH(t) = ÊsΛ̂sÊ
H
s

+ ÊnΛ̂nÊ
H
n

. (4)

3. VIRTUAL SHIFT INVARIANCES

The idea of conventional array interpolation techniques is a

transformation of the real array manifold over a given an-

gular sector Θ = [θmin, θmax] onto a preliminary specified

virtual array manifold. That is, a (N̆×N) interpolation ma-

trix B is designed that satisfies

Ba(θ) ≈ ă(θ) , θ ∈ Θ (5)

where a(θ) and ă(θ) are the (N ×1) and (N̆ ×1) steering

vectors of the real and virtual array, respectively, and N̆ is

the number of virtual sensors. The virtual array manifold

ă(θ) usually corresponds to a uniform linear array (ULA). A

major difficulty emerging in this approach is the comparably

restrictive constraint imposed by the a priori choice of the

virtual array geometry.

Moreover, conventional array interpolation techniques

share the fact that the selection of the parameters that define

the virtual ULA geometry and allow best interpolation and

estimation results is not a part of the optimization problem

which is formulated for the interpolation matrix calculation.

The parameters in question are the number of virtual sen-

sors, the inter-element spacing, the array orientation and the

position of the array center and are chosen heuristically.

In this paper we present a new interpolation approach

which has the ability to overcome those drawbacks. Instead

of an interpolation from the real array manifold to a prede-

fined ULA manifold, here the target geometry is a shifted

version of the real array manifold:

ă(θ) = z(θ)a(θ) , θ ∈ Θ. (6)

The phase shift z(θ) ∈ C may theoretically be any invertible

function; we recommend to use an exponential form like

z(θ) = ejθ, ej2π cos(θ) or ej2π sin(θ). Note that due to the

construction of the virtual array we have N̆ =N here.

The computation of the interpolation matrix B is now

done in accordance to Friedlander’s method [7]. K repre-

sentative directions θ1, . . . , θK are chosen from the inter-

polation sector Θ. The sum of the quadratic interpolation

errors in these directions,

F(B) =
K

∑

i=1

w

wBa(θi) − ă(θi)
w

w

2
=

w

wBC − C̆
w

w

2

F
, (7)

is minimized with respect to B. In the last equality we used

the matrix C consisting of the steering vectors of the sample

directions: C = [a(θ1), . . . ,a(θK)]. Similarly, C̆ contains

the virtual steering vectors and is calculated as C̆ = CZ,

where Z contains the shifting terms:

Z = diag
{

z(θ1), . . . , z(θK)
}

(8)

The minimizing argument of the least-squares optimization

criterion (7) can now easily be calculated as B = C̆C†,

where (·)† denotes the Moore-Penrose pseudoinverse of an

arbitrary matrix; C† = (CHC)−1CH in the case that the

involved inverse is defined. Note that this calculation of

high computational effort has to be done only in the design

phase, not in the “online” algorithm application.

Even if we are only generating a shifted version of the

array manifold, the noise characteristics of the original and

transformed output signals can be quite different. The co-

variance matrix of the real array is defined in (3), whereas

the covariance matrix of the virtual array is given by

R̆ = BRBH = ĂSĂH + σ2
n
BBH , (9)

with Ă=BA(θ). Obviously, the sensor noise of the vir-

tual array is generally colored. In [7], where the root-

MUSIC algorithm is applied to a virtual uniform linear ar-

ray, noise-prewhitening by multiplication with (BBH)−1/2

is inevitable. In practice the prewhitening matrix is of-

ten ill-conditioned, leading to numerical difficulties in the

estimation procedure. Here, where we use the ESPRIT
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algorithm instead, noise-prewhitening would destroy the

shift-invariance relating the physical to the virtual array.

A more sophisticated procedure, which turns out to yield

essential benefits, is developed from the singular-value-

decomposition of the interpolation matrix

B = UΓVH (10)

with the unitary (N×N) matrices U and V and the (N×
N) diagonal matrix Γ containing the singular values of B

arranged in non-increasing order. Multiplying both sides of

equation (5) with UH from the left and defining the two

interpolation matrices B1 = UH and B2 = ΓVH yields

UHBa(θ) = UHUΓVHa(θ) = B2 a(θ) ≈

≈ UH ă(θ) = UHa(θ)z(θ) = B1 a(θ)z(θ) .
(11)

Clearly, the two virtual array manifolds ă1(θ) = B1 a(θ)
and ă2(θ) = B2 a(θ) are related to each other by the shift

function: ă2(θ) ≈ z(θ) ă1(θ) for θ ∈ Θ.

It is easily verified that the sensor noise corresponding

to both virtual arrays is spatially white with the noise co-

variance matrices

Q̆1 = σ2
n
I and Q̆2 = σ2

n
Γ2 . (12)

Interestingly, we observe that the noise variances of the sec-

ond virtual array are proportional to the squared singular

values of the interpolation matrix B. In other words, there

are certain virtual sensors whose signals are more degraded

by sensor noise than others. It is important to note that

due to the linear transformation each of the sensors of both

virtual arrays generally contains information of all physical

sensors.

