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Zusammenfassung

Diese Arbeit untersucht die Schätzung von Parametern aus verrauschten Beobachtungen mit

zusätzlicher Information. Mit zusätzlicher Information ist dabei jegliches Wissen gemeint, wel-

ches neben den eigentlichen Beobachtungen zur Verfügung steht. In praktischen Anwendungen

taucht solches Wissen meist auf ganz natürliche Art und Weise auf, nämlich dann, wenn der

Kontext der Anwendung mit berücksichtigt wird. Die Motivation zur Betrachtung solcher Para-

meterschätzprobleme ist zum einen, dass dadurch sichergestellt werden kann, dass physikalische

Randbedingungen auch eingehalten werden. Zum anderen erlauben sie es, den Schätzfehler zu

reduzieren, insbesondere in Fällen mit hoher Ungenauigkeit in den Beobachtungen. Im Folgen-

den sollen kurz Beispiele für solches zusätzliche Wissen gegeben werden, bevor dann die zwei

Lösungsansätze, die dieser Dissertation zu Grunde liegen, näher erläutert werden.

Parameterschätzprobleme mit zusätzlicher Information haben in den letzten Jahren vermehrt an

Aufmerksamkeit gewonnen. Besonders Compressed Sensing ist ein bekanntes Beispiel hierfür,

bei dem das Wissen, dass der zu schätzende Parametervektor dünn besetzt ist, es auch im Fall

von Unterabtastung noch erlaubt, das ursprüngliche Signal zu rekonstruieren [Candes and Wa-

kin, 2008]. Unterabtastung kann entweder bewusst verwendet werden, um Zeit bzw. Kosten zu

sparen, siehe z. B. [Duarte et al., 2008; Lustig et al., 2008], oder tritt aufgrund von physikali-

schen Randbedingungen auf [Lee et al., 2011]. Ein weiteres Beispiel für zusätzliches Wissen

ergibt sich für die Aufgabe der Bildentrauschung. Gewöhnlich wird der mittlere quadratische

Fehler als Optimierungskriterium zum Entwurf von Verfahren verwendet. Dies resultiert jedoch

in Verfahren, die alle das gemeinsame Problem haben, dass der mittlere quadratische Fehler kein

gutes Gütekriterium (engl. loss function) zum Vergleich von Bildern ist. Ein großer mittlerer qua-

dratischer Fehler zwischen zwei Bildern bedeutet nicht immer, dass sich beide für einen mensch-

lichen Betrachter stark unterscheiden [Wang and Bovik, 2009]. Es ist deshalb für den Entwurf

von Bildentrauschungsmethoden interessant, andere Gütekriterien, die besser auf die mensch-

liche Wahrnehmung zugeschnitten sind, zu verwenden, da das Ergebnis letztendlich auch von

einem Menschen beurteilt wird.

Beide Beispiele motivieren die Betrachtung von Parameterschätzproblemen mit zusätzlicher In-

formation, wie sie in dieser Arbeit erfolgt. Aufgrund der unterschiedlichen Art des verfügba-

ren zusätzlichen Wissens, werden zwei verschiedene Wege aufgezeigt, wie diese Information

verwendet werden kann, um die Schätzung zu verbessern. Die vorgestellten Methoden gehen



– x –

dabei über den traditionell verwendeten Bayes-Ansatz mit verschiedenen A-priori-Verteilungen

hinaus und ermöglichen es so, möglichst flexibel das zusätzliche Wissen in die Schätzung zu

integrieren.

Eine erste Möglichkeit wird in Kapitel 3 vorgestellt, indem die zusätzliche Information in Form

von Bedingungen formuliert wird, die der Schätzwert erfüllen muss. Das vorgestellte Beispiel

des Compressed Sensings ist z. B. ein Problem, welches so beschrieben werden kann – es wird

der dünn besetzte Parametervektor gesucht, der die Messgleichungen erfüllt. Insbesondere die

konvexe 1-Norm hat sich als geeignet für Compressed Sensing gezeigt [Tibshirani, 1996]. In

Kapitel 3 wird aufgezeigt, wie ein zeitvarianter Parametervektor in einem normalverteilten, li-

nearen Signalmodell mit allgemeinen Bedingungen geschätzt werden kann und es werden drei

verschiedene Schätzer für dieses Problem vorgestellt. Diese sind

• der Recursive Constrained Maximum Likelihood (RCML) Schätzer, der die Log-Likeli-

hood Funktion unter der gegebenen Bedingung maximiert,

• der Recursive Affine Minimax (RAMX) Schätzer, der den maximalen Fehler innerhalb der

erlaubten Lösungsmenge, die durch die Bedingungen definiert wird, minimiert, sowie

• der Recursive Minimum Mean Squared Error (RMMSE) Schätzer, welcher das ursprüng-

liche Problem in ein Bayes-Schätzproblem umformuliert. Dabei wird die A-priori-Vertei-

lung des Parametervektors als gleichverteilt auf der erlaubten Lösungsmenge angenom-

men.

Alle drei Schätzer können in einem ersten Schritt durch den Recursive Weighted Least Squares

(RWLS) Algorithmus vereinfacht werden, da RWLS die suffiziente Statistik für das betrachtete

Schätzproblem berechnet. Die vorgestellten Verfahren werden anschließend an drei Beispielen

näher erläutert und miteinander verglichen.

Eine zweite Möglichkeit, um zusätzliches Wissen zu berücksichtigen, wird in Kapitel 4 vor-

gestellt und besteht in der Verwendung von anderen Gütekriterien als dem bekannten qua-

dratischen Fehler. Der verbreitete Gebrauch des quadratischen Gütekriteriums ist meist nicht

darin begründet, dass sie gut zu dem betrachteten Problem passt, sondern dass es oft – zu-

mindest unter Verwendung von Markov-Chain-Monte-Carlo-Methoden – eine numerisch zu-

gängliche Lösung erlaubt. Andere, für die Praxis besser geeignete, Gütekriterien sind z. B. der

Structural-Similiarity-Index (SSIM) zum Vergleich von Bildern [Wang and Bovik, 2009] und

das Perceptual-Evaluation-of-Speech-Quality-Kriterium (PESQ) für Sprachdaten [Hu and Loi-

zou, 2008]. Um eine numerisch effiziente Lösung für Parameterschätzprobleme mit solchen

Gütekriterien zu erhalten, wird in Kapitel 4 eine neue parametrische Familie von Schätzern vor-

gestellt. Durch die Verwendung dieser Familie wird das Schätzproblem in zwei Teile aufgeteilt.

In einem ersten Schritt muss für ein gegebenes Signalmodell und ein gegebenes Gütekriterium

der beste Schätzer bezüglich des Bayes-Risikos innerhalb der Familie gefunden werden. Dazu
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wird in dieser Arbeit ein Gradientenverfahren vorgeschlagen und die Elemente des Gradienten-

vektors hergeleitet. Um in einem zweiten Schritt den Schätzwert für eine neue Beobachtung

zu finden, wird Importance Sampling verwendet. Durch diesen Ansatz kann das allgemeine

Problem, welches meist mit einer Bayes-Parameterschätzung mit nicht gebräuchlichen Gütekri-

terien einhergeht, nämlich dass für jede Beobachtung ein Optimierungsproblem gelöst werden

muss, umgangen werden. Abschließend werden in Kapitel 4 ebenfalls drei Beispiele betrachtet,

um die parametrische Familie von Schätzern und ihre Eigenschaften näher zu untersuchen.
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Chapter 1

Introduction

This thesis deals with the problem of estimating unknown parameters from noisy data using addi-

tional information. By additional information we denote any domain knowledge that is available

to us except the data itself. Such prior domain knowledge very often arises naturally from the

estimation problem at hand if the context is taken into account. The motivation to incorporate

the prior domain knowledge is twofold: First, it allows us to ensure that the estimate will fulfill

physical constraints which are given and second, we can also expect a better estimation perfor-

mance. In the following, we will give examples of this domain knowledge and then outline the

general way how we could deal with such estimation problems.

Considering estimation problems with additional a priori information has seen an increased

interest over the last years. Especially Compressed Sensing is a prominent example where the

knowledge that the parameter vector is sparse, i.e. it only contains a small number of nonzero

elements, allows a reconstruction of the original signal even in the case of undersampling, see

e.g. [Candes and Wakin, 2008]. Such schemes are interesting from a practical point of view in

a real system: We could either arbitrarily undersample the original signal to save time/costs as

was shown in [Duarte et al., 2008; Lustig et al., 2008] or due to physical boundary conditions,

we are facing the problem of undersampling [Lee et al., 2011]. Another example where we have

prior information is image denoising where the goal is to estimate a (clean) undistorted image

from the noisy image itself. Traditionally, the mean squared error (MSE) is used to derive image

denoising algorithms. However, these approaches suffer from the fact that the MSE is not a good

quality measure of image similarity if compared to human perception, see e.g. [Wang and Bovik,

2009]. Therefore, using other quality measures, called loss functions in the context of estimation

theory, we expect better results as we exploit the knowledge of the human perception, i.e. the

prior domain knowledge is that the image denoising result will be assessed by a human.

