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Abstract— Non-Intrusive Load Monitoring (NILM) refers to
the analysis of the aggregate power consumption of electric loads
in order to recognize the existence and the consumption profile
of each individual appliance. In this paper, we briefly describe
our ongoing research on an unsupervised NILM system suitable
for applications in the residential sector. The proposed system
consists of the typical stages of an event-based NILM system with
the difference that only unsupervised algorithms are utilized in
each stage eliminating the need for a pre-training process and
providing wider applicability. In the event detector, a grid-based
clustering algorithm is utilized in order to segment the power
signals into transient and steady-state sections. Macroscopic
features are extracted from the detected events and used in a
mean-shift clustering algorithm. The system is tested on the
publicly available BLUED dataset and shows event detection
and clustering accuracy more than 98%. The system also shows
possible disaggregation up to 92% of the energy of phase A of
the BLUED dataset. Moreover, the system has been utilized in an
energy-disaggregation competition held by Belkin and achieved
a score within the top ten results with disaggregation of more
than 93% of the total time.

Index Terms— Inverse Load Reconstruction, Unsupervised
Non-Intrusive Load Monitoring (NILM), Grid-based Clustering,
Mean-Shift Clustering, BLUED Dataset

I. INTRODUCTION

Energy disaggregation becomes more and more important
not only to residential consumers but also to power com-
panies as well as appliance manufacturers. Many residential
consumers lack a good understanding of their usage of energy
or even the consumption of individual appliances [1]. Power
companies require accurate estimates about future energy
usage in order to handle more efficient energy generation
strategies such as load-dependent energy generation, smart-
grids, dynamic pricing models, or even to find more efficient
energy conservation approaches. Appliance manufacturers can
benefit from a detailed usage pattern of their appliances in
order to provide more energy-efficient appliances or new
power applications such as home automation, activity sensing,
and health care.

Electrical loads can be monitored either in a distributed
approach where each appliance has its own sensor or by
disaggregating the building-level energy consumption profile
in an approach commonly referred to as Non-Intrusive Load
Monitoring (NILM). NILM systems disaggregate the electrical
signal measured from a single or a limited number of metering
points, thus, providing more reliability as a result of the
reduced metering points and less cost due to the reduction in

the utilized hardware. Research on NILM flourished during the
last decade in three directions, namely, selection and extraction
of features for different loads, development of detection and
classification algorithms, and acquisition of power datasets that
assist in development and evaluation of NILM systems. A
good review of existing NILM approaches is found in [1–3].

NILM systems are categorized into event-based and non-
event-based approaches. Event-based NILM systems rely
mainly on the detection and classification of events within
the aggregate electrical signal. Furthermore, NILM systems
are categorized into supervised and non-supervised approaches
depending on whether or not they require a training process
prior to deployment on a target building. In contrast, unsu-
pervised NILM systems do not required pre-training and are,
therefore, expected to have a wider applicability and even less
intrusion.

In this paper, we describe our ongoing research on a
completely unsupervised event-based NILM system. A brief
description of the algorithm in each stage is provided together
with results of application on two power datasets. This paper
is organized as follows. Section II introduces the event-
detection stage. In Section III and Section IV, we describe
the event clustering stage and the features selected for this
stage. Section V briefly describes the transition matching
process and estimation of the energy consumption of each
load. Experiments are described in Section VI together with
their results. Finally, Section VIII concludes this paper.

II. EVENT DETECTION

In the event detection stage, the electrical signal is seg-
mented into transient Ψ and steady-state Π sections. In contrast
to the conventional change-point detection, the proposed event
detector is capable of accurately defining the time limits of
each transition interval Ψ. Accurate detection of the change
interval is crucial for extracting appliances’ signatures from
their transient behavior.

In this event detector a clustering algorithm is repetitively
applied on overlapping intervals of the continuously streaming
real and reactive power signals at frequencies between 1Hz
to 60Hz. Therefore, the event detector is the performance
bottleneck of the proposed system. In order to reduce the com-
putational complexity of this stage, we follow two approaches.
First, the detection process is applied on the logarithmically
transformed signals Pl and Ql of the raw real P and reactive
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Q power signals based on the function

Xl =

 ln(X) X > 0
0 X = 0
- ln(-X) X < 0

(1)

where X ∈ {P, Q}. With this transform, the event detection
is performed on a narrower power range resulting in reduced
computation time. The transform also helps in suppressing
high fluctuations in higher power ranges. An offset may be
added to adopt the transform to a suitable operating point.

Second, we utilize a grid-based clustering scheme which
is closely related to density-based clustering but rather less
computationally expensive. Thus, the event detector preserves
a real-time processing of the signals even though the whole
NILM system is based on batch-processing due to the event
clustering stage. In the following, the event detector is de-
scribed using a two-dimensional signal of the real P and reac-
tive Q powers. However, the detection algorithm is applicable
to higher dimensions and it has also been tested on a one-
dimensional signal of the real power P only.

