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Abstract—A Multiple-Input-Multiple-Output (MIMO) radar
can achieve a higher accuracy in direction of arrival (DOA)
estimation compared to a corresponding Single-Input-Multiple-
Output (SIMO) radar due to its larger virtual aperture. If the
target is moving relative to the radar, an additional phase shift is
introduced into the baseband signal because of the Doppler effect.
Hence the Doppler frequency has to be estimated in addition to
the DOA. In general, this decreases the DOA estimation accuracy.
We investigate MIMO radars using time division multiplexing
(TDM). We derive the Cramer-Rao bound (CRB) for a moving
target and a general TDM scheme and compare it to other
radar systems. Moreover we derive optimal TDM schemes which
minimize the CRB under different constraints.

Index Terms—MIMO radar, DOA estimation, Time Division
Multiplexing, Cramer Rao Bound, CRB

I. INTRODUCTION

Compared to a conventional SIMO radar, MIMO radars
have several advantages, e. g. a flexible transmit beampattern
design and a high DOA accuracy [1], [2]. We are interested
in the DOA accuracy. The CRB is a lower bound on the
covariance matrix of any unbiased estimator. Thus, it can be
used to study the maximum accuracy of a radar system. The
CRB has been computed for different systems. In [1], [3] the
authors investigated DOA estimation with a MIMO radar for
stationary targets. Here we consider a TDM-MIMO radar and
study the DOA estimation of a non-stationary target, i. e. the
target moves relative to the radar. To estimate the DOA, the
phases of the complex baseband signal are processed. Since
the target is moving, the Doppler effect causes additional phase
shifts. Therefore, the Doppler frequency has to be estimated
in addition. In general, this decreases the accuracy of the
DOA estimation. In [4], [5] the DOA estimation of one and
two moving targets using a TDM-MIMO radar has been
investigated. It was shown that the DOA accuracy depends on
the position as well as on the transmission sequence of the Tx
antennas. We extend the model of [4] to pulses with different
transmission powers and durations and derive the CRB. We
compare the CRB to that of a SIMO radar and a MIMO
radar with a stationary target. Moreover, we present condi-
tions on the TDM schemes such that the CRB is minimized
under some typical constraints, like the maximum transmission

power and physical antenna aperture. Numerical simulations
are presented, which confirm the analytical findings.

We use the following notations in the paper: ⊗ is the
Kronecker tensor product and � the entrywise Hadamard
product. 1K is a column vector of length K with all elements
equal 1, and I is the identity matrix. Moreover, ∗ stands for
conjugate, T for transpose and H for conjugate transpose. xi
is the i-th element of vector x. y = exp(x) and z =

√
x are

element-by-element operations, i.e. yi = exp(xi) and zi =√
xi, respectively. diag(x) is a diagonal matrix containing the

elements of x.

II. SIGNAL MODEL

We consider a TDM-MIMO radar which consists of a linear
array with NTx transmitting (Tx) and NRx receiving (Rx) colo-
cated, isotropic antennas. The radar transmits a narrowband
signal which is reflected by a target, moving relative to the
radar. The target is modeled as a point target. ϑ is the DOA of
the target, measured perpendicular to the linear array. λ is the
carrier wavelength. The positions of the Rx and Tx antennas
are denoted by dRx ∈ RNRx and dTx ∈ RNTx , respectively, in
the unit of λ

2π . The Tx antennas transmit a sequence of NPulse
pulses at the time instances t ∈ RNPulse , with pulse durations
∆ ∈ RNPulse and power p ∈ RNPulse . dPulse ∈ RNPulse are the
positions of the Tx antennas in the sequence in which they
transmit. If an antenna transmits more than once, its position
occurs several times in dPulse, see Fig. 1 for an example. Note
that dPulse and t can be chosen independently. The Rx steering
vector is aRx(u) = exp(j dRxu) with the electrical angle
u = sin(ϑ). The Tx steering vector with transmission sequence
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Fig. 1. Example of a TDM scheme: 2 Tx antennas transmitting at times
t = [t1, t2, t3, t4]T with power p = [p1, p2, p3, p4]T . Here, dPulse =
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1 ]T .



dPulse is aPulse(u) = exp(j dPulseu). The model contains L
measurement cycles. Each cycle consists of NPulse pulses. The
baseband signal of cycle l is given by