Both examples motivate the study of general schemes that allow to incorporate additional prior

information into the estimation procedure. Traditionally, a Bayesian approach with different a

priori distributions is used to exploit this information. However, this approach is not well suited

for many practical problems, e.g. the image denoising example given above, as the additional
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information can not be directly represented by the a priori distribution. We will therefore discuss

in this thesis two other approaches to deal with prior domain knowledge.

The first possibility is to express the prior information in terms of constraints that have to be

satisfied by the estimator. The first example of compressed sensing is such a case where we

want to find the sparsest parameter vector which fulfills the measurement equations. Especially

the convex 1-norm has turned out to be a suitable constraint for compressed sensing [Tibshirani,

1996]. We will discuss in this thesis the problem of estimating a time-varying parameter vector in

a Gaussian linear signal model with general constraints. Three different estimators are proposed

for this problem:

• the recursive constrained maximum likelihood (RCML) estimator, which maximizes the

log-likelihood function such that the constraints are fulfilled,

• the recursive affine minimax (RAMX) estimator, which minimizes the worst case error

on the feasible set defined by the constraints, and

• the recursive minimum mean squared error (RMMSE) estimator, which recasts the fre-

quentists problem into a Bayesian one and uses the prior with the maximum entropy on

the feasible set.

All three estimators can be substantially simplified by using the recursive weighted least squares

(RWLS) algorithm in a first step as RWLS computes a sufficient statistic for this estimation

problem. The recursive constrained ML needs to solve an optimization problem in the second

step for the case that the RWLS solution does not fulfill the constraint. In case of affine minimax,

we have to solve an optimization problem and to perform an affine transform. The RMMSE

estimator needs to calculate the mean of a truncated Gaussian density in the second step which

is done by Monte Carlo integration. A simple rejection scheme is used to take general constraints

for the parameter vector into account.

A second possibility to incorporate additional information is to use other quality measures (i.e.

loss functions) than the MSE for the design of estimators. The prominent use of the MSE is

often not its suitability to the application at hand but that it allows tractable solutions, at least

in terms of Markov chain Monte Carlo (MCMC) methods [Liu, 2008]. Other loss functions

that are more suited for particular applications are e.g. the structural similarity (SSIM) index

for image comparison [Wang and Bovik, 2009] or the perceptual evaluation of speech quality

(PESQ) measure for speech data [Hu and Loizou, 2008]. To obtain estimators for such nonstan-

dard loss functions – opposed to the mean squared error or the hit-or-miss error – we introduce

a parametric family of estimators. By restricting the estimator to lie in this family, we split the

estimation problem into two parts: In a first step, we find the best estimator with respect to the

Bayes risk for a given loss function, which has to be done only once. The second step then calcu-

lates the estimate for a particular observation. The advantage of the proposed parametric family
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is that importance sampling allows the efficient computation of estimates for new observations.

It thus overcomes the general problem of Bayesian estimation with nonstandard loss functions,

namely that the Bayesian estimator for such loss functions can often only be stated in terms of

an optimization problem, which has to be solved for each new observation.

The outline of this thesis is as follows: Chapter 2 will introduce the basic notions and methods

from estimation theory which lay the foundations for later chapters. Based on these concepts,

Chapter 3 will consider the problem of recursive estimation using a priori information in terms

of a set where we know that the time-varying parameter vector has to lie in. It summarizes

the main ideas which we presented in [Uhlich and Yang, 2009, 2010b, 2011]. Chapter 4 will

reveal another possibility of introducing application domain knowledge by using suitable loss

functions. The material for this chapter is mainly drawn from [Uhlich and Yang, 2010a, 2012].

Motivated by the parametric family of estimators from Chapter 4, we will turn in Chapter 5 to

the problem of finding the loss function for a given estimator and signal model. There, we look

at the inverse problem opposed to what is usually encountered and we will give solutions in

terms of convex optimization problems which have to be solved. Finally, Chapter 6 concludes

this thesis by restating the main points of the presented work and summarizing further work that

was published in [Uhlich and Yang, 2008; Blind et al., 2009; Uhlich et al., 2009]. The last part

of this final chapter also shows issues which are interesting for future work.

Please note that Appendix A and B summarize the used concepts from matrix calculus and

optimization theory, which are used throughout this thesis.
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Chapter 2

Parameter Estimation Methods

This chapter briefly summarizes the estimation methods and tools which we will use in later

chapters. The interested reader is referred to [Lehmann and Casella, 1998] and [Robert, 2001]

for a more detailed treatment.

2.1 Overview

The goal of estimation theory is to infer the value of an unknown parameter from noisy data, i.e.

data with a random component. More formally, let x ∈ RK denote the data, which we use to

estimate the value of the unknown parameter θ ∈ RM . Then, the goal is to find an estimator

θ̂(x) : RK → RM which is optimal with respect to a specific design criterion.

In general, two different approaches can be distinguished:

(i) The frequentist approach assumes that the parameter vector is deterministic but unknown.

Using the data x which is known to have the parametrized probability density function

(PDF) p(x; θ), the value of the unknown parameter vector θ has to be estimated.

(ii) The Bayesian approach treats θ as a random parameter vector which exhibits an a pri-

ori density p(θ). The parameter which we want to estimate is then one realization of

the random vector θ. All information, which we can use to estimate the value of θ, is

described by p(x, θ) = p(x|θ)p(θ). The PDF p(x|θ) is called the likelihood density

and it represents our knowledge about the data conditioned on a fixed θ. This density is

often derived from the signal model underlying our application. The a priori PDF p(θ)

summarizes our knowledge about θ before any data is observed.

Both approaches are used in practice and have their advantages as well as disadvantages. In

[Samaniego, 2010], a profound comparison of both philosophies is performed. Considering dif-

ferent examples, Samaniego shows that depending on the application, the Bayesian or frequen-

tist approach gives better results and the statistician should ask himself the question whether the

problem is better treated as a Bayesian or frequentist one.
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Before introducing the estimators that will be used in this thesis, we first review performance

bounds on the covariance matrix and the mean squared error (MSE) matrix of an estimator.

2.2 Performance Bounds

Having lower bounds on the estimation error θ̂(x) − θ is very useful in practice [Kay, 1993;

Van Trees and Bell, 2007]. They allow the evaluation and design of estimators, e.g. to find the

minimum variance unbiased estimator (MVUE), but are also useful for the design of experi-

ments if some degrees of freedom can be used to obtain estimates with a higher precision, see

e.g. [Pukelsheim, 2006].

In the following, we will derive lower bounds on the estimation error for the deterministic and

the Bayesian case. In the literature, it is common to speak of a deterministic/Bayesian bound

if the underlying estimation problem is a frequentist/Bayesian one. If the parameter vector con-

tains a deterministic part and a random part then the corresponding bounds are called hybrid.

The estimator bias b
θ̂

, covariance matrix C
θ̂

and MSE matrix S
θ̂

are defined as

Deterministic parameter:

b
θ̂
(θ) = E

[

θ̂(x) − θ
]

=

∫

θ̂(x)p(x; θ)dx− θ,

C
θ̂
(θ) = E

[

(

θ̂(x) − θ
)(

θ̂(x) − θ
)T
]

− b
θ̂
(θ)b

θ̂
(θ)T

= E

[

(

θ̂(x)− E
[

θ̂(x)
]

)(

θ̂(x) − E
[

θ̂(x)
]

)T
]

,

S
θ̂
(θ) = E

[

(

θ̂(x) − θ
)(

θ̂(x) − θ
)T
]

= b
θ̂
(θ)b

θ̂
(θ)T +C

θ̂
(θ),

Random parameter:

b
θ̂
= E

[

θ̂(x)− θ
]

=

∫∫

(

θ̂(x)− θ
)

p(x, θ)dxdθ,

S
θ̂
= E

[

(

θ̂(x) − θ
)(

θ̂(x) − θ
)T
]

=

∫∫

(

θ̂(x) − θ
)(

θ̂(x) − θ
)T

p(x, θ)dxdθ.

In general, at least three families of bounds can be distinguished: the covariance-inequality

bounds, the Ziv-Zakai bounds and the interval estimation methods which will now be succes-

sively introduced. Note that the interval estimation method only provides an approximation of

the MSE and not a strict lower bound as the two other families.
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Furthermore, also other families of lower bounds exist in the literature. For example in [Todros

and Tabrikian, 2010a,b] a new class of lower bounds was introduced recently. However, in this

thesis we will only introduce the three families, which we mentioned before as they are the most

often used ones in practice.

