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Abstract—Multi-carrier (MC) multiple-input multiple-output
(MIMO) radar was recently applied to build sparse virtual arrays
with a large aperture for a high-accuracy direction-of-arrival
(DOA) estimation. The resulting grating lobes (DOA ambiguities)
were resolved using multiple carriers. One problem of MC-
MIMO is the coupling of the unknown parameters range and
DOA. In this contribution, we study this range-DOA coupling
for MC-MIMO systems. We consider both Cramer-Rao bound
(CRB) of these parameters and their estimation. We show that
a suitable choice of the coordinate system decouples range and
DOA parameters in both CRB and estimation. This enables a
sequential range and DOA estimation instead of a more complex
joint estimation. Explanations of this phenomenon are given and
simulation results confirm the theoretical findings.

I. INTRODUCTION

It is well known, that the accuracy and ambiguity of the
DOA estimation is determined by the positions of the antennas.
On the one hand, a large aperture achieves a high estimation
accuracy [1], [2], but on the other hand antennas must be
placed close enough to avoid spatial aliasing (grating lobes)
[3]–[5].

Common approaches to enhance the accuracy without spa-
tial aliasing are sparse arrays and MIMO radar. In the former
case, some antennas are placed close enough to avoid grating
lobes and the remaining antennas are placed far away to
achieve a large aperture at the price of increased sidelobes
[4]. MIMO radar utilizes M transmit antennas (Tx) and N
receive antennas (Rx) to create a virtual array with M × N
elements [6]. This leads to a larger array aperture, while the
hardware effort remains manageable [5].

The idea of using multiple carrier frequencies to improve
DOA estimation has already been introduced in [7]. By using
C different carrier frequencies, C scaled versions of the
original array can be obtained without increasing the number
of antennas. Angular ambiguities can then be resolved by using
those scaled arrays. An algorithm using incoherent integration
was presented in [8]. The drawback of the incoherent integra-
tion is that the sidelobe level is not smaller than 1

C , where C
is the number of carrier frequencies. Such high sidelobes are
not desired in many applications.
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Fig. 1: Illustration of an MC-MIMO radar.

Novel design rules for such an array are presented in [9].
Fig. 1 illustrates the basic idea. It shows a linear array of
three antennas placed far away to achieve a high aperture.
The problem of spatial aliasing is solved by using multiple
carrier frequencies. For a fixed antenna, a varying wavelength
leads to a varying ratio of antenna position to wavelength.
This means, the same antenna with different suitable carriers
is able to satisfy the anti-aliasing condition.

A coherent processing of multi-carrier was applied to
enhance the spatial resolution in [10], [11] and applied to
Coarrays in [12], [13]. A coupling of the unknown parameters
range and DOA is not considered in [10]–[13], thus those
coherent algorithms are unsuitable for many applications.

The range-DOA coupling in multi-carrier MIMO is similar
to the range-DOA coupling in frequency division multiplexing
[14] and is described in [9], [15]. In a single-carrier radar, the
range of a target appears as a fixed phase term in the baseband
signal and does not interfere with the DOA estimation. In MC-
MIMO, the same range leads to different phase changes for
different carriers which are added to the DOA-induced phase
changes in the baseband signal. [15] extends the multi-carrier
signal model to MIMO and suggests a compensation technique
for the range-DOA coupling, where the range is assumed to be
known perfectly. As this is not practical in many applications,
[9] presents a joint deterministic maximum likelihood (DML)
estimator of range and DOA. A joint estimation requires a
higher-dimensional search, which is computationally costly
and therefore undesired.

In this paper, we study the range-DOA coupling of an MC-
MIMO radar. We derive the joint CRB of both range and
DOA and observe a decoupling in CRB by a suitable choice
of the coordinate system. The same condition, if satisfied,
also decouples the range and DOA estimation. This enables
a sequential range and DOA estimation, namely a range
estimation by pulse compression followed by a marginal DOA
estimation using the MC-MIMO radar.