X(l) =
{√

ρ� exp(j t ω)� aPulse(u)
}
⊗ aRx(u) s(l) +N(l),

l = 1, . . . , L. (1)

Here, s(l) ∈ C is the unknown, deterministic complex target
signal and N(l) the noise. ρ ∈ RNPulse contains the transmission
energies of the pulses, i. e. ρi is the transmission energy of
pulse i. It can be expressed as the product of p and ∆: ρ =
p�∆. The expression exp(j t ω) is the phase change due to
the Doppler frequency ω. Defining the new steering vector

b(u, ω) =
{√

ρ� exp(j t ω)� aPulse(u)
}
⊗ aRx(u) ∈ CNVirt ,

(2)
NVirt = NPulse ·NRx, (3)

the baseband signal can be written as

X(l) = b(u, ω) s(l) +N(l). (4)

For convenience we write b(u, ω) as

b(u, ω) =
√
ρVirt � exp(j tVirt ω)� aVirt(u), (5)

where ρVirt = ρ⊗1NRx
, tVirt = t⊗1NRx

and the steering vector
of the virtual array aVirt(u) = aPulse(u) ⊗ aRx(u). Note that
aVirt(u) = exp(j dVirtu) with the virtual array

dVirt = 1NPulse
⊗ dRx + dPulse ⊗ 1NRx

∈ RNVirt . (6)

We make the following assumptions:
• N(l) is circular complex Gaussian with zero mean,

spatially and temporally uncorrelated with
E
(
N(l) NH(m)

)
= δl,m σ2I.

• The distance of the target to the MIMO radar is much
larger than the aperture of the radar. Thus, the target’s
DOA ϑ and also the electrical angle u are the same for
all antennas. Moreover, the target’s radar cross section is
the same for all antennas.

• The DOA ϑ does not change significantly during the L
measurement cycles, i.e. the change is much smaller than
the DOA accuracy of the radar and thus it is negligible.

• The target’s relative radial velocity is constant during the
L measurement cycles. Thus, the Doppler frequency ω is
constant.

Therefore, the unknown quantities to be estimated are

Θ = [u, ω, s(1), . . . , s(L), σ2]T . (7)

III. CRAMER-RAO BOUND

The CRB is a lower bound for the covariance matrix of
any unbiased estimator Θ̂ [6]. In our model, the unknown
parameter vector is Θ in (7). We want to obtain that part of
the CRB of Θ which corresponds to the parameters u, ω. Thus,
we have to derive the Fisher Information Matrix (FIM) J of
the whole parameter vector Θ and compute its inverse J−1.
After that, we take that 2×2 block corresponding to u, ω. This

part is denoted by CRBu,ω . Following [7], it can be computed
by

CRB−1u,ω = 2L
σ2
s

σ2
Re (C) (8)

where

C = DHP⊥b D, (9)

D =

[
∂b(u, ω)

∂u
,

∂b(u, ω)

∂ω

]
, (10)

P⊥b = I− b (bH b)−1 bH , (11)

σ2
s =

1

L

L∑
l=1

|s(l)|2. (12)

Computations show that C is real, hence

CRB−1u,ω = 2L
σ2
s

σ2
C (13)

and

C = NRx(1T ρ)

{[
VarS(dRx) 0

0 0

]
+

[
VarWS(dPulse, ρ) CovWS(t, dPulse, ρ)

CovWS(dPulse, t, ρ) VarWS(t, ρ)

]}
. (14)

Here we use the following definitions for some vectors
x, y, w ∈ CK :
• weighted sample mean

EWS(x,w) :=
1

1Tw
wTx, (15)

• weighted sample correlation

CorrWS(x, y, w) :=
1

1Tw
yH diag(w)x, (16)

• weighted sample covariance

CovWS(x, y, w) :=

CorrWS
(
x− 1 EWS(x,w), y − 1 EWS(y, w), w

)
, (17)

• and weighted sample variance

VarWS(x,w) := CovWS(x, x, w). (18)

If w ∝ 1K , all weights are equal and the weighted sample
mean, covariance and variance turn into simple sample mean
ES(x), sample covariance CovS(x, y) and sample variance
VarS(x), respectively. We are interested in the CRB of the
electrical angle u. Assuming det CRB−1u,ω 6= 0, from (13) and
(14)

CRBu = [CRBu,ω]11 =
1

2L

1

S

1

U
(19)

follows, with

S =
σ2
s

σ2
NRx

(
1T ρ

)
, (20)

U = VarS(dRx) + VarWS(dPulse, ρ)−

(
CovWS(dPulse, t, ρ)

)2
VarWS(t, ρ)

.