2.2.1 Covariance-Inequality Family

The covariance-inequality family is the most prominent family of lower bounds, especially as the

Cramér-Rao bound, which is often applied due to its simple form yielding analytical results, is

included. The name covariance-inequality family stems from the fact that all following bounds

rely on the same covariance inequality [Weinstein and Weiss, 1988; Abel, 1993]

E
[

(

f(x, θ)−Ag(x, θ)
) (

f(x, θ)−Ag(x, θ)
)T
]

� 0 (2.1)

for arbitrary functions f(x, θ) : RK ×RM → RP , g(x, θ) : RK ×RM → RQ and A ∈ RP×Q.

X � Y means that X − Y is nonnegative definite. Note that E [.] either assumes θ to be

deterministic if we derive a deterministic bound or assumes θ to be a random vector for the

Bayesian case.1 Expanding (2.1), we obtain

E
[

f(x, θ)f(x, θ)T
]

� TAT +ATT −AGAT ∀A (2.2)

with T = E
[

f(x, θ)g(x, θ)T
]

and G = E
[

g(x, θ)g(x, θ)T
]

. As the right-hand side has to

hold for all A, we can obtain a good lower bound by using the special choice Aopt = TG−1 as

shown in Appendix C.1.1. Using fD(x, θ) = θ̂−E[θ̂] and E[(θ̂−θ)(θ̂−θ)T ] = b
θ̂
(θ)b

θ̂
(θ)T+

E[(θ̂ − E[θ̂])(θ̂ − E[θ̂])T ] in the deterministic case and fB(x, θ) = θ̂ − θ in the Bayesian case,

we finally can establish the following bounds on the MSE matrix of any estimator

Deterministic case: E

[

(

θ̂(x)− θ
)(

θ̂(x)− θ
)T
]

� b
θ̂
(θ)b

θ̂
(θ)T +TG−1TT , (2.3a)

Bayesian case: E

[

(

θ̂(x)− θ
)(

θ̂(x)− θ
)T
]

� TG−1TT . (2.3b)

Choosing different functions g(x, θ) yields different bounds which will now be discussed.

Cramér-Rao Bound

Using the special choice

gD(x, θ) =
∂ ln p(x; θ)

∂θ

T

, gB(x, θ) =
∂ ln p(x, θ)

∂θ

T

, (2.4)

1Deterministic case: E[.] =
∫

. p(x;θ)dx, Bayesian case: E[.] =
∫∫

. p(x, θ)dxdθ.
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the bounds in (2.3) turn into the Cramér-Rao bound (CRB) [Rao, 1945; Cramer, 1946; Van Trees,

1968]. Please note that the transpose operator (.)T was used in (2.4) to obtain column vectors as

∂ ln p(x; θ)/∂θ results by definition in a row vector, see Appendix A.

The matrices T and G take the form TD = I+
∂b

θ̂
(θ)

∂θ , TB = I and

GD = E

[

∂ ln p(x; θ)

∂θ

T
∂ ln p(x; θ)

∂θ

]

, GB = E

[

∂ ln p(x, θ)

∂θ

T
∂ ln p(x, θ)

∂θ

]

, (2.5)

where GD is the Fisher information matrix (FIM) and GB the Bayesian information matrix

(BIM) [Van Trees and Bell, 2007].2

In the deterministic case, for example, we obtain for the MSE matrix

E

[

(

θ̂(x)− θ
)(

θ̂(x) − θ
)T
]

� b
θ̂
(θ)b

θ̂
(θ)T +

(

I+
∂b

θ̂
(θ)

∂θ

)

G−1
D

(

I+
∂b

θ̂
(θ)

∂θ

)T

(2.6)

which is sometimes called the biased CRB [Eldar, 2008c]. This bound will be useful in the

derivation of the affine minimax estimator in Section 2.3.2. If we restrict our consideration to

unbiased estimators with b
θ̂
(θ) = 0 only, (2.6) simplifies to

E

[

(

θ̂(x) − E[θ̂(x)]
)(

θ̂(x)− E[θ̂(x)]
)T
]

= C
θ̂
(θ) � G−1

D (2.7)

which is the most often used form of the CRB [Kay, 1993] as the bias term b
θ̂
(θ) is typically not

known. The popularity of the CRB is due to its simplicity which allows an analytical derivation

in many situations.

It is important to note that the CRB is a small error bound, i.e. it bounds the performance of an

estimator by considering the behavior of the log-likelihood function3 ln p(x; θ) in the vicinity of

the true parameter value θ. Such errors are called small errors. However, for a low SNR, it is also

important to consider the case of large errors, which occurs if the log-likelihood function has its

maximum at a different position and thus the MSE of an estimator is not only locally determined

by the log-likelihood function at θ. For many estimation problems, one can therefore observe

that the CRB is not a tight bound at lower SNR values and hence can not be used to predict

the threshold region, i.e. the SNR region where the MSE of an estimator increases more rapidly.

This threshold phenomena can for example be found in frequency estimation [Van Trees and

2For the derivation of TD and TB, some regularity conditions have to be fulfilled, see e.g. [Kay, 1993; Van Trees and

Bell, 2007]. E.g. in the deterministic case, it is assumed that the differentiation with respect to θ and the expectation

operator E[.] can be interchanged.
3The same is also true in the Bayesian case as the CRB only considers the joint PDF p(x, θ) in the vicinity of the true

parameter value θ.
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Bell, 2007; Knockaert, 1997]. Due to this problem of the CRB, tighter bounds were studied in

the literature, which we will now introduce.

Bhattacharyya Bound

The Bhattacharyya bound [Bhattacharyya, 1946; Van Trees, 1968] is obtained from the covari-

ance inequality (2.3) for the special choice

gD(x, θ) =
1

p(x; θ)













∂p(x;θ)
∂θ

T

∂2p(x;θ)
Rem{∂θ⊗∂θ}

T

...













, gB(x, θ) =
1

p(x, θ)













∂p(x,θ)
∂θ

T

∂2p(x,θ)
Rem{∂θ⊗∂θ}

T

...













, (2.8)

where “⊗” denotes the Kronecker product. In comparison to the CRB, g(x, θ) is augmented

with higher-order derivatives. The operator Rem{.} is used to remove redundant elements in

g(x, θ) as e.g.
∂p(x,θ)
∂θi∂θj

= ∂p(x,θ)
∂θj∂θi

. If the redundant elements are not removed then G is singular

and can therefore not be inverted.

It can be shown that [Abel, 1993; Van Trees and Bell, 2007] under some suitable regularity

conditions

TD =
[

I 0 · · ·
]

+
[

∂b
θ̂
(θ)

∂θ

∂2b
θ̂
(θ)

Rem{∂θ⊗∂θ} · · ·
]

, TB =
[

I 0 · · ·
]

. (2.9)

Although it can be proved that the Bhattacharyya bound yields a tighter bound than the CRB, its

derivation is quite involved and also the difference in comparison to the CRB is often only small

which does not justify the increased computational complexity. In [Forster and Larzabal, 2002]

for example, the Bhattacharyya bound of third order was derived and the results show that the

improvement does not help to predict the threshold phenomena that often occurs in nonlinear

estimation problems. This stems from the fact that the Bhattacharyya bound is again a small

error bound that does not explicitly consider the case of large errors.

Bobrovsky-Zakai Bound

Another bound that can be derived from the covariance inequality (2.3) is the Bobrovsky-Zakai

bound [Bobrovsky and Zakai, 1975; Reuven and Messer, 1997]. It follows from the choice

gD(x, θ) =











p(x;θ+h1)
p(x;θ) − 1

...
p(x;θ+hQ)

p(x;θ) − 1











, gB(x, θ) =











p(x,θ+h1)
p(x,θ) − 1

...
p(x,θ+hQ)

p(x,θ) − 1











, (2.10)
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which can be seen as a finite difference approximation of (2.4) that does not require the differ-

entiability of p(x; θ) and p(x, θ) with respect to θ. It results in

TD =
[

h1 + b
θ̂
(θ + h1)− b

θ̂
(θ) · · · hQ + b

θ̂
(θ + hQ)− b

θ̂
(θ)
]

,

TB =
[

h1 · · · hQ

]

.

The Q test points {h1, . . . ,hQ} can be freely chosen. The bound which is obtained from using

the optimal set of test points is also called the Hammersley-Chapman-Robbins bound.