In this paper, we use the following notations: ⊗ is the Kro-
necker tensor product, while � is the entrywise (Hadamard)
product. 1K is a column vector consisting of K ones and
0K×K is a square zero matrix of size K ×K. Furthermore,
∗ denotes conjugate complex, T the transpose and H the
Hermitian transpose. diag(a) is a diagonal matrix with the
elements of a on the diagonal. I is the identity matrix and j
the imaginary unit. The weighted sample correlation CorrWS

between two matrices A and B and the weighted sample mean
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EWS of A with the weight vector w are defined as in [2]:

CorrWS(A,B, w) :=
1

1Tw
BH diag(w)A, (1a)

EWS(A, w) :=
1

1Tw
wTA, (1b)

The paper is organized as follows: We revise the MC-MIMO
concept and its signal model for stationary targets in Sec. II.
Our first contribution is the derivation of the CRB of the range
and DOA parameters for an MC-MIMO radar in Sec. III.
The second contribution is a suitable choice of the coordinate
system which results in a decoupling of range and DOA esti-
mation in Sec. IV. This leads to a simplified sequential range
and DOA estimation with negligible performance degradation
in comparison to the more complex joint range and DOA
estimation. A comparison of the sequential DOA estimation,
the joint deterministic maximum likelihood (DML) estimation
and the CRB is given.

II. MC-MIMO RADAR AND SIGNAL MODEL

In this paper, we make the following assumptions about the
underlying MC-MIMO radar and targets:

• The MC-MIMO radar consists of M Tx and N Rx
colocated antennas operating at C different carrier fre-
quencies.

• The target is in the far field (colocated MIMO), i.e. the
DOA is the same for all Tx and Rx antennas.

• All waveforms are orthogonal by using time or frequency
or code division multiplex (TDM, FDM, CDM) [14].
They enable a C × M × N virtual array. We do not
discuss the multiplex details here.

• The radar uses a modulation like pulse Doppler or
FMCW.

• An initial radar signal processing (pulse compression) is
used to separate the targets in range domain, allowing a
first coarse range estimation.

• In this paper, we consider a single stationary target in
the far field in each range bin and focus on its DOA
estimation. The more complicated case of moving targets
and multiple targets in one range bin will be addressed
in the future.

According to [6], [9], [16], the received continuous-time base-
band signal for one target and the cmn-th channel consisting
of the m-th Tx and n-th Rx antenna operating at the c-th
carrier is

x̃cmn(t) = α̃cmnscmn(t− (τTx,m(θ) + τRx,n(θ))· (2)
· exp (−j2πfc(τTx,m(θ) + τRx,n(θ))) + ñcmn(t),

1 ≤ c ≤ C, 1 ≤ m ≤ M , 1 ≤ n ≤ N . scmn(t) is the
sent signal at time t. α̃cmn represents the complex amplitude
of the received signal determined by the transmission power,
propagation loss, radar cross-section (RCS) of the target and
antenna gain. fc is the c-th carrier frequency. The propagation
delays from the m-th Tx antenna to the target and from the
target to n-th Rx antenna are τTx,m(θ) and τRx,n(θ), where θ
contains the range and DOA parameters of the target. ñcmn(t)
is the noise.

After pulse compression and sampling, the received signal
in one range bin is

xcmn(l) = αcmn exp (−j2πfc(τTx,m(θ) + τRx,n(θ))) +

+ ncmn(l), 1 ≤ l ≤ L (3)

where L is the number of measurements (e.g. FMCW ramps)
within one measurement cycle.

The delays τTx,m and τTx,n can be expressed as

τTx,m(θ) =
r

c
− 1

c
pT

Tx,m
u, (4a)

τRx,n(θ) =
r

c
− 1

c
pT

Rx,n
u. (4b)

r is the range of the target with respect to the origin of the
coordinate system. We assume a planar antenna array located
in the xy-plane of the coordinate system. u = [ux, uy]T ∈ R2

is the normalized direction vector pointing from the origin
to the target and contains the electrical angles ux and uy .
p

Tx,m
∈ R2 and p

Rx,n
∈ R2 denote the positions of the m-th

Tx and n-th Rx antenna.
Stacking the signals of all channels xcmn into one column

vector x yields

x(l) = [x111(l), ..., x11N (l), ..., x1MN (l), ..., xCMN (l)]T

= α� exp(jBθ) + n(l)

: = a(θ) + n(l) (5)

with B =
2π

c
f ⊗Q, (6)

Q = [P,−2 1MN ] , (7)
P = PTx ⊗ 1N + 1M ⊗PRx, (8)

θ = [ux, uy, r]
T . (9)

α represents the complex amplitude of the baseband signal.
The notation exp(jBθ) is an elementwise application of
exp(·) to each element of jBθ. f = [f1, ..., fC ]T is the vector
of different carrier frequencies. The rows of PTx ∈ RM×2

and PRx ∈ RN×2 are pT
Tx,m

and pT
Tx,n

. P ∈ RMN×2 is the
matrix containing the antenna positions of the M ×N single-
carrier virtual array, see [9] for details. In comparison, the
multi-carrier virtual array by taking f into account has a size
of C ×M ×N .