(21)



S is the total SNR and U depends on the positions of the
Rx and Tx antennas as well as on the weighted covariance
between dPulse and t.

IV. OPTIMAL TDM SCHEMES

The TDM scheme is characterized by the parameters

ϑTDM = [dPulseT , tT , ρT , NPulse]
T (22)

with dPulse, t, ρ ∈ RNPulse . Note that ϑTDM contains both discrete
variables (NPulse) and continuous variables (t, ρ, positions in
dPulse). First we compare the TDM-MIMO radar to different
radar systems. Moreover, we are interested in TDM schemes
which minimize CRBu. In the following, we call such a
TDM scheme an optimal TDM scheme. Typically there are
constraints on some of the parameters ϑTDM. In general,
different constraints result in a different minimal value of
CRBu. We derive conditions for optimal TDM schemes for
two different cases.

A. Comparison of CRBu to the CRB of a SIMO Radar and a
MIMO Radar with a Stationary Target

We compare the TDM-MIMO radar to a MIMO radar with
a stationary target and to a SIMO radar. For that purpose, we
compute the appropriate CRBs.

1) MIMO Radar, Stationary Target: If the target is station-
ary, i. e. it does not move relative to the radar, the Doppler
frequency vanishes, i. e. ω = 0. If this is known a priori, there
is no need to estimate it. In that case we can use the model (4),
setting ω = 0. Then the CRB of the electrical angle CRBu,stat
can be computed analogously to the moving target case. This
results in

CRBu,stat =
1

2L

1

S

1

Ustat
∈ R, (23)

S =
σ2
s

σ2
NRx

(
1T ρ

)
∈ R, (24)

Ustat = VarS(dRx) + VarWS(dPulse, ρ) ∈ R. (25)

2) SIMO Radar: The CRB for a SIMO radar can be
deduced from the CRB for the MIMO radar by using only one
Tx antenna, i. e. setting dPulse = [dTx

1 , . . . , d
Tx
1 ]T . By doing so,

we do not include the beamforming gain of a phased array
with NTx Tx antennas. This would be only possible if the
target’s DOA was known approximately a priori, which we
do not assume here. In this case, CovWS(t, dPulse, ρ) = 0, i. e.
the DOA and the Doppler frequency decouple always. This
is logical since there is no information gain on the DOA by
different Tx positions. Thus, the movement of the target does
not influence the CRB of the electrical angle. The part of the
CRB corresponding to the electrical angle is given by

CRBu,SIMO =
1

2L

1

S

1

USIMO
∈ R, (26)

S =
σ2
s

σ2
NRx

(
1T ρ

)
∈ R, (27)

USIMO = VarS(dRx) ∈ R, (28)

regardless of the movement of the target.

3) Comparison: We compare the different CRBs CRBu,
CRBu,stat and CRBu,SIMO. They differ only in the term U,Ustat
and USIMO, respectively. In the SIMO radar, only the Rx an-
tenna positions dRx are relevant. In the stationary MIMO case,
there is an additional term VarWS(dPulse, ρ) due to the different
Tx positions. The MIMO radar with the non-stationary target
has the same term as well but also an additional coupling term
Upenalty:

U = Ustat − Upenalty, (29)

Upenalty =

(
CovWS(dPulse, t, ρ)

)2
VarWS(t, ρ)

. (30)

This leads in general to a degradation. If the coupling vanishes,
i. e. CovWS(dPulse, t, ρ) = 0, the CRBs for the non-stationary
and stationary target are equal, CRBu = CRBu,stat.