The Bobrovsky-Zakai bound is the most widely used Barankin-style4 bound [Abel, 1993] and

belongs to the class of large error bounds. Note that the Cramér-Rao bound is included in the

Bobrovsky-Zakai bound for the special choice Q = M and hi = ǫiei with ǫi → 0 for all

i = 1, . . . ,M and assuming that p(x; θ) and p(x, θ) are differentiable at θ.

Weiss-Weinstein Bound and Composite Bounds

For completeness, we would like to mention the Weiss-Weinstein bound which was introduced

in [Weiss and Weinstein, 1985]. It can also be obtained from (2.3) and is an extension of the

Bobrovsky-Zakai bound resulting in tighter bounds which have proven to be useful for predict-

ing the threshold region in direction-of-arrival (DOA) estimation problems [Bell et al., 1993].

Moreover, also compositions of bounds derived from (2.3) have been studied in the literature, e.g.

in [Abel, 1993]. Abel proposed a combination of the Bhattacharyya bound and the Hammersley-

Chapman-Robbins bound to benefit from the advantages of both of them, i.e. to develop a bound

which considers both small and large errors.

2.2.2 Other Approaches

Ziv-Zakai Family

Another approach to obtain a lower bound was developed in [Ziv and Zakai, 1969] for the scalar

case and later extended in [Bell et al., 1997] to the case of a parameter vector.

Starting from the observation

E
[

X2
]

=
1

2

∞
∫

0

hPr

{

|X | ≥ h

2

}

dh, (2.11)

4The term Barankin bound refers to the more general choice (for the scalar case Q = 1)

gD(x, θ) =
1

p(x; θ)

(
∫

p(x;θ + h)p(h)dh −

∫

p(x;θ + h̃)p(h̃)dh̃

)

,

gB(x, θ) =
1

p(x, θ)

(
∫

p(x,θ + h)p(h)dh −

∫

p(x,θ + h̃)p(h̃)dh̃

)

.
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which is proved in Appendix C.1.2 and holds for any random variable X , the Ziv-Zakai bound

is derived by using X = aT (θ̂ − θ) where a ∈ RM is an arbitrary vector. It can be shown that

in the Bayesian case5

aTS
θ̂
a ≥ 1

2

∞
∫

0

V
(

max
aT δ=h

∫

(

p(θ) + p(θ + δ)
)

Pmin(θ, θ + δ)dθ

)

h dh (2.12)

can be established where V(.) is the valley-filling function6 [Bellini, 1978; Bell et al., 1997]

and Pmin(θ, θ + δ) is the minimum error probability of a corresponding decision problem. In

particular, a = ei is interesting as (2.12) returns a bound on the MSE of the ith parameter θi.

Appendix C.1.3 shows the basic steps to derive (2.12).

To find Pmin(θ, θ + δ), results from detection theory can be used. Nevertheless is the over-

all computation of the Ziv-Zakai bound often challenging but also worthwile as, for example,

[Nguyen and Van Trees, 1994] showed. There, a comparison of the Weiss-Weinstein bound and

the Ziv-Zakai bound was performed and the simulation results show that the Ziv-Zakai bound is

a tighter bound for this particular estimation problem.

Method of Interval Errors

The last approach we would like to mention is the method of interval errors (MIE) [Van Trees,

1968]. This method directly models the two kinds of error, namely small errors and large errors,

which contribute together to the estimator’s MSE. Therefore, the MSE matrix can be approxi-

mated by

S
θ̂
≈ Pr(I) E

[

(

θ̂ − θ
)(

θ̂ − θ
)T ∣
∣

∣I
]

+ (1− Pr(I)) E
[

(

θ̂ − θ
)(

θ̂ − θ
)T ∣
∣

∣Ī
]

(2.13)

where I denotes the case of a large error7. A good approximation of the MSE matrix in the case

of no large error is given by the Cramér-Rao bound. Therefore, it remains to compute Pr(I)
and E[(θ̂− θ)(θ̂− θ)T |I] which are application dependent, see e.g. the work in [Athley, 2005]

where the DOA problem is studied. Note that the method of interval errors does not provide

a strict lower bound which cannot be beaten by any estimator but gives in many cases a good

approximation of the MSE matrix.

5A similar bound can be derived for the deterministic case, see [Gu and Wong, 1991] and Appendix C.1.3 for details.
6The valley-filling function V(f(h)) is a nonincreasing function of h which is obtained by filling all valleys in f(h).

Mathematically, it is defined as [Bellini, 1978]

V(f(h)) = max
ǫ≥0

f(h+ ǫ).

7In the context of MIE, one often uses the notion of interval errors if one refers to large errors. We therefore use the

symbol I to denote such an event.
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After introducing the most important families of lower estimation bounds, we now turn to the

different possibilities to design estimators, which will be used in this thesis.

2.3 Frequentist Approach to Estimation

The frequentist approach assumes the unknown parameter θ to be deterministic but unknown

and is therefore purely data driven. In the following, we will introduce the maximum likelihood

and the affine minimax estimator. Beside them, also other frequentist estimators are known, e.g.

the minimum variance unbiased estimator (MVUE), the best linear unbiased estimator (BLUE)

and the method of moments [Kay, 1993].

2.3.1 Maximum Likelihood Estimation

The maximum likelihood (ML) method is probably the most prominent method used in estima-

tion theory. The ML estimator is given by

θ̂ML(x) = argmax
θ

p(x; θ) = argmax
θ

ln
(

p(x; θ)
)

, (2.14)

i.e. it estimates the value of θ that is most likely given the data x. Assuming that θ is continu-

ously valued, a necessary condition to find the ML estimator is

∂p(x; θ)

∂θ

∣

∣

∣

∣

∣

θ=θ̂ML

= 0, (2.15)

which often cannot be solved analytically. Then, numerical techniques like the Newton-Raphson

method, sometimes used with scoring where the Hessian is replaced by the inverse FIM (2.5),

and the Expectation-Maximization (EM) algorithm have to be used [Dempster et al., 1977; Kay,

1993].

The popularity of the ML estimator stems not only from its straightforward derivation using

the necessary condition (2.15) but also from its asymptotic properties [Kay, 1993] if an infinite

number of data is available. The ML estimator is consistent, i.e. it converges in probability to

the true parameter θ. Furthermore, it can be established that the ML estimator converges in

distribution to a Gaussian distribution with mean θ and covariance matrix equal to the inverse

FIM (2.5). Note that these asymptotic properties only hold under some regularity conditions

which have to be fulfilled [Lehmann and Casella, 1998].

For the special case of a linear Gaussian model

x = Hθ + z, (2.16)
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where z is zero-mean Gaussian noise with covariance C, i.e. z ∼ N (0,C), the ML estimator

is well known to be θ̂ML(x) =
(

HTC−1H
)−1

HTC−1x assuming a full column rank of H

[Kay, 1993]. This estimator is also the MVUE and it achieves the CRB.

2.3.2 Affine Minimax Estimation

The second frequentist approach we consider is the affine minimax (AMX) estimator, which

relies on the approach

θ̂AMX(x) = Ux + u, (2.17)

i.e. it performs an affine transform of the data x whereU andu are found by solving the minimax

problem

min
U,u

max
θ∈T

E

[

∥

∥

∥θ̂AMX(x)− θ
∥

∥

∥

2
]

= min
U,u

max
θ∈T

tr
{

C
θ̂
(θ)
}

+ ‖b
θ̂
(θ)‖2

= min
U,u

max
θ∈T

tr

{

UE
[

(x− E[x])(x − E[x])T
]

UT

}

+
∥

∥UE[x] + u− θ
∥

∥

2
. (2.18)

T ⊂ RM is the set of possible parameter values. Hence, the affine minimax estimator seeks

those U and u that minimize the worst-case MSE8.

For the special case of the linear model (2.16), we can rewrite (2.18) as

min
U,u

max
θ∈T

tr
{

UCUT
}

+ ‖(UH− I)θ + u‖2. (2.19)

This problem was intensively studied in the literature for the case of affine and/or quadratic

constraints defining T, see e.g. [Pinsker, 1980; Pilz, 1986; Eldar et al., 2005; Eldar, 2008b].

Especially, [Eldar, 2008b] is interesting as it shows how to calculate U and u for the special

quadratic constraint T = {θ : θTAθ + 2bTθ + c ≤ 0} using a semidefinite program9 (SDP)

formulation. For other constraints, standard techniques from convex optimization like Finsler’s

lemma or the S-procedure can be used [Boyd and Vandenberghe, 2007; Ben-Tal et al., 2009].

However, the calculation of U and u is in general, i.e. for an arbitrary and possibly nonconvex

T, difficult.