Given a interval [ti, ti+n], where ti is the time of the
ith instance, the transformed real Pl [tj ] and reactive Ql [tj ]
power signals are projected on the PlQl-plane where tj ∈
{ti, ti+1, ti+2, . . . , ti+n}. In the resulting PlQl-plane, steady-
states Π are represented as clusters while transients Ψ as well
as noise are found as scattered points or outliers. Figure 1
shows an example of two appliances from the BLUED dataset
plotted on PlQl-plane.

For a clustering-based event detection two steps are re-
quired. First, the interval [ti, ti+n] must be selected such that
it contains exactly one transient event and two steady-states.
The second is an efficient, noise-aware, low computationally
demanding clustering algorithm that can be applied repeatedly
on the PlQl-plane to extract the transient event as the noise
and the steady-states as the clusters.

A sliding window with increasing width is used to satisfy
the first requirement. The window size is increasing sequen-
tially (by increasing n) while applying the clustering algorithm
on each incremental step. The interval is defined by the first
time two clusters are detected. This further requires that the
clustering algorithm does not assume any prior knowledge
about the number of clusters.

In the utilized grid-based clustering algorithm, the PlQl-
plane is divided into equally sized rectangular pins. The plane
is then treated as a binary image and is searched for connected
objects (dense areas). Each object’s value is the sum of all
bins’ values that belong to the object, and each bin’s value
is in turn the number of data points that belong to the bin.
The algorithm requires two parameters, namely, the bin size ε
and the cluster threshold minPts. These two parameters are
mapped to physical quantities as follows. For the value of the
bin-size in the real power dimension:

∆Pmin = e2×εP +ln(P ) (2)

where ∆Pmin is the minimum change assumed for an event at
a working point P . The minPts is mapped to the minimum
required length of a steady-states as:

minPts = ∆Tmin · fs (3)
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Fig. 1: The PlQl-plane of a signal from the BLUED dataset [4] that
includes two loads.

where ∆Tmin is the minimum length of a steady-state and
fs is the sampling frequency of the real and reactive power
signals. Connected objects with object-values greater than
the threshold minPts are considered clusters that represent
steady-states while other objects are noise that result from
the transients. Worth noting is that the developed algorithm
includes a further refinement and verification steps that can
handle special cases such as simultaneous events that are apart
from each other by a value less than ∆Tmin. Also, the param-
eter minPts is increased to account for high fluctuations if
detected.

Figure 2 shows a sample signal from Belkin’s dataset with
a sampling frequency of 6 Hz. The figure also visualizes
two features in the detected events (highlighted with blue
circles) upon application of the event detection algorithm with
fs = 6 Hz and minPts = 10 samples (i.e. ∆Tmin = 1.67
seconds). The first half of the signal shows an example of
off-on simultaneous events. Off-on simultaneous events are
detected even though in some cases the steady-state length is
600 ms.

The second half shows an example of varying steady-states
where Π12 and Π14 follow a sinusoidal behavior while Π13

has a wide and changing noise pattern. The figure shows the
advantage of the dynamic bin size adaptation in handling these
steady-states. Observable from the figure, however, is that high
noise values (±50 Watts) led to an inaccurate detection as
observed in Ψ12.

III. FEATURE EXTRACTION

In this stage, features are extracted from each transient
section. Selected features are the power change ∆Ψ and the
transition spike δΨ. Each feature is computed on both the real
P and reactive Q power signals as follows

∆ΨX
i = ΨX

i (NΨ
i − 1)−ΨX

i (0) (4)

and

δΨX
i = sign(∆ΨX

i )

(
max
n

ΨX
i (n)−min

n
ΨX
i (n)

)
(5)
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Fig. 2: The application of the event detector on 6 Hz power signal from Belkin energy disaggregation competition on Kaggles platform [5]
with minPts = 10. Highlighted in blue circles are the detected events. Shown on the left is an example of detected off-on event. On the
right is an example of noisy steady-states and their effect on the detection.

where X ∈ {P, Q} and NΨ
i is the number of data samples

in the transient section Ψi. This results in a four dimensional
feature vector. The set of all vectors are then fed to the
clustering stage.

IV. EVENTS CLUSTERING

In the clustering stage, events are grouped into separate
clusters according to their extracted features. Since the number
of underlying appliances is not known in advance, we utilize
a non-parametric clustering algorithm, namely the mean-shift
clustering scheme. The mean-shift clustering algorithm has the
advantages that it is non-parametric, independent of the un-
derlying distribution, and implicitly includes a mode-seeking
algorithm. Recently, mean-shift clustering has been proposed
for application in NILM systems and was proved to provide
even better results than the k-means algorithm in special cases
[6]. We utilize a simple kernel function such as

K(θ) =

{
1, if ‖θ‖ ≤ λ
0, otherwise

(6)

where λ is the kernel bandwidth.