For the special case of a single Tx antenna (M = 1) and
a linear Rx array, the coordinate system can be defined such
that all CMN virtual antennas lie on the x-axis. The above
signal model then simplifies to

P = px,Tx1N + p
x,Rx

, (10)

θ = [ux, r]
T . (11)

III. CRAMER-RAO BOUND

For the derivation of the Cramer-Rao Bound (CRB) of θ,
we assume a sequence of i.i.d. circular complex zero-mean
Gaussian noise samples n(l) with covariance σ2I in Eq. 5.
The CRB is given in [17]:

CRB−1 = 2L
1

σ2
Re{C}, (12)
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C = DH
(
I− a(aHa)−1aH

)
D = DHD−DH a aH

||a||2
D.

(13)

For a compact formulation, we drop the the dependence of
a = a(θ) of θ in this section. D contains the derivatives of a
with respect to θ

D =

[
∂a

∂ux
,
∂a

∂uy
,
∂a

∂r

]
∈ CCMN×3. (14)

After some calculations, we obtain

D = jB� [a, a, a] . (15)

The k-th column of D is thus jbk � a where bk is the k-th
column of B (1 ≤ k ≤ 3). Hence[

DHD
]
ki

= (jbk � a)H(jbi � a) = bHk diag(ρ)bi (16)

where ρ = α∗�α ∈ RCMN is the vector of signal powers of
all CMN channels. This means,

DHD = BH diag(ρ)B = ρCorrWS(B,B, ρ) ∈ C3×3 (17)

with ρ = 1T ρ = ||α||2 being the total signal power of all
channels. Similar to Eq. 17, we calculate

aHD = jρCorrWS(B, 1CMN , ρ) = jρEWS(B, ρ). (18)

C can then be calculated as

C = ρ
(
CorrWS(B,B, ρ)− EWS(B, ρ)H EWS(B, ρ)

)
. (19)

In the following, we assume that the signal power vector ρ is
separable, i.e. ρ = ρ

f
⊗ ρ

p
with ρ

f
∈ RC and ρ

p
∈ RMN .

This condition is equivalent to ρcmn = ρcρmn and is usually
satisfied. It means that each carrier can have a different
transmission power ρc, but the powers ρmn for different Tx-
Rx antenna combinations remain the same. C can then be
expressed as

C = ρ

(
2π

c

)2 [
CorrWS(f, f , ρ

f
) CorrWS(Q,Q, ρ

p
)−

−
(

EWS(f, ρ
f
)
)2

EWS(Q, ρ
p
)H EWS(Q, ρ

p
)

]
. (20)

Let us now define

p
0

=
1

2
EWS(P, ρ

p
)T ∈ R2 (21)

the position of the physical array centroid in the coordinate
system. In the simple case of equal powers ρ

p
∝ 1MN ,

p
0

=
1

2

(
1

M

M∑
m=1

p
Tx,m

+
1

N

N∑
n=1

p
Rx,n

)
is the arithmetic mean of the Tx array centroid and the Rx
array centroid. Note that the centroid of the M × N single-
carrier virtual array is EWS(P, ρ

p
)T = 2p

0
, as p

0
appears

twice in the virtual array, see Eq. 8.
Then we introduce the centralized Tx and Rx antenna

positions P̄Tx = PTx − 1M ⊗ pT0 and P̄Rx = PRx − 1N ⊗ pT0 .

This corresponds to a shift of the coordinate system origin of
p
0
. According to Eq. 8,

P̄ = P− 21MN ⊗ pT0 . (22)

Clearly, the new coordinate system origin at p
0

is characterized
by EWS(P̄, ρ

p
) = 0T . After some lengthly calculations (details

omitted), we can show that

CRB =
1

2L

σ2

ρ

( c

2π

)2  1
γ2
Ē−1 1

γ2
Ē−1p

0

1
γ2
pT
0
Ē−1 1

γ2
pT
0
Ē−1p

0
+ 1

4γ1


(23)

where Ē = CorrWS(P̄, P̄, ρ
p
) is the weighted sample correla-

tion matrix of P̄, γ2 = EWS(f�f, ρ
f
) is the weighted sample

power of f , and γ1 = γ2 − (EWS(f, ρ
f
))2 is the weighted

sample variance of f .
The expression in Eq. 23 shows that the 3× 3 CRB of θ is

block diagonal if p
0

= 0. The CRB of the DOA parameters
u and that of the range r are decoupled, if we choose the
physical array centroid p

0
to be the origin of the coordinate

system. The choice of p
0

also has an influence to the CRB of
range, but it has no impact to the CRB of DOA as expected.