Eldar’s Motivation for the Affine Minimax Estimator

In [Eldar, 2006a, 2008a,c], a motivation for the affine minimax estimator in terms of achieving

the biased CRB was given. In contrast to the traditional concept of CRB for the variance of

8Note that the MSE cannot be minimized directly as it is a function of the unknown parameter θ. Therefore, either

the worst-case MSE has to be minimized, which is done by the affine minimax estimator, or the MSE is minimized

with the constraint that the estimator is unbiased. This leads to the best linear unbiased (BLUE) estimator if u = 0

is chosen. See [Kay, 1993] for further details.
9A brief introduction to convex optimization and semidefinite programs can be found in Appendix B.
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unbiased estimators and efficient estimators achieving this bound, Eldar proposed a framework

to derive estimators achieving the biased CRB (2.6) which is actually an MSE bound. This

bound can be made, by allowing for a suitable bias b, often smaller than the CRB for all θ ∈ T.

In particular, Eldar presented a linear bias Mθ in [Eldar, 2006a] and extended this idea to an

affine bias Mθ + u in [Eldar, 2008b]. Moreover, it was shown that, given an unbiased and

efficient estimator θ̂eff, the following affine transform of θ̂eff

θ̂BE = (I+M)θ̂eff(x) + u, (2.20)

with bias b
θ̂
(θ) = Mθ+u and covariance C

θ̂
(θ) = (I+M)G(θ)−1 (I+M)

T
achieves the

MSE bound (2.6) as ∂b
θ̂
(θ)/∂θ = M and has thus, if M 6= 0 or/and u 6= 0, a smaller MSE

than θ̂eff for all θ ∈ T. Thus, there is no other estimator with fixed bias b
θ̂
(θ) = Mθ + u that

dominates10 it.

Introducing the short-hand notation

MSE(M,u, θ) = tr{S
θ̂
} = ‖Mθ + u‖2 + tr{(I+M)G(θ)−1 (I+M)T },

Eldar proposed the minimax problem

min
M,u

max
θ∈T

MSE(M,u, θ)− MSE(0,0, θ) (2.21)

to find a biased estimator which dominates the efficient (unbiased) estimator θ̂eff(x) for all

θ ∈ T. She showed that (2.21) has a unique solution which is admissible11 on the set T and

dominates θ̂eff(x) if M 6= 0 and/or u 6= 0.

For the special case of a linear model (2.16), the efficient estimator is given by θ̂eff(x) =

(HTC−1H)−1HTC−1x with the covariance matrix G(θ)−1 = (HTC−1H)−1. Since θ̂eff(x)

is linear in x, θ̂BE(x) in (2.20) becomes affine. The corresponding minimax problem (2.21) is

min
M,u

max
θ∈T

‖Mθ + u‖2 + tr

{

(I+M)
(

HTC−1H
)−1

(I+M)
T

}

(2.22)

which is equivalent to (2.19) using the identity U = (I +M)(HTC−1H)−1HTC−1. Hence,

the use of (2.17) and (2.19) for a Gaussian linear model can be motivated by the fact that (2.17)

is an admissible estimator, i.e. there is no other estimator with affine bias that dominates it.

10An estimator θ̂1(x) is said to dominate another estimator θ̂2(x) if the MSE of θ̂1(x) is never larger than the MSE

of θ̂2(x) for all θ ∈ T and is strictly smaller for some θ ∈ T [Eldar, 2006b].
11An estimator θ̂(x) is said to be admissible if there is no other estimator that dominates it.
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Pilz’s Motivation for the Affine Minimax Estimator

Pilz gave in [Pilz, 1986] another interpretation of the affine minimax estimator for a Gaussian

linear model which we would like to briefly mention.

Pilz showed that the affine minimax estimator is equivalent to a linear Bayesian estimator which

is found by considering the least favourable prior on the set T, i.e. that prior which results in

the largest Bayes risk among all densities with support T. He used this result to explicitely

calculate the affine minimax estimator for ellipsoidal and linear inequality constraints as this

analogy allows the application of results known from Bayesian design of experiments.12

2.4 Bayesian Approach to Estimation

The Bayesian approach, in contrast to the frequentist approach, assumes that θ is a random

vector with a priori density p(θ). In the following, we will derive the optimal Bayesian estimator

(OBE) for a given loss function L(θ, θ̂), in particular for the case of a quadratic loss L(θ, θ̂) =

(θ − θ̂)TW(θ − θ̂) with W ≻ 0 which yields the minimum mean squared error (MMSE)

estimator.

2.4.1 Loss Functions

Suppose we have an estimator θ̂(x) that estimates the unknown, random parameter θ from the

data x. To evaluate the quality of the estimator, we assign a loss L(θ, θ̂(x)) ≥ 0 to the error of

estimating θ̂(x) from the data x when the true value is θ.

Following different types of loss functions can be distinguished:

Definition. A loss function L(θ, θ̂(x)) is called

(i) symmetric, if L(θ, θ̂) = L(−θ,−θ̂);

(ii) spherical, if L(θ, θ̂) = L̃(‖θ − θ̂‖).

Note that a spherical loss function is also symmetric but the converse is in general not true. An

example is the loss which is symmetric but not spherical for W 6= αI in the quadratic loss case

L(θ, θ̂) = (θ − θ̂)TW(θ − θ̂), W ≻ 0. Besides these two properties, scale invariance [Stein,

1964; Brown, 1968] and boundedness [Kaminska and Porosinski, 2009; Wen and Levy, 2001]

are other characteristics of the loss function that may be desired in practical applications.

12Note that Eldar discusses the results of Pilz in [Eldar, 2006b] and it was shown that the proposed estimator for an

ellipsoidal constraint T in [Pilz, 1986] can be further improved as it is not always the minimax estimator. The

interested reader is referred to Appendix C in [Eldar, 2006b].



– 16 –

2.4.2 Optimal Bayesian Estimator

Averaging the loss L(θ, θ̂(x)) with respect to the joint PDF p(θ,x) yields an important charac-

teristic value for an estimator. It is called the Bayes risk (BR) and given by [Scharf, 1990]

BR =

∫∫

L(θ, θ̂(x))p(θ,x)dθdx. (2.23)

The optimal Bayesian estimator (OBE) is now that estimator that minimizes the Bayes risk,

i.e.

θ̂OBE(x) = argmin
θ̂(x)

BR = argmin
θ̂(x)

∫∫

L(θ, θ̂(x))p(θ,x)dθdx

= argmin
θ̂(x)

∫

L(θ, θ̂(x))p(θ|x)dθ, (2.24)

where we used in the last line of (2.24) the fact that p(x) ≥ 0 and thus it is sufficient to minimize

the inner integral for each x. Hence, argmin
θ̂

BR is equivalent to minimizing the loss averaged

over the a posteriori distribution p(θ|x) and we immediately see that all information to find the

OBE is included in the a posteriori density p(θ|x).

Assuming that the loss function L(θ, θ̂(x)) is differentiable, we can calculate the first-order

derivative with respect to the estimate and equate it to zero to obtain a necessary condition13 to

find the OBE, i.e.

∂

∂θ̂

∫

L(θ, θ̂(x))p(θ|x)dθ =

∫

∂L(θ, θ̂(x))

∂θ̂
p(θ|x)dθ !

= 0. (2.25)

Solving (2.25) can often not be done analytically and therefore Bayesian estimation with most

loss functions is difficult. We will therefore propose a parametric family of estimators in Chap-

ter 4 to circumvent this problem.

In the following, we will now give the OBE for various loss functions. We start with three

well known, symmetric loss functions and then discuss the OBE for the asymmetric linear-

exponential (LinEx) loss and the monomial splined loss.

Absolute Error Loss

The absolute error loss is defined as

LAE(θ, θ̂(x)) =
∥

∥

∥θ − θ̂(x)
∥

∥

∥

1
=

M
∑

m=1

∣

∣

∣θm − θ̂m(x)
∣

∣

∣ (2.26a)

13We assume here that the parameter space is open. Otherwise, the OBE could also lie on the boundary of the parameter

space and (2.25) is not necessary anymore.
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and the corresponding OBE is θ̂MPM(x) ∈ RM with [Kay, 1993]

θ̂MPM,m(x)
∫

−∞

p(θm|x)dθ =

∞
∫

θ̂MPM,m(x)

p(θm|x)dθ ∀ m = 1, . . . ,M (2.26b)

where p(θm|x) is the marginal a posteriori distribution of the mth element of θ. From (2.26b)

we see that the OBE is the median of the marginal a posteriori densities p(θm|x) and therefore

this estimator is called marginal posterior median (MPM) estimator.