Theorem 1. For a fixed ϑTDM the following inequalities hold
for CRBu

CRBu,SIMO ≥ CRBu ≥ CRBu,stat. (31)

Moreover,

CRBu = CRBu,stat iff CovWS(dPulse, t, ρ) = 0. (32)

The proof is given in the appendix. The theorem states that
for a given TDM scheme, the CRB for a moving target is
always bounded by the CRB of the corresponding SIMO radar
and the CRB of the same MIMO radar with the same TDM
scheme, but with a stationary target. Hence we can easily
compute the MIMO gain compared to the SIMO radar and
the loss in accuracy due to the movement of the target. By
using the same MIMO radar hardware (NTx Tx antennas and
NRx Rx antennas) the choice of the TDM scheme ϑTDM has
a significant impact on the DOA accuracy. In the worst case
CRBu = CRBu,SIMO and in the best case CRBu = CRBu,stat.

4) Examples: We present 2 examples of the TDM scheme
which actually reach the bounds of Theorem 1. We consider an
uniform linear array (ULA) of 4 Tx antennas with NPulse = 4,
ρ ∝ 1 and t ∝ [0, 1, 2, 3]T .
Bad TDM Schemes: We set dPulse = c1 t+ c2 with constants
c1, c2. Then, Upenalty = VarS(dPulse) and CRBu = CRBu,SIMO.
This is the case if the Tx antennas transmit at equally spaced
time instants in the order of their geometric arrangement .
Good TDM Scheme: The lower bound in (31) is reached when
using the TDM scheme dPulse = [dTx

1 , d
Tx
4 , d

Tx
4 , d

Tx
1 ]T .

Both TDM schemes are depicted in Fig. 2.

B. Optimal TDM Schemes Under Limited Transmission En-
ergy and Aperture Size

To achieve a high DOA accuracy, CRBu has to be min-
imized. Theorem 1 states a condition under which CRBu =
CRBu,stat. ϑTDM contains further degrees of freedom which can
be optimized to minimize CRBu. We determine the minimum
value of CRBu w. r. t. ϑTDM. Moreover, we derive conditions
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Fig. 2. Good and bad TDM scheme for an ULA of 4 Tx antennas.
t ∝ [0, 1, 2, 3]T .

on ϑTDM under which this minimum is reached. We consider
TDM schemes which satisfy the energy constraint

1T ρ ≤ ρmax, (33)

i. e. the transmission energy per cycle is limited by ρmax. Note
that CRBu in (19) is scaled by 1/

(
1T ρ

)
. Obviously this is a

physically meaningful constraint. Moreover, the Tx antennas
have to be placed within the real aperture range

[
dTx

min, d
Tx
max

]
,

i. e.

dTx
min ≤ dPulse

i ≤ dTx
max, i = 1, . . . , NPulse. (34)

Theorem 2.
1) CRBu is minimal w. r. t. ϑTDM if and only if

a) only the 2 outermost Tx antennas with dTx
1 = dTx

min
and dTx

2 = dTx
max are used,

b) 1T ρ(1) = 1T ρ(2),
c) 1T ρ = ρmax,
d) EWS(t(1), ρ(1)) = EWS(t(2), ρ(2)),

where t(1) and t(2) are the time instances when the
1. and 2. Tx antenna transmits, respectively. ρ(1) and ρ(2)

are the energies of the transmitted pulses of the 1. and
2. Tx antenna, respectively.

2) The minimal value of CRBu w. r. t. ϑTDM is given by

CRBu,min =
1

2L

1

Smax

1

Umax
, (35)

Smax =
σ2
s

σ2
NRxρ

max, (36)

Umax = VarS(dRx) +
1

4

(
dTx

max − dTx
min

)2
. (37)

The proof is presented in the appendix. As an example
for the definition of t(1) and t(2) consider the TDM scheme
depicted in Fig. 1: There, t(1) = [t1, t4]T and t(2) = [t2, t3]T .
The conditions of the theorem can be interpreted in the
following way: Using the two outermost Tx antennas makes
the virtual aperture as large as possible. 1T ρ(1) = 1T ρ(2)

means that the same amount of energy is transmitted from
each Tx antenna. Roughly spoken, this yields the same amount
of spatial information for both Tx antennas. 1T ρ = ρmax

states to transmit as much energy as possible, which ob-
viously leads to the highest possible SNR. The condition
EWS(t(1), ρ(1)) = EWS(t(2), ρ(2)) means that the weighted
mean transmission time of the 1. and 2. antenna are the
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Fig. 3. Example of a TDM scheme satisfying the conditions of Theorem 2
with t ∝ [0, 1, 2]T and ρ = ρmax