IV. DOA ESTIMATION FOR MC-MIMO RADAR

A. Joint maximum likelihood estimation of range and DOA
The task of DOA estimation is the retrieval of u from

the signal x(l). In the single-carrier case, the range causes
a constant phase shift for all channels and can therefore be
treated as an additional phase component of the amplitude α.
This makes the single-carrier DOA-estimation independent of
range.

This is not the case in MC-MIMO. The range induces a
different phase shift for every carrier. Therefore, the range
and DOA parameters should be jointly estimated in general.
An extension of the DML estimator in [18] to joint DOA and
range estimation is given in [9]. For L measurements, the joint
DML estimator is

θ̂ = arg max
θ
φ(θ),

φ(θ) =

∣∣∣∣∣
∣∣∣∣∣(a(θ))

H

(
L∑
l=1

x(l)

)∣∣∣∣∣
∣∣∣∣∣
2

. (24)

However, it has a high computational complexity due to a 3-
dimensional search. Even if the MC-MIMO uses a frequency
modulation (e.g. pulse Doppler, FMCW) which allows an
initial pulse compression to separate the targets in the range
domain, the range estimation error may degrade the DOA
estimation due to their coupling. At the end, a joint estimation
as in Eq. 24 could be still necessary despite of an initial range
estimation.

B. Locally decoupled DOA estimation
It would be nice if the range and DOA parameters are

decoupled in the estimation. This implies that the residual
estimation error in an initial coarse range estimation will
not affect the DOA estimation. As a result, r and u can be
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(a) The condition p
0

= 0 is satisfied. This results in a local
decoupling of the range and DOA.
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(b) The condition p
0

= 0 is violated. This results in a range-
DOA coupling.

Fig. 2: Noise-free DML function φ(θ) for an MC-MIMO radar for two different coordinate systems.

estimated sequentially, reducing the computational complexity
to the single-carrier case. This means

û = arg max
u

φ([uT , r̂]T ), (25)

where r̂ is an initial estimate from pulse compression. In Sec.
III, the condition p

0
= 0 makes the CRB block diagonal.

This implies a decoupling between u and r in the CRB.
This motivates a similar study of range-DOA coupling in the
estimation. For this purpose, the following simulation is con-
duced. A 3-carrier MIMO system with the carrier frequencies
f

MC
= [0.6f0, 0.8f0, f0]T is used where f0 is any nominal

carrier frequency. One simple transmitter (M = 1) and one
receiving uniform linear array (ULA) with N = 5 antennas
along the x-axis are used. The antenna spacing of the Rx array
is 5 · 12λ0 = 5 c

2f0
, which is much larger than the minimum

spacing 1
2λ0 for a single-carrier radar [9]. Grating lobes due

to the larger antenna spacing are resolved by the multi-carrier
concept. A single stationary target is located at the true range
r0 = 4000λ0 (far field) and true DOA ux,0 = −0.7. For
simplicity, we assume equal amplitudes α ∝ 1CMN . The
number of measurements is L = 1.

We plot the noise-free DML function φ(θ) in Eq. 24 for this
scenario for two different coordinate systems, see Fig. 2. The
red + indicates the true target and the vertical red line shows
one possible coarse range estimate. In Fig. 2(a), the condition
p
0

= 0 is satisfied, i.e. the physical array centroid serves as
the origin of the coordinate system. Clearly, the range and
DOA estimations are locally decoupled. Even starting with a
quite inaccurate range estimate (red line), an one-dimensional
search along ux will return an accurate DOA estimate. In
Fig. 2(b), the origin of the coordinate system is chosen in
a distance of 16λ0 to the physical array centroid and in the
same distance r0 = 4000λ0 to the target as before. As a
comparison, the array aperture is 10λ0. In this case, the range
and DOA parameters are coupled. As a result, the same coarse
range estimate (red line) as in Fig 2(a) results an a poor DOA

estimate. In addition, we see in Fig 2(b) that the estimation
uncertainty (variance) in the ux-direction is comparable to that
in Fig 2(a), while in the range direction it is significantly
increased. These observations agree with the prediction from
the CRB in Sec. III.