Squared Error Loss

The (weighted) squared error loss is defined as

LSE(θ, θ̂(x)) =
∥

∥

∥
θ − θ̂(x)

∥

∥

∥

2

W
=
(

θ − θ̂(x)
)T

W
(

θ − θ̂(x)
)

, W ≻ 0 (2.27a)

and the corresponding estimator is the well known minimum mean squared error (MMSE) esti-

mator [Kay, 1993]

θ̂MMSE(x) =

∫

θ p(θ|x)dθ =

∫

θ p(θ,x)dθ
∫

p(θ,x)dθ
(2.27b)

which is the mean of the a posteriori density p(θ|x). We will use the MMSE estimator through-

out this thesis and therefore Appendix C.1.4 proves (2.27b) for the loss function (2.27a) and also

derives some important properties of the MMSE estimator.

Hit-or-miss Loss

The hit-or-miss loss is defined as

LHM(θ, θ̂(x)) =











1 ‖θ − θ̂(x)‖ > ǫ

0 ‖θ − θ̂(x)‖ < ǫ
, (2.28a)

where ǫ is chosen such that ǫ → 0+.14 The corresponding OBE is the maximum a posteriori

(MAP) estimator

θ̂MAP(x) = argmax
θ

p(θ|x) (2.28b)

which is the position of the maximum of the a posteriori density p(θ|x).

Note that the MAP estimator is the solution of an optimization problem which is often easier to

solve then computing the mean of the a posteriori density. Hence, the MAP is often used instead

of the MMSE estimator as it is computational tractable. Furthermore, we would like to point out

14Note that the case ǫ 9 0+ is also interesting as minimizing this loss corresponds to minimizing the ǫ-outage error

[Routtenberg and Tabrikian, 2009].
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Figure 2.1: Comparison of the MPM, MMSE and MAP estimator

that similar but not identical asymptotic properties can be established for the MAP estimator as

for the ML estimator [Van Trees and Bell, 2007]. One main difference is that the MAP estimator

might not be efficient, i.e. it does in general not achieve the Bayesian CRB asymptotically.

Figure 2.1 shows a comparison of the MPM, MMSE and MAP estimator for the univariate case

M = 1 which summarizes the estimators that we derived so far. Note that there are posterior

distributions which exhibit the same mean, median and mode and therefore the corresponding

OBEs coincide. This is e.g. the case if the posterior distribution is Gaussian.

LinEx Loss

The linear-exponential (LinEx) loss was introduced by Varian in [Varian, 1974] as an asym-

metric loss function for the study of real estate assessment and is frequently used in Bayesian

estimation, see e.g. [Zellner, 1986]. It rises approximately linear on one side and exponential on

the other. This was motivated by Varian by the fact that underassessment of real estate results

in a linear loss of revenue whereas overassessment results in appeals with litigation and other

costs.

The univariate LinEx loss function is given by

LLinEx(θ, θ̂) = b
(

ea∆ − a∆− 1
)

, (2.29)

where ∆ = θ̂ − θ, a 6= 0 and b > 0. An example for the LinEx loss is shown in Figure 4.2 in

Chapter 4. The multivariate LinEx loss is defined as a straightforward extension and given by

[Zellner, 1986]

LLinEx(θ, θ̂(x)) =
M
∑

m=1

bm

(

eam∆m − am∆m − 1
)

, (2.30a)
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where ∆m = θ̂m − θm, am 6= 0 and bm > 0. To calculate the OBE, we can use (2.25) with

∂L(θ, θ̂(x))/∂θ̂m = bmam

(

eam∆m − 1
)

and finally obtain

θ̂LinEx,m = − 1

am
ln

∫

e−amθmp(θm|x)dθm = − 1

am
lnMθm(−am|x), m = 1, . . . ,M

(2.30b)

where Mθm(t|x) = E[exp(tθm)|x] is the (marginal) moment generating function of θm with

respect to the marginal a posteriori PDF p(θm|x).

Monomial-Splined Loss

The last general class of loss functions, which we would like to briefly mention, is the monomial-

splined loss which was proposed by [Thompson and Basu, 1996]. For a univariate setup, it is

defined as

LMonSpl(θ, θ̂) =











a1|∆|p1 ∆ > 0

a2|∆|p2 ∆ ≤ 0
, (2.31)

where ∆ = θ̂ − θ; p1, p2 ∈ N and a1, a2 > 0. Similar to the LinEx loss, this definition can be

extended to the multivariate case

LMonSpl(θ, θ̂) =

M
∑

m=1

LMonSpl(θm, θ̂m). (2.32)

Two important cases are p1 = p2 = 1 which is called the LinLin loss and p1 = p2 = 2 which

is the QuadQuad loss. The LinLin loss was already considered by Laplace in 1773 [Robert,

2001] and it can be shown that the OBE is the a2

a1+a2
-fractile of the marginal a posteriori density

p(θm|x). This can be shown by considering the Bayes risk

BR =

M
∑

m=1









θ̂m
∫

−∞

a1(θ̂m − θm)p(θm|x)dθm +

∞
∫

θ̂m

a2(θm − θ̂m)p(θm|x)dθm









.

Using the Leibniz integral identity [Kay, 1993]

∂

∂u

φ2(u)
∫

φ1(u)

h(u, v)dv =

φ2(u)
∫

φ1(u)

∂

∂u
h(u, v)dv +

∂φ2(u)

∂u
h(u, φ2(u))−

∂φ1(u)

∂u
h(u, φ1(u)),

we obtain

∂BR

∂θ̂m
=

θ̂m
∫

−∞

a1p(θm|x)dθm −
∞
∫

θ̂m

a2p(θm|x)dθm = 0,
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which finally implies Pr
{

θm ≤ θ̂m|x
}

= a2

a1+a2
. Note that the absolute loss (2.26a) is a special

case of the LinLin loss with a1 = a2 and the corresponding OBE is the 50%-fractile, i.e. the

median, as stated in (2.26b).

2.4.3 Practical Considerations

After this introduction of the Bayesian estimation concept, we will now turn to two important

issues which have to be considered in order to use these methods. The first issue is how the a

priori density p(θ) should be chosen. Very often, the likelihood density p(x|θ) is known from

the signal model but the choice of the prior is a design parameter which has to be specified.

The second issue is how the OBE can be calculated. In particular, the calculation of the MMSE

estimator is difficult as it involves two M -dimensional integrations as can be seen from (2.27b).

We will therefore briefly introduce Monte Carlo integration methods, especially importance

sampling, which will later be useful.

Choosing the A Priori Distribution

The choice of the a priori density p(θ) is a critical point for Bayesian estimation as p(θ) is

often not known. In the following, we will discuss two possible ways to choose the a priori

density, namely conjugate priors and maximum entropy priors. Beside these methods, many

other approaches have been discussed in the literature and a good summary of them is given

in [Robert, 2001]. Especially noninformative prior, e.g. the Jeffreys prior which is invariant

with respect to reparameterization, is another interesting approach to choose the a priori density

which is briefly reviewed in Appendix C.1.5.

(a) Conjugate Priors: A prior distribution p(θ) is called conjugate to the likelihood p(x|θ) if

the a posteriori density p(θ|x) belongs to the same parametric family as p(θ). One example is

the Gaussian distribution which is conjugate to a Gaussian likelihood as θ ∼ N (µk,Ck) and

x|θ ∼ N (Hθ,C) implies θ|x ∼ N (µk+1,Ck+1) with

µk+1 = µk +CkH
T (HCkH

T +C)−1(x−Hµk),

Ck+1 = Ck −CkH
T (HCkH

T +C)−1HCk.

Using conjugate priors can be motivated in the following two ways [Robert, 2001]: First, the

amount of information of an observation x is limited. Therefore, it is reasonable of the statisti-

cian to not change the structure of the density but only to update its parameters. This justification

is called the invariance reasoning. Another motivation, and probably the more important one, is

that using conjugate priors yields tractable a posteriori densities as the calculation of the a poste-

riori density becomes merely an update of its parameters. This allows to use recursive Bayesian
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approaches. If e.g. Gaussian distributions for the prior and likelihood are used, then the Kalman

filter equations are obtained [Mendel, 1995].

(b) Maximum Entropy Priors: The motivation for the maximum entropy prior is that for a given

set of distributions, we should choose the distribution with maximum entropy as this will mini-

mize the amount of prior information [Levine and Tribus, 1978]. Let θ be a random vector, then

the entropy of θ is defined as (see e.g. [Cover and Thomas, 2006])

H(θ) = −
∫

p(θ) ln p(θ)dθ. (2.33)

It quantifies the average amount of information contained in one “message” (i.e. sample) θi ∼
p(θ). Therefore, choosing the maximum entropy prior shows that each “message” θi contains

the most information and hence the PDF itself contains the least prior information. If, for exam-

ple, the mean and the variance of θ are known, then the distribution with the maximum entropy

is a Gaussian distribution with these first and second moments.15 If it is only known that θ ∈ T,

then the uniform distribution on T is the distribution with the maximum entropy. Such a prior

will be used in Section 3.3.3 for the recursive constrained MMSE estimator.