V. TRANSITION MATCHING

In the transition matching stage, on- and off-events belong-
ing to the same appliance are grouped together so that the
whole operation interval of each appliance can be inferred.
In this work, we only propose an initial transition matching
stage that can be used to reduce the search space for further
matching processes but does not guarantee high disaggregation
ratios except in special cases. The matching process in the
proposed system is based on the ground-state detection.

A ground-state is a state during which no detectable ap-
pliance is operating. In the implemented NILM system, the
ground-state is detected as the steady-state with the lowest
power consumption level in a signal with the duration of at
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Fig. 3: A pair of on- and off-events (right E1 and E4) surrounded
by ground-states belongs to the same appliance. Events are labeled
Ei where i is the cluster index based on the output from the event
clustering stage.

least one day. We observed that in the residential data there are
several times when the occupants have limited activity. Such
low-activity periods include small number of simultaneously
operating loads and are, therefore, utilized in self-training the
NILM system for transition matching.

According to the definition of the ground-state, if a pair
of on- and off- events are surrounded by ground states (i.e.
a ground-state before the on-event and another after the off-
event) then these two events must belong to one appliance and
the interval in between also belongs only to that appliance.

Figure 3 shows an example of a solely-operating appliance
detected in between two ground-states. In the first iteration,
the right pair of on- and off-events (E1, E4) are matched
and considered switch-on/off events. Once these two events
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Fig. 4: Operation intervals of disaggregated appliance from phase A
of the BLUED dataset [4].

are matched, the matching is triggered again based on the
matching that occurred in the previous iteration. In the second
iteration, given that E1 is matched to E4, then the on-event E2

is matched with only remaining off-event E3. This is repeated
until no more matching is possible.

VI. EXPERIMENTS AND RESULTS

The event detector is tested on the publicly available
BLUED dataset [4] and the power dataset provided by the
consumer electronics manufacturer Belkin in its energy disag-
gregation competition [5] held on the Kaggle’s platform.

TABLE I: Event detection results

TPP FPP Events E

Phase A 98.5% 0.55% 886
Phase B 70.5% 8.75% 1579

Table I shows the event detection results of both phases
of the BLUED dataset. The True Positive Percentage (TPP)
and the False Positive Percentage (FPP) represent the second
detection metric defined in [7]

Figure 4a shows disaggregation results of the NILM system
on the BLUED dataset. The BLUED dataset has 7-day long
measurements. In the figure, we projected all operation inter-
vals of disaggregated appliances into a single 24-hours day.
Shown results belong to phase A only and has 14 detected
appliances where shaded green areas represent their intervals
of operation. A02 represents two lights, bed room lights and
bathroom downstairs lights because the system was not able to
disaggregate these two load due to the similarity in their sig-
natures. The figure also shows the low-activity during the time

period [0, 7] hours as expected. Such low-activity periods are
utilized in self-training the NILM system using individually
operating appliances. The total disaggregation reported by the
system is 92% of the total energy. Since disaggregated data is
not readily available with the BLUED dataset, disaggregation
results from our NILM system on BLUED are not yet verified.
Developing the disaggregation data for BLUED is among our
future work.

Appliance A01 is the refrigerator. As observed, its operation
does not depend on the time of the day simply because it
is a background appliance. Figure 4b shows a single-day
disaggregation of the refrigerator. The figure shows the clear
periodic behavior of the load which directly indicates that
it has an on-off controller. Using this information together
with characteristics from the power signals (for example being
resistive, capacitive, or inductive) can lead to an identification
of the category of appliance. Therefore, behavioral analysis
of disaggregated appliances is also among our planned future
work in order to develop an unsupervised NILM system with
appliance identification.

Finally, we participated in the energy disaggregation com-
petition held by Belkin on the Kaggle platform using the
developed NILM system with minor modifications. The dis-
aggregation results were in the 5th position when evaluated on
the public folder, and the 6th on the private folder on the last
day of the competition 30th of October, 2013. Results showed
a successful disaggregation of 93.41% of the total time.

VII. FUTURE WORK

As previously mentioned, this is an ongoing research and
our work on non-intrusive monitoring is still in progress.
Our planned future work is divided into three directions. On
the algorithmic level, we can clearly see several chances for
enhancement either in the individual stages or the complete
NILM system. Second, we target continuous evaluation of
the proposed system on larger power dataset including of
course verification of the disaggregation results of the BLUED
dataset which is currently in progress. Finally, in order to apply
the system to a larger number of loads we are also working
on extending the proposed system to include high frequency
features.

VIII. CONCLUSION

We have developed a completely unsupervised event-based
NILM system suitable for and tested on residential datasets.
In this paper, we briefly described the algorithm utilized in
each stage. We also provided results of the application on the
BLUED dataset with event detection and classification up to
98% of the total events and a complete disaggregated up to
92% of the total energy of the BLUED dataset. Application on
the Belkin’s power dataset resulted in disaggregation of more
than 93% of the total time. In a future work, we are planning
to provide disaggregation data of the BLUED dataset together
with application of our NILM system on its both phases.
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