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Abstract. In array signal processing, direction of arrival
(DOA) estimation has been studied for decades. Many algo-
rithms have been proposed and their performance has been
studied thoroughly. Yet, most of these works are focused
on the asymptotic case of a large number of snapshots. In
automotive radar applications like driver assistance systems,
however, only a small number of snapshots of the radar sen-
sor array or, in the worst case, a single snapshot is available
for DOA estimation.

In this paper, we investigate and compare different DOA
estimators with respect to their single snapshot performance.
The main focus is on the estimation accuracy and the angular
resolution in multi-target scenarios including difficult situ-
ations like correlated targets and large target power differ-
ences. We will show that some algorithms lose their ability
to resolve targets or do not work properly at all. Other so-
phisticated algorithms do not show a superior performance as
expected. It turns out that the deterministic maximum likeli-
hood estimator is a good choice under these hard conditions.

1 Introduction

A common problem in array signal processing is the estima-
tion of the DOA ofM targets usingN sensors. As within au-
tomotive applications the elevation angels are less important,
there are M angles (azimuth) to be estimated. Together with
the distances, the angels determine the position of the rele-
vant targets uniquely relative to the host vehicle. Using this
information, the car can act in an intelligent way. Two exam-
ples of such driver assistance systems are Adaptive Cruise
Control (ACC) and initializing an emergency brake (Jurgen,
2006).

Classical radar systems measure their environment using
a grid of distance and relative velocity cells. This represen-
tation is sparse. The linear frequency modulated continuous
wave (LFMCW) principle uses frequency sweeps (ramps) to
get projections of this plane which is more efficient. Every
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ramp contains the targets at different frequencies, depend-
ing on its slope. Using multiple ramps, the whole plane can
be reconstructed (Reiher and Yang, 2009). However, targets
with similar frequencies can only be separated by their DOA.

The number of antennas and the number of snapshots are
limited to get a cheap sensor. To still get acceptable results,
the DOA estimator has to be as good as possible. There are
many papers covering DOA algorithms using a huge amount
of antennas, samples per antenna or a high SNR, respec-
tively (Ottersten et al., 1992; Li et al., 1998; Xin and Sano,
2004; Viberg et al., 1991b; Lopes et al., 2003; Stoica and
Sharman, 1990b; Gershman and Stoica, 1999), to make use
of statistical asymptotic analysis. Yet, there are few papers
which deal with the single snapshot case. There was a suc-
cessful examination of the two classical ML algorithms (Rife
and Boorstyn, 1974, 1976; Athley, 2005). However, to the
knowledge of the authors, there is still no comparative study
about which DOA algorithm to choose in the single snapshot
case, which is what this paper is about.

There are several reasons, why a single snapshot DOA es-
timation is attractive in automotive radar systems:

– LFMCW ramps are designed for different ranges. In
general, not all ramps are available for all distance-
velocity-combinations.

– Some snapshots may be distorted by close frequency in-
terferer and thus should not be used for angle estima-
tion.

– Some snapshots are superpositioned by clutter. These
snapshots should be avoided as well.

– The speed of reaction is enhanced by using snapshots
immediately after measurement, instead of waiting for
a large number of snapshots.

– The performance of DOA estimation using a single
snapshot is worse than that of using multiple snapshots.
The postprocessing after DOA estimation in automo-
tive radar, namely tracking, will compensate the perfor-
mance loss to a large degree.
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– The computation time is decreased as the single snap-
shot case allows some additional simplifications in
DOA estimation.

We shortly introduce the used notation in Sect. 2 and the
signal models in Sect. 3. We then take a closer look on the
DOA algorithms in Sect. 4, separate them into usable and
non-usable algorithms with regard to the problem at hand. In
Sect. 5, we use typical automotive scenarios to simulate the
performance of the DOA algorithms and conclude our work
in Sect. 6.

2 Notation

The following notations are used in this paper: Uppercase
bold letters are matrices, lowercase bold letters are vectors,
letters with a hat are estimations, (·)T denotes the transposi-
tion, (·)H denotes the complex conjugate transposition, (·)†
denotes the Moore-Penrose pseudo inverse, argmax

θ
(·) de-

notes the θ maximizing the function, argmaxima
θ

M (·) de-

notes the θ of the M largest local maxima, Tr(·) is the ma-
trix trace operator, | · | is the matrix determinant and I is the
identity matrix.