Numerical Calculation of the Optimal Bayesian Estimator

In Bayesian estimation, often integrals occur which have to be solved to obtain the OBE. For

example the MMSE estimator requires to evaluate two M -dimensional integrals as can be seen

from (2.27b). Thus, many different methods were developed in the literature and a summary of

approaches which are especially suited for Bayesian integrals can be found in [Evans and Swartz,

1995; Shaw et al., 1996; Robert, 2001]. In particular, three different families of methods have

proven to be useful: Laplace approximation, numerical integration and Monte Carlo integration.

We will briefly discuss these three approaches in the following paragraphs.

(a) Laplace Approximation: Consider the integral

∫

T

f1(θ)e
f2(θ)dθ (2.34)

which we want to evaluate. Then, the idea of the Laplace approximation is to approximate the

integrand by a Gaussian curve, i.e. we do a Taylor series expansion of f2(θ) up to terms with

second order, see e.g. [de Bruijn, 1961]. Let θ∗ denote the location of the maximum of f2(θ),

i.e. θ∗ = argmaxθ f2(θ). If we assume that f1(θ) ≈ const in the region where f2(θ) has its

maximum, we obtain the approximation

∫

T

f1(θ)e
f2(θ)dθ ≈ f1(θ

∗)

∫

T

ef2(θ
∗)+ 1

2 (θ−θ
∗)T∇∇

T f2(θ
∗)(θ−θ∗)dθ (2.35)

15This can be shown using calculus of variations [Cover and Thomas, 2006].
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= f1(θ
∗)ef2(θ

∗)

√

(2π)M

|−∇∇
T f2(θ

∗)|
, (2.36)

where |−∇∇
T f2(θ

∗)| denotes the determinant of the negative Hessian of f2(θ) at θ. The

underlying assumptions for this approximation are that f2(θ) has only one dominant mode in

the set T and that the maximum θ∗ is not located on the boundary of T. These assumptions are

often fulfilled for K → ∞, i.e. if the number of samples is large enough.

Applying the Laplace approximation to the MMSE estimator in (2.27b), we obtain

θ̂(x) =

∫

θ p(θ)p(x|θ)dθ
∫

p(θ)p(x|θ)dθ ≈ θ∗
p(θ∗)p(x|θ∗)

√

(2π)M

|−∇∇T ln{p(θ∗)p(x|θ∗)}|

p(θ∗)p(x|θ∗)
√

(2π)M

|−∇∇T ln{p(θ∗)p(x|θ∗)}|

= θ∗ (2.37)

where θ∗ = argmaxθ ln{p(θ)p(x|θ)}, i.e. the MMSE estimator with the Laplace approxima-

tion is given by the MAP estimator (2.28b). To obtain a better approximation, [Tierney and

Kadane, 1986] proposed the fully-exponential Laplace approximation which does a separate

Taylor series expansion of the numerator and denominator integrand.

Summarizing the Laplace method, we see that it provides good approximations of the integrals

in the asymptotic case16.

(b) Numerical Integration: The idea of numerical integration is to use

∫

T

f(θ)dθ ≈
I
∑

i=1

wif(θi), (2.38)

where θi are node points and wi are the corresponding weights, see e.g. [Dahlquist and Björck,

2008]. To obtain the node positions and the weights, i.e. the integration rule, two different ap-

proaches can be used. One possibility is to use repeated one-dimensional integrations, especially

the product rule is interesting if the integration boundary does not depend on the integration vari-

able θ. Another possibility is to use a similar approach as done for the one-dimensional case

where the node positions and the weights are chosen such that monomials up to a certain de-

gree are exactly integrated. We review this approach for the one-dimensional case briefly in the

Appendix C.1.6.

A numerical integration is often only feasible for a small value of M , typically M / 10. This

is due to the curse of dimensionality which states that the error scales with O(I−c/M ) where

c is given by the particular integration rule, e.g. c = 2 if the trapezoidal rule is used, see Ap-

pendix C.1.6. Therefore, we can only expect a slow convergence of the numerical integration

with increasing I if we have a high-dimensional problem.

16By asymptotic case we refer here to the case that either K and/or the SNR is very large and therefore p(θ|x) has one

sharp peak at the true parameter value.
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Furthermore, to apply (2.38) to the approximation of the MMSE estimator, we also need to

ensure that we have a small number of data K and a low signal-to-noise ratio (SNR) because

otherwise a sharp peak of p(x|θ) would make the numerical integration difficult and would

yield wrong estimates. Hence, we can conclude that numerical integration is interesting for

small values of M and the non-asymptotic case.

(c) Monte Carlo (MC) Integration: As we have seen in the paragraph before, numerical inte-

gration quickly becomes intractable if the dimension M is to large. MC integration is then the

method of choice and very often the only possibility to solve such high-dimensional integrals.

In Bayesian estimation for biomedical applications for example, M / 106 is not uncommon,

see [Gelman et al., 2003].

The idea is to use the well known fact that the expectation operator can be replaced by the

average, i.e.

∫

T

f(θ)dθ = V (T)

∫

T

f(θ)
1

V (T)
dθ = V (T) E

[

f(θ̄)
]

≈ V (T)

I

I
∑

i=1

f(θ̄i), (2.39)

where V (T) denotes the volume of T, θ̄ is a random vector which is uniformly distributed

on T and θ̄i with i = 1, . . . , I are independent samples generated from this uniform distribu-

tion. The approximation (2.39) can be motivated by the law of large numbers, which states

that 1
I

∑I
i=1 f(θ̄i) converges almost surely to E[f(θ̄)]. Let e = V (T)

I

∑I
i=1 f(θ̄i)−

∫

T
f(θ)dθ

denote the integration error, then it is obvious that E[e] = 0 and the variance is given by

E[e2] =
V (T)2

I2

I
∑

i=1

E














f(θ̄i)−

1

V (T)

∫

T

f(θ)dθ







2








=
V (T)

I
σ2(f) ∼ 1

I
(2.40)

where we introduced

σ2(f) =

∫

T

[

f(θ)− 1

V (T)

∫

T

f(θ)dθ
]2

dθ, (2.41)

i.e. σ2(f) measures the fluctuation of f(θ) around the mean value 1
V (T)

∫

T
f(θ)dθ. Eq. (2.40)

shows that the error decreases by O(I−1/2) independent of the dimension M . This result is in

contrast to what we obtained for the numerical integration above and is also the reason why MC

methods are so popular. Note however that σ2(f) in (2.40) might be quite large and therefore,

for smaller dimensions, numerical integration might be a better choice.

We will now briefly explain the O(I−1/2) behaviour of MC integration. Going back to (2.39),

we see that we can think of MC integration as a randomized rectangular quadrature (midpoint

rule, see Appendix C.1.6). Figure 2.2 shows the node positions for the rectangular rule and
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Figure 2.2: Comparison of node positions

the MC integration. Assume that f(θ) depends more strongly on θ2 than on θ1, then we have

only four nodes in the direction of θ2 for the regular node grid, i.e. the regular grid is not a

good choice for this function and the randomized grid is better. The requirement is therefore

to have a distribution of the node positions which is as uniform as possible for any projection

onto a subspace [Sobol, 1979]. However, one drawback of using random node positions is that

the nodes may not be homogeneously distributed on the region of integration. This is the case

in Figure 2.2(b) where there is a cluster in the lower right corner. Therefore, quasi-random

methods have been studied in the literature which generate samples according to a mathematical

formula and spread them homogeneously over T. An example is shown in Figure 2.2(c) where

we used the Halton sequence [Halton, 1960]. Using such quasi-random node positions allows

us to obtain convergence rates for the error which scale almost with O(I−1) in contrast to

the O(I−1/2) which we observed before using random node positions, see e.g. [Cranley and

Patterson, 1976; Sobol, 1979].

As we have already pointed out, the variance σ2(f) can be quite large. Therefore, different

variance reduction methods have been proposed in the literature, see e.g. [Liu, 2008]. Among

them, importance sampling is the most prominent one. It introduces a new trial function g(θ) ≥
0 from which we generate samples θi instead of the uniform distribution that was used before.

The trial function g(θ) should be chosen such that it is easy to generate random samples with

this distribution but at the same time, it should be as close as possible to f(θ). It holds

∫

T

f(θ)dθ =

∫

T

f(θ)

g(θ)
g(θ)dθ ≈ V (T)

I
∑

i=1

f(θ̄i)/g(θ̄i)

I
∑

i=1

1/g(θ̄i)

(2.42)

where θ̄i are now i.i.d. random vectors with θ̄i ∼ g(θ). Using importance sampling now yields
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the new variance σ2(f/g) which is minimum if g(θ) has the same shape as f(θ). Note that g(θ)

does not have to be normalized to one as can be seen by (2.42).