4
[1, 2, 1]T .

same. Roughly, EWS(t(1), ρ(1)) is the effective measurement
time instance of the data gained from the 1. Tx antenna.
Hence the condition means that the effective measurement
time instance is the same for both antennas. In average this
results in the same Doppler phase for both Tx antennas
and therefore the movement of the target does not influence
the angle accuracy. From this condition follows immediately
CovWS(dPulse, t, ρ) = 0 and thus CRBu = CRBu,stat, where
CRBu,stat is the CRB of the electrical angle of a stationary
target using the same radar and TDM scheme. Thus, the
achievable DOA accuracy is as large as if the target is not
moving relative to the radar and the complete virtual aperture
of the MIMO radar can be used as indicated in (37).

Theorem 2 helps us to find TDM schemes which achieve the
smallest possible CRBu. If we optimize ϑTDM, this theorem
tells us which conditions have to be satisfied in order to yield
an optimal TDM scheme.

We give two examples of optimal TDM schemes.
Example 1: The TDM scheme uses NPulse = 4 pulses and
the same energy per pulse, ρ = ρmax

4 1. Moreover, dPulse =
[dTx

min, d
Tx
max, d

Tx
max, d

Tx
min]T , t ∝ [0, 1, 2, 3]T . The transmission se-

quence is already depicted as the good TDM scheme in Fig. 2
with dTx

1 = dTx
min, dTx

4 = dTx
max. Since the energy per pulse is

constant, we can easily see that condition 1d is satisfied due
to the symmetry of the good TDM scheme in Fig. 2.
Example 2: The radar transmits NPulse = 3 pulses with dif-
ferent pulse energies, ρ = ρmax

4 [1, 2, 1]T , t ∝ [0, 1, 2]T and
dPulse = [dTx

min, d
Tx
max, d

Tx
min]T . This is depicted in Fig. 3.

C. Optimal TDM Schemes With Constant Transmission En-
ergy and Equidistant Transmission Times

Theorem 2 states conditions for optimal TDM schemes
under two physically meaningful constraints. Typical appli-
cations introduce additional constraints on the TDM scheme.
In general, the additional constraints result in other optimal
TDM schemes. In the following, we search for optimal TDM
schemes under the constraints (33), (34) and additional prac-
tical constraints: We consider TDM schemes which contain
pulses transmitted at equidistant time instances with the same
transmission energy per pulse. This is e. g. the case in auto-
mobile radar systems using multi-chirp sequences, i.e. several
subsequent frequency modulated continuous wave pulses. We
consider two cases: a) the number of pulses NPulse in the TDM
scheme is given and b) can be chosen freely.

Since ρ ∝ 1, the functions EWS, VarWS and CovWS

simplify to ES, VarS and CovS, respectively. Without loss of



generality we set t = [1, . . . , NPulse]
T − ES([1, . . . , NPulse]

T )1
and dTx

min = −1 and dTx
max = 1. Analog to Theorem 2, the

optimum is achieved by using only the two outermost Tx
antennas such that dPulse,opt ∈ {−1, 1}NPulse . This simplifies
significantly the optimization problem, since the number of
Tx antennas and their positions are already fixed. For a
given number of pulses NPulse, we derive the conditions TDM
schemes have to fulfill in order to minimize CRBu. Dependent
on NPulse the TDM schemes achieve different values of CRBu.
We show for which values of NPulse the smallest CRBu is
achieved, which is case b).

To minimize CRBu in (19), S in (20) and U in (21) have to
be maximized. S is maximized iff ρ = ρmax

NPulse
1. To maximize

U , we have to maximize

Ω = VarWS(dPulse, ρ)−

(
CovWS(dPulse, t, ρ)

)2
VarWS(t, ρ)

. (38)

For different NPulse, the maximal value of Ω and the criteria
for an optimal TDM scheme differ. Therefore, we have to
consider different cases of NPulse.