At a first look, the observation of an influence of the
choice of the coordinate system on the range-DOA coupling
is surprising. According to Eq. 5-9, the baseband noise-free
signal of the virtual array is

α� exp

(
j

2π

c
f ⊗ (Pu− 2r1MN )

)
(26)

Clearly, both range r and DOA parameters u contribute each
to a phase change of −2 2π

c f ⊗ r1MN and 2π
c f ⊗Pu. In the

simple case of equal powers ρ
p
∝ 1MN , if the virtual array

centroid EWS(P, 1MN ) is zero, both phase change vectors
above are orthogonal because of 1TMNP = 0T . This means,
the phase changes due to r and u happen in known orthogonal
subspaces, making a decoupled range and DOA estimation
possible. If EWS(P, 1MN ) 6= 0T , the phase changes due to r
and Pu overlap to a certain degree, resulting in an interference
of range and DOA estimation. In the case of unequal powers,
ρ
p
6∝ 1MN , the phase changes due to r and u are orthogonal if

the weighted virtual array centroid EWS(P, ρ
p
) is zero in order

to take the different powers of Tx-Rx antenna combinations
into account. In line of this argumentation, we now better
understand the CRB in Eq. 23. The larger the physical array
centroid p

0
(equivalently the virtual array centroid 2p

0
), the

stronger the loss of orthogonality of phase changes due to
range and DOA, and the stronger the range-DOA coupling.

C. Performance evaluation
We continue with the computer experiment in part IV-B

and compare the root mean-square-error (RMSE) of the joint
DML estimator (Eq. 24) and the sequential DOA estimator
(Eq. 25) with the CRB. The setup of the MC-MIMO radar
and the target are as in Sec IV-B. In addition, we assume a
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Fig. 3: CRB and RMSE of ux. Dashed red and dashed blue:
CRB of SC-MIMO and MC-MIMO. Solid red and solid blue:
RMSE of SC-MIMO and MC-MIMO joint DML estimator.
Solid green and dashed green: RMSE of sequential estimator,
with p

0
= 0 and ||p

0
|| = 16λ0.

linear FMCW modulation with a bandwidth of B = 0.1f0
and 1024 samples per chirp. This enables a FFT-based pulse
compression and an initial range estimate with an accuracy
in the order of 10λ0, followed by an interpolation to ob-
tain r̂. For a comparison, a single-carrier MIMO radar with
f

SC
= [f0, f0, f0]T is simulated as well. In the Monte-Carlo

simulations, 1000 independent trials have been done and the
average RMSE as well as the CRB of ux are plotted against
the signal-to-noise ratio (SNR) after pulse compression in Fig.
3. Though in practical applications high SNRs are typical
due to pulse compression, we also show the RMSE for DOA
estimation at low SNR to demonstrate the threshold behaviour
of MC-MIMO.
We make the following observations:

• The CRB of the MC-MIMO is significantly lower (about
12dB) than that of the single-carrier radar due to the
larger antenna aperture of the multi-carrier concept.

• The DML-estimators for both single- and multi-carrier
system asymptotically achieve their CRBs.

• The joint DML estimator of MC-MIMO has a higher
SNR threshold compared to the single-carrier system due
to the higher sidelobes of sparse virtual array of MC-
MIMO, see [9].

• The sequential DOA estimator has a higher threshold
than the joint DML estimator. This is due to the fact
that the initial range estimate must hit the main peak of
φ(θ). The accuracy of the range estimation and, therefore,
the FMCW bandwidth is limiting the sequential DOA
estimation. This SNR threshold increases as the FMCW
bandwidth decreases.

• The asymptotic variance of the sequential estimator is
slightly higher than the CRB. This is due to the residual
range estimation error, which leads to a SNR loss. In Fig.
2, the maximum of φ(θ) along the red line has a lower

amplitude than at the true range leading to a lower SNR.
• The RMSE of DOA in the sequential estimation with

a non-central coordinate system is very poor. Due to the
range-DOA coupling, the range estimation error degrades
the DOA estimation dramatically.

V. CONCLUSION

We present in this paper the CRB of range and DOA for an
MC-MIMO radar. Range and DOA coupling vanishes in the
CRB for a certain choice of the coordinate system. We exploit
the local decoupling of range and DOA to obtain a sequential
DOA estimation, which is computationally less expensive
than the joint DML estimator. The performance loss of this
sequential estimation is much smaller than the significantly
improved CRB of the MC-MIMO system compared to a
single-carrier MIMO radar.
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