These MC integration techniques can be applied to compute the MMSE estimate for given data

x. For completeness, we would like to mention another approach which uses the fact that the

MMSE estimator is the mean of the a posteriori density. Therefore, the MMSE estimator can

also be computed if we can generate samples from the a posteriori density p(θ|x). This is

in general a difficult task. However, if we do not restrict ourselves to generate independent

samples from p(θ|x) but allow them to have a weak correlation, then there are efficient methods

which are called Markov chain Monte Carlo (MCMC) methods, see e.g. [Spall, 2003; Doucet

and Wang, 2005]. The two most prominent methods are the Metropolis-Hastings algorithm and

Gibbs sampling. Note that the approximation of the mean with the average is still valid although

more samples may be needed to obtain an accurate result due to the correlation.

2.5 Sufficient Statistics

Up to now, we used the data x directly to estimate the parameter θ. However, instead of using

x, it is often interesting to use a statistic t(x) of smaller dimension which gives the same result

as using the data x. Such a statistic t(x) is called sufficient and was first considered by Fisher

[Fisher, 1922]. In the following, we will discuss the definition of sufficient statistics for the

deterministic and the Bayesian case and state the Fisher-Neyman factorization theorem. This

theorem is very useful as it will allow us to show that a statistic is sufficient.

2.5.1 Deterministic Case

Let x be the random data about the unknown, deterministic parameter θ. Furthermore, let t(x)

be a statistic of x. Then t(x) is a sufficient statistic if p(x|t(x) = t0; θ) = p(x|t(x) = t0).

Therefore, given t(x) = t0, we can not infer additional information about θ from the data x. A

convenient way to find the sufficient statistic is to use the Fisher-Neyman factorization theorem

which was first introduced by Fisher in [Fisher, 1922] and later extended by Neyman in [Ney-

man, 1935].

Theorem 1 (Fisher-Neyman factorization). A sufficient and necessary condition for t(x) being

a sufficient statistic for θ is the factorization

p(x; θ) = g(t(x), θ)h(x). (2.43)

A proof of this theorem can e.g. be found in [Kay, 1993]. Furthermore, two additional concepts

are often useful if working with sufficient statistics. They are the minimality and completeness
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of a sufficient statistic. The interested reader is referred to [Mendel, 1995; Lehmann and Casella,

1998] for further details.

For the linear signal model in additive Gaussian noise in (2.16), a well known sufficient statistic

is t(x) = HTC−1x, see e.g. [Scharf, 1990]. As any one-to-one function of t(x) is also a

sufficient statistic, we use the following sufficient statistic

t(x) = QHTC−1x (2.44)

where Q is any square invertible matrix. In other words, the transform TTx of the signal model

in (2.16) with T = C−1HQT does not result in an information loss for the estimation of θ. The

new signal model is now

x̃ = TTx = TTHθ +TT z = H̃θ + z̃. (2.45)

with z̃ ∼ N (0, C̃) and C̃ = TTCT = (HTC−1H)−1.

2.5.2 Bayesian Case

Bayesian sufficiency is the analog concept of classical sufficiency in the deterministic case

[Scharf, 1990; Ghosh et al., 2006]. Let x be the data about the unknown, random parameter

θ. Furthermore, let t(x) be a statistic of x. Then t(x) is a Bayesian sufficient statistic if for

all priors p(θ) the a posteriori density p(θ|x) can be written as p(θ|x) = p(θ|t(x)). This con-

cept was introduced by Kolmogorov in [Kolmogorov, 1942] and is called Bayesian sufficiency.

Therefore, given t(x), we can not infer additional information about θ from the data x. The con-

cept of Bayesian sufficiency is directly related to classical sufficiency in the deterministic case.

Using the Fisher-Neyman factorization theorem, it is easy to proof that the classical sufficiency

implies Bayesian sufficiency, as we will now show: Using the Fisher-Neyman factorization the-

orem in (2.43), we obtain

p(θ|x) = p(θ)p(x|θ)
∫

p(θ)p(x|θ)dθ =
p(θ)g(t(x), θ)

∫

p(θ)g(t(x), θ)dθ
= p(θ|t(x)) (2.46)

for all priors p(θ). This means, t(x) is also sufficient in the Bayesian sense. The converse is

also true under some regularity conditions [Heyer, 1982].

For example the MMSE estimator θ̂MMSE(x) can then be written as

θ̂MMSE(x) =

∫

θ g(t(x), θ)p(θ)dθ
∫

g(t(x), θ)p(θ)dθ
. (2.47)

This result will be useful in Section 3.3.3 when we derive the recursive constrained MMSE

estimator.
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Chapter 3

Incorporation of Additional Information

using Constraints

After the introduction of the basic principles from estimation theory that will be needed in this

thesis, we now turn to the first possibility to improve the performance of an estimator which is

to use additional information in terms of constraints. The constraints may either naturally arise

from physical problems or are artificially introduced, e.g. in regularized regression problems.

An example of natural constraints is a power limitation on θ0(n), i.e. ‖θ0(n)‖2 ≤ Emax or an

energy passivity constraint for the estimation of a channel impulse response (c.f. Section (3.5.3).

Another important class of constraints are 1-norm constraints that are used to obtain sparse

results. In [Tibshirani, 1996], for example, Tibshirani introduced the LASSO (least absolute

shrinkage and selection operator) which is a least squares approach with the 1-norm constraint

T = {θ0 : ‖θ0‖1 ≤ t}.

3.1 Overview

In this chapter, we will study the estimation of an unknown, time-variant parameter vector

θ0(n) ∈ T ⊂ R
M (3.1)

from observations x(n) ∈ RK of a linear, time-variant Gaussian model

x(n) = H(n)θ0(n) + z(n), n ≥ 0. (3.2)

H(n) ∈ RK×M is a known model matrix, z(n) is Gaussian noise with z(n) ∼ N (0,C(n))

which is temporally uncorrelated, i.e. E[z(n1)z(n2)
T ] = 0 for all n1 6= n2, and n denotes

the discrete time. In addition, we assume to know a priori θ0(n) ∈ T, where T is an arbitrary

subset of RM . Thus, the task is to estimate θ0(n) for all n ≥ 0 subject to θ0(n) ∈ T given all

observations x(0), . . . ,x(n).
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The aim of this chapter is to derive and compare three recursive estimators that reduce the mean

squared error for the estimation of θ0(n) from the observations x(0), . . . ,x(n) by exploiting

the a priori knowledge θ0(n) ∈ T. The first estimator is the constrained maximum likelihood

(CML) estimator which maximizes the likelihood function over T. This estimator was e.g. used

in [Van Trees, 2002; Zhu and Li, 2007] for linear equality/inequality and quadratic constraints

and in [Babadi et al., 2009] for a 1-norm constraint. The second estimator we consider is the

affine minimax estimator (AMX) [Pilz, 1986; Eldar, 2006a, 2008b] which has attracted a lot of

interest in the past. The AMX minimizes the worst-case MSE for θ0(n) ∈ T. So far, the AMX

has either only be considered for a time-invariant estimation problem or for the blind minimax

tracking problem [Elron et al., 2008] and we will extend the AMX to the problem given by (3.1)

and (3.2). The third estimator is the Bayesian minimum mean squared error (MMSE) estimator

with a uniform prior on T [Mcleod and Quenneville, 2001; Jenkins and Watts, 1969; Robert,

2001] which we formulate in a recursive way.

The main challenge is to apply the three estimators (CML, AMX, and MMSE) to a time-varying

estimation problem with an increasing number of observations x(0), . . . ,x(n). A direct ap-

plication of these estimators would lead to a growing computational complexity as the time n

proceeds. The use of a suitable sufficient statistic transforms the original estimation problem

to an equivalent one with a fixed number of “observations”, thus resulting in a fixed computa-

tional complexity at each time step n. It will turn out that the recursive weighted least squares

(RWLS) algorithm provides an efficient way to calculate this sufficient statistic. Hence, this

chapter provides a uniform framework that allows the constrained tracking of θ0(n) from an

increasing number of observations x(0), . . . ,x(n). This unified framework, which has not been

considered in the literature before, is the main contribution of this chapter.

The remainder of this chapter is organized as follows: Section 3.2 formulates the time-varying

estimation problem which we will study. The sufficient statistic is derived and we show that

the RWLS algorithm is an efficient way to compute the sufficient statistic. Section 3.3 is the

main part of the chapter. There, we consider the CML estimator and also generalize the con-

cepts of AMX and MMSE estimation to the time-variant signal model (3.2). We show that all

three estimators can be efficiently calculated by using RWLS as a preprocessing step. After a

comparison of the various approaches in Section 3.4, we show finally some