Theorem 3.
NPulse = 4n, n ∈ N An optimal TDM scheme has to use both
Tx elements equally often (balanced), VarS(dPulse) = 1, and
fulfill CovS(dPulse, t) = 0 which is equivalent to ES(t(1)) =
ES(t(2)). The optimal value for Ω is

Ω(dPulse,opt)
∣∣∣
NPulse∈4N

= 1. (39)

NPulse = 4n− 2, n ∈ N An optimal TDM scheme has to be
balanced and fulfill CovS(dPulse, t) = ± 1

NPulse
. The maximum

Ω for the minimal CRBu is

Ω(dPulse,opt)
∣∣∣
NPulse∈(4N−2)

= 1− 1

N2
Pulse
· 12

N2
Pulse − 1

. (40)

NPulse = 2n+ 1, n ∈ N In an optimal TDM scheme, one Tx
antenna has to transmit one pulse more than the other Tx an-
tenna and the TDM scheme has to fulfill ES(t(1)) = ES(t(2)).
The maximum Ω for the minimal CRBu is

Ω(dPulse,opt)
∣∣∣
NPulse∈(2N+1)

= 1− 1

N2
Pulse

. (41)

Due to lack of space, we omit the proof here. A justification
for the case differentiation is presented in the appendix.

If NPulse can be chosen freely in case b), then an optimal
TDM scheme has to use NPulse = 4n, n ∈ N pulses, since
due to Theorem 3, it achieves the smallest CRBu. We present
several examples which satisfy the conditions of Theorem 3
for the different cases.
NPulse = 4n, n ∈ N Such optimal TDM schemes can be con-
structed by building schemes which are balanced and sym-
metric to the center index, i.e. dPulse

i = dPulse
NPulse+1−i. An ex-

ample is dPulse, opt
1 = [1, 1,−1,−1,−1,−1, 1, 1]T . dPulse, opt

2 =
[1,−1,−1, 1,−1, 1, 1,−1]T is also optimal, but not of this
structure. Both examples are depicted in Fig. 4.
NPulse = 4n− 2, n ∈ N Such optimal TDM schemes can be
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(b) Asymmetric optimal TDM scheme

Fig. 4. Example of optimal TDM schemes with NPulse = 8

constructed by building schemes which are balanced and
symmetric to the center index, except for the elements which
are closest to the center of the sequence. An example of such
an optimal TDM scheme is dPulse, opt

1 = [−1, 1, 1,−1, 1,−1]T .
dPulse, opt
2 = [−1, 1, 1,−1,−1, 1]T is also optimal, but not of

this structure.
NPulse = 2n+ 1, n ∈ N Such optimal TDM schemes can
be constructed by building schemes where one an-
tenna transmits one pulse more than the other and
which are symmetric to the center index. An exam-
ple is dPulse, opt

1 = [−1,−1, 1, 1, 1,−1,−1]T . dPulse, opt
2 =

[−1, 1, 1,−1,−1,−1, 1]T is also optimal, but not of this
structure.

V. SIMULATIONS

To verify and foster the understanding of the theoretical
results, we present some numerical simulations. The MIMO
radar under consideration consists of 6 Rx and 6 Tx antennas,
which are uniformly spaced with an antenna distance of λ/2,
i.e. dRx = dTx = π · [0, 1, 2, 3, 4, 5]T . We choose L = 1 cycle
and consider TDM schemes with NPulse = 6 pulses and ρ ∝ 1.
The transmission time instants are t = [0, 1, . . . , NPulse − 1]T ,
where we have normalized t such that it is dimensionless.
Note that these are the constraints considered in Theorem 3.
We take the bad TDM scheme with dPulse = dTx, similar
to the bad TDM scheme depicted in Fig. 2 and the optimal
TDM scheme dPulse = [dTx

min, d
Tx
max, d

Tx
max, d

Tx
min, d

Tx
max, d

Tx
min]T . The

optimal TDM scheme is one of the examples given above for
Theorem 3. The electrical angle of the target is u = sin(10◦)
and the Doppler frequency is ω = 1.3. For each TDM
scheme, we compute the root mean square error (RMSE) of
the deterministic Maximum Likelihood (ML) estimate of u
by doing Monte-Carlo simulations. Note that the unknown
parameter vector of the ML estimator is Θ in (7) and not
u alone. We do this for different values of the total SNR S
and compare the RMSE with CRBu. The result is depicted
in Fig. 5. The plot shows that the ML estimators achieve the
corresponding CRBs above a threshold of approximately 16
and 18 dB, respectively. Moreover, the optimal TDM scheme
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Fig. 5. RMSE of ML and CRB of a bad and optimal TDM scheme

achieves a higher accuracy than the bad one. In this example,
this corresponds to an SNR gain of approximately 11.2 dB.
Hence by choosing a good TDM sequence, the DOA accuracy
can be significantly increased without changing the Rx or Tx
array.