With b2,i representing the ith row of B2 and making use

of equation (12), we define the (data independent) Signal-

to-Noise Ratio (SNR) of the ith sensor in the second virtual

array averaged over the representative directions as

SNRi =
‖b2,iC‖2

Kγ2
i

, (13)

where γ1, . . . , γN are the singular values of B.

The dimension reduction of the array data in order

to further reduce the computational load of the direction-

finding algorithm is a primary objective of several so-called

beamspace methods, for example [11]. Equation (13) pro-

vides a simple and intuitive criterion for the appropriate

choice of the number of virtual sensor elements, in a sense

that we simply remove those sensors of the virtual arrays

which correspond to an average SNR below a given thresh-

old τ . That is, the ith row of the interpolation matrices B1

and B2 is removed if SNRi < τ for i = 1, . . . , N . This

may be formulated using a suitably designed (N̄×N) selec-

tion matrix J such that the interpolation matrices of reduced

dimension are

B̄i = JBi for i = 1, 2 . (14)

4. INTERPOLATED ESPRIT

The derivation of the algorithm is very similar to the original

ESPRIT approach [3]. Neglecting the interpolation errors

(which means assuming the approximation (5) to be fulfilled

exactly) and using equation (11), we get

B̄1AZ = B̄2A (15)

with the (unknown) physical steering matrix A=A(θ) and

the matrix Z=Z(θ) containing the values of the shift func-

tion for the true DOAs θ1, . . . , θL. By definition, the ma-

trix Es from equation (3) and the steering matrix A span

the same subspace. Therefore, these matrices are related to

each other by a full rank matrix T:

A = EsT (16)

Substituting A in (15) using the last equation and multiply-

ing with T−1 from the right, we end up with

B̄1 EsΨ = B̄2 Es , (17)

where we used the definition

Ψ = TZT−1 . (18)

Note that Ψ is generated from Z by a similarity transfor-

mation, which means that the eigenvalues of Ψ are the di-

agonal elements of Z. Hence, with an estimate Ψ̂ of Ψ we

can obtain estimates for the DOAs by applying the inversion

formula θ̂l = z−1(λ̂l) to the eigenvalues λ̂1, . . . , λ̂L of Ψ̂.

An estimate for the matrix Ψ can be found by solving

equation (17) in a weighted least-squares sense (or similarly,

in a weighted total-least-squares sense):

Ψ̂ = arg min
Ψ

{

w

wW̄
1

2

(

B̄1ÊsΨ − B̄2Ês

)w

w

2

F

}

=
(

W̄
1

2 B̄1Ês

)†
W̄

1

2 B̄2Ês

(19)

The diagonal matrix W̄ = JWJT consists of the sensor-

specific SNR values defined in equation (13) (that is, the

(N×N) matrix W consists of all SNR values). The weight-

ing emphasizes the influence of the virtual sensors with the

highest averaged SNR. Like the interpolation matrices, the

weighting matrix is independent of the sensor data and can

be computed in advance.

5. SIMULATION RESULTS

In order to illustrate the various advantages of the new inter-

polation approach we compute the Root-Mean-Square Error

(RMSE) of the DOA estimation obtained by Interpolated

ESPRIT, averaged over a set of different array configuration

and source signal scenarios. We consider a planar sensor ar-

ray composed of N = 15 sensors. In each simulation run,
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sensor positions are randomly drawn from a circular uni-

form distribution with radius r=λ located in the x-y-plane

and centered around the origin of a spherical coordinate sys-

tem. Similarly, in each simulation run the locations of two

uncorrelated and equipowered signal sources with a con-

stant angular separation of θ1−θ2 =8◦ are drawn uniformly

from the interval [−45◦, 45◦]. The number of snapshots is

M = 100. In total, 1000 independent simulation runs are

performed to estimate the RMSE’s which are displayed in

Fig. 1 versus spectral MUSIC and the corresponding aver-

aged Cramer-Rao Bound (CRB) of the physical sensor ar-

rays. The interpolation sector for the design of the interpo-

lation matrices is [−45◦, 45◦] (to get a fair comparison, this

is also where the MUSIC spectrum was searched for peaks).

The shift function is z(θ)=ej2π sin(θ) and τ =1/4 is chosen

as a threshold for the selection of the virtual sensors leading

to an averaged virtual array length of N̄ ≈10 sensors.

Note that averaging over the various sensor array and

source location scenarios emphasizes the worst case perfor-

mance of the proposed methods. Also note that conven-

tional data independent interpolation methods like Friedlan-

der’s interpolation approach [7] completely fail to resolve

the sources in the described scenarios and therefore are not

helpful to be used as a benchmark.

The simulation results validate the essential perfor-

mance improvement provided by the proposed method. The

RMSE of the new approach is not longer limited by the bias

of the DOA estimates. Its absolute value slightly exceeds

the results we obtained with conventional MUSIC, but this

is a small price for the huge saving in computational load

and algorithm complexity. In regions of low SNR (below 15

dB in Fig. 1) Interpolated ESPRIT even outperforms spec-

tral MUSIC, because the new algorithm shows a very favor-

able threshold behavior.

Furthermore, the general setting chosen in the simula-

tions shows both the reliability of the method and the sim-

plicity of the interpolation design which makes the method

applicable to a wide class of scenarios.
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