3 Signal models

Two signal models are commonly used for DOA estima-
tion (Krim and Viberg, 1996): the deterministic model and
the stochastic model. In both models, the impinging sig-
nals on the array are superpositioned by spatial and temporal
white Gaussian noise n(t). In typical automotive applica-
tions, narrow band and far field conditions can be assumed
to be valid. Furthermore, both signal models parametrize the
sensor array and the targets’ DOA by the steering matrix

A(θ) = (a(θ1),...,a(θM )). (1)

a(θ) is the steering vector which can be seen as an angular
transfer function. Using a uniform linear array (ULA) can re-
duce the signal processing effort. In general, the array can be
arbitrary. For the linear array used in this paper, the steering
vector can be written as

a(θ) =
(

ej2πy1 sin(θ),...,ej2πyN sin(θ)
)T

(2)

using the sensor positions yn normalized by the wavelength.
θ is defined as 0◦ pointing to the front direction.

Let s(t) be the incoming waves after mixing to baseband,
the sensor array signal to be processed is given by

x(t) = A(θ)s(t)+n(t). (3)

The source signals s(t) can be deterministic or a Gaussian
random process, depending on the chosen signal model. Us-
ing an LFMCW radar (Schoor and Yang, 2007) most of the

targets are separated by their distance and relative velocity.
The DOA estimations separate only the remaining targets.
This is why most often only one or two targets need to be
estimated using a single snapshot x(t).

The used array is a half wavelength minimum redundancy
array (Moffet, 1968) consisting of four antennas (M = 4)
at the positions y = (0,0.5,2,3)T normalized by the wave-
length. As the distance between the first two antennas is
half of the wavelength, the uniqueness of the DOA estima-
tion is guaranteed. The missing redundancy leads to a high
positional variance (Athley, 2005) and thus to an improved
accuracy of the single target estimation compared to more
conservative four antenna arrays.

4 DOA algorithms

The following DOA algorithms are studied in this paper:
Bartlett beamformer, Multiple Signal Classification (MU-
SIC), Deterministic Maximum Likelihood (DML), Stochas-
tic Maximum Likelihood (SML) and Weighted Subspace Fit-
ting (WSF).

Since the array assumptions shift invariance, rotational in-
variance, special structure and the invertability of the sample
correlation matrix are not fullfilled, many DOA estimation
algorithms like estimators using decorrelation principles (Pil-
lai and Kwon, 1989), Capon’s beamformer (Capon, 1969),
ESPRIT (Paulraj et al., 1985), Root-MUSIC (Barabell,
1983), MUD (Swindlehurst, 1991), IQML (Swindlehurst,
1991), MODE (Stoica and Sharman, 1990a) or MODEX
(Gershman and Stoica, 1999) do not work and are thus not
considered in this paper.

4.1 Bartlett beamformer

Bartlett’s beamformer can be written, using the sample cor-
relation matrix

R̂ =x(t)x(t)H (4)

as

θ̂Bartlett = argmaxima
θ

M

(
a(θ)HR̂a(θ)

a(θ)Ha(θ)

)
. (5)

The Bartlett beamformer maximizes the angular spectrum in
Eq. (5) and returns the position of the M largest maxima as
the estimates for the DOAs of theM targets. An example of a
beamformer spectrum is given in Fig. 1. In this scenario two
40 dB targets are at 0◦ and 60◦. Since only a single snapshot
is used, the Bartlett beamformer does not show maxima at
the correct DOAs. The largest maximum appears even at a
DOA where no target exists.

4.2 MUSIC

To get the MUSIC function, an eigenvalue decomposition of
R̂ must be computed. By putting the eigenvectors belonging
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Fig. 1. Bartlett beamformer spectrum for two targets.
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Fig. 2. MUSIC function for two targets.

to the N−M weakest eigenvalues in the noise subspace ma-
trix Ψ̂noise, the MUSIC estimator is given by (Schmidt, 1979)

θ̂MUSIC = argmaxima
θ

M

(
a(θ)Ha(θ)

a(θ)HΨ̂noiseΨ̂
H
noisea(θ)

)
. (6)

The MUSIC function is given in Fig. 2 using the same sce-
nario and the same snapshot as before. MUSIC detects a
non-existing target between the two real targets and it does
not indicate the existence of two targets. As there is only one
snapshot, the signal subspace is built up of only one eigen-
vector, which leads to the averaged target.

4.3 DML

Using the deterministic signal model, the DML approach is

θ̂DML = argmax
θ

(
Tr
(

ΠA(θ)R̂
))

(7)

using the projection matrix onto the column space of A(θ)

ΠA(θ) = A(θ)A(θ)
† (8)

and the pseudo inverse of A(θ)

A(θ)
†

=
(
A(θ)

H
A(θ)

)−1
A(θ)

H
. (9)

Once again, a typical DML function is drawn in Fig. 3 for
the same situation. θ= (θ1,θ2)T is now a two-element DOA

Fig. 3. DML function for two targets.

vector. While the Bartlett beamformer and MUSIC perform
an one-dimensional search to estimate θ1 and θ2 of two tar-
gets, DML performs a two-dimensional search to estimate
θ1 and θ2 simultaneously. Note the symmetry of the figure
along its diagonal. It stems from the commutativity of the
two targets, as the target numbering is arbitrary. We see from
Fig. 3 that the maximum of the DML function is reached at
either (0◦,60◦) or (60◦,0◦).

Besides its interpretation of the maximization of a likeli-
hood function, Eq. (7) can be seen as maximizing the power
of the input signals projected onto the model signal subspace.

4.4 SML

According to (Jaffer, 1988), the SML algorithm can be writ-
ten as

θ̂SML = argmax
θ

(
−log

∣∣∣A(θ)P̂(θ)A(θ)
H

+ σ̂2(θ)I
∣∣∣) (10)

using the signal projection

P̂(θ) = A(θ)
†
(
R̂− σ̂2(θ)I

)(
A(θ)

†
)H

(11)

together with the DOA dependent noise power estimation

σ̂2(θ) =
1

N−M
Tr
(

Π⊥A(θ)R̂
)

(12)

and the orthogonal projection matrix

Π⊥A(θ) = I−ΠA(θ). (13)

The computational effort of SML is much higher than DML,
as the estimation of σ̂2(θ) is already more expensive than
the whole DML approach. The scenario in Fig. 4 is again
the same as before. Having a single snapshot and two tar-
gets, SML suffers numerical problems using double preci-
sion arithmetic. Some DOAs thus lead to negative loga-
rithms. They have been interpolated by the surrounding val-
ues in Fig. 4. Nevertheless the SML function is a bit noisy
which makes the optimization expensive. As a side effect of
the numerical noise, the maximum of the function often leads
to DOAs dominated by the noise and not to the correct ones.
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Fig. 4. SML function for two targets.

4.5 WSF

One approach to combine the ideas from ML and subspace
based estimators is to use the signal subspace as the source
of a projection into the model space, which is known as the
WSF algorithm (Viberg et al., 1991a; Haykin et al., 1993).
Analog to MUSIC, the eigenvalue decomposition is needed,
but WSF uses the strongest eigenvalues in a diagonal matrix
Λ̂signal and the corresponding eigenvectors in the signal sub-
space matrix Ψ̂signal. WSF can then be written as

θ̂WSF = argmax
θ

(
Tr
(

ΠA(θ)Ψ̂signalWΨ̂H
signal

))
, (14)

where W is a weighting matrix to reduce the impact of the
subspace swap (Johnson et al., 2008a,b) defined as

W =
(

Λ̂signal−2σ̂2I+ σ̂2Λ̂−1signal

)
(15)

Instead of Eq. (12), an estimation for σ̂2 independent of θ
can be used to decrease the computational effort.

σ̂2 =
1

N−M

N−M∑
k=1

Λ̂noise,k. (16)

Note that R̂ is rank deficit in the two target case and the
inversion of Λ̂signal is problematic. Nevertheless it can be
done with a numerically robust algorithm leading to W with
only one element differing from zero. Again, Fig. 5 shows
the WSF function using the same snapshot as before. The
function has relatively broad maxima, which lead to higher
variances. Besides that, it is hard to differ the true DOAs
from the single or close target case at around (30◦,30◦).

4.6 Complexity

When comparing the computational complexity of DOA al-
gorithms, two aspects have to be distinguished. The first two
algorithms do M one-dimensional optimizations, whereas
the last three algorithms perform one M -dimensional opti-
mization, which is much more expensive for large M . Fur-
thermore, the effort for calculating a function value differs

Fig. 5. WSF function for two targets.

for different DOA algorithms. The order of the five con-
sidered DOA algorithms in this paper is roughly sorted by
increasing computation time.

5 Simulation results

To compare the performance of different DOA algorithms,
we performed Monte Carlo simulations. The signals were
generated according to the signal model and the optimiza-
tions were done using a grid search followed by local opti-
mizations.

The targets are estimated in the full angular range from
−90◦ to 90◦ and without any further postprocessing. The fol-
lowing simulation results thus show the relative performance
of different DOA estimators. The absolute performance can
be improved by additional processing which is not subject of
this paper.

In Fig. 6 we see that for one target in front direction and
1000 Monte Carlo trials, all algorithms behave the same for
medium and large SNR values regarding their root mean
squared error (RMSE). The estimators are close to the deter-
ministic Cramér-Rao Bound (CRB) which is included as an
orientation. This is expected as it can be proofed, that MU-
SIC, DML and WSF are the same as the Bartlett beamformer
for a single snapshot and a single target. For very low SNR,
the threshold region is reached and thus the distance between
the estimators and the CRB rapidly increases (Athley, 2005).
SML has a higher probability of outliers than the other al-
gorithms and thus a higher RMSE. With only one snapshot,
SML is significantly more sensitive to noise than the other
DOA algorithms in this paper.

For two targets, the situation is completely different. In
Figs. 7, 8 and 9, the average RMSE of both targets is de-
picted. We simulated two uncorrelated widely spaced targets
at (0◦,60◦) and two uncorrelated close targets at (−1◦,3◦) in
Figs. 7 and 8, respectively. The mean before taking the root
is the mean of 300 Monte Carlo trials, whereas the average
after taking the root averages both targets. SML, MUSIC
and the Bartlett beamformer are more or less useless. To-
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Fig. 6. DOA estimation of one target.
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Fig. 7. DOA estimation of two widely spaced targets.

gether with their large errors, they lack an SNR dependency,
which exposes a general modelling problem. WSF and DML
behave better with DML being best.

In general, the average RMSE of both targets is dominated
by outliers. So the estimation accuracy of most trials is much
better than in the corresponding figures. There is only a frac-
tion of trials which lead to large errors, but the fraction de-
pends on the DOA algorithm. Figures 7 and 8 show that the
probability of outliers for DML is low.

It is interesting to note that widely spaced targets are not
necessarily easier to resolve than close targets, when using
a sparse array. This is because the envelope of the corre-
lation of the non-sparse array is monotonically decreasing
when starting at the main lobe. As the steering vectors are
less similar, the estimation is less sensitive and thus more ac-
curate. For general arrays there is no monotonic behaviour
of the envelope of the correlation function and that is why
Fig. 7 does not show better results than Fig. 8.

The situation in Fig. 9 seems more challenging than in
Fig. 8. Two close targets at (−1◦,3◦) have an SNR differ-
ence of 10 dB. One target has 5 dB less and the other one
5 dB more SNR than shown on the abscissa. The SNR differ-
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Fig. 8. DOA estimation of two close targets.
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Fig. 9. DOA estimation of two differing correlated close targets.

ence models radar cross section fluctuations when looking at
the targets from different angles. Furthermore, the phase of
the signals of the two targets are fully correlated, i.e. they are
always the same, which can happen when crash barrier re-
flections occur. This effect reduces the probability of outliers
for DML and WSF and leads to an excellent DML perfor-
mance. Further investigation is needed to give an exhaustive
reason for that behaviour.

6 Conclusions

In this paper, we have compared the performance of five
DOA algorithms using only a single snapshot. Many other
DOA algorithms do not work at all in this case. Having only
one target, the good performance of these estimators is ex-
pected, with the notable exception of SML, as the used sparse
array is optimized for that case. Estimating two targets can
be done with WSF and DML, but DML is both faster and
more reliable.
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