VI. CONCLUSION AND OUTLOOK

We have investigated the DOA estimation of a moving target
using a TDM-MIMO radar. We analyzed the achievable DOA
accuracy by computing the CRB. We have compared it to the
CRB of a SIMO radar and a MIMO radar with a stationary
target. Under different constraints, we have derived conditions
for optimal TDM schemes such that the lowest possible value
of the CRB is achieved. Numerical simulations confirmed the
analytical results.

APPENDIX

PROOF OF THEOREM 1

For arbitrary but fixed ρ we can assume w. l. o. g.
EWS(dPulse, ρ) = EWS(t, ρ) = 0. Then the relevant weighted
covariance CovWS and variance VarWS terms simplify to
weighted correlations CorrWS. For fixed ρ, CorrWS(x, y, ρ)
is an inner product. Hence we can use the Cauchy Schwarz
inequality, from which the first part of the Theorem follows.
The second part follows immediately from (29).

PROOF OF THEOREM 2

1. To minimize CRBu in (19), S in (20) and U in (21) have
to be maximized. S is maximal iff 1T ρ = ρmax, since the other
variables are fixed. This is condition 1c. U is independent of
a scaling of ρ. To maximize U , we have to maximize

Ω = VarWS(dPulse, ρ)−

(
CovWS(dPulse, t, ρ)

)2
VarWS(t, ρ)

(42)

since dRx is given. It can be shown that VarWS(dPulse, ρ) is
maximal iff only the two outermost Tx antennas are used and
1T ρ(1) = 1T ρ(2). Due to lack of space we do not prove that
here. Using only two Tx antennas, CovWS(dPulse, t, ρ) = 0

iff EWS(t(1), ρ(1)) = EWS(t(2), ρ(2)). The two conditions
1T ρ(1) = 1T ρ(2) and EWS(t(1), ρ(1)) = EWS(t(2), ρ(2)) do
not contradict. An example which fulfills both conditions is
presented in Sec. IV-B. Thus, max

dPulse,ρ
VarWS(dPulse, ρ) stays

the same independent whether CovWS(dPulse, t, ρ) = 0 is
fulfilled or not. Hence VarWS(dPulse, ρ) can be maximized
and CovWS(dPulse, t, ρ) = 0 at the same time. Thus, Ω is
maximal iff VarWS(dPulse, ρ) is maximal and at the same
time CovWS(dPulse, t, ρ) = 0. Therefore, Ω is maximal iff
conditions 1a, 1b and 1d are fulfilled.

2. The minimal value of CRBu can be determined by
choosing ϑTDM such that the conditions of the 1. part of
the Theorem are fulfilled.

CASE DIFFERENTIATION IN THEOREM 3

In the following we present the reason for the case differ-
entiation. To maximize Ω, we have to maximize VarS(dPulse)
and to minimize |CovS(dPulse, t)| at the same time. First
we consider VarS(dPulse). For even NPulse both Tx anten-
nas can be used equally often such that VarS(dPulse) is
maximal, VarS(dPulse) = 1. For odd NPulse one antenna is
used more often than the other and a sample variance
of 1 cannot be achieved. Hence optimal TDM schemes
have to be determined for even and odd NPulse sepa-
rately. A further case differentiation is required to mini-
mize CovS(dPulse, t). For odd NPulse it can be shown that
min |CovS(dPulse, t)| = 0. For even NPulse with NPulse ∈ 4N,
the minimum value is also min |CovS(dPulse, t)| = 0. If NPulse
is even with NPulse ∈ 4N− 2 then min |CovS(dPulse, t)| = 0.5.
Thus we have to make a second case differentiation for even
NPulse. Therefore, we have to consider the cases NPulse ∈ 4N,
NPulse ∈ 4N− 2 and NPulse ∈ 2N + 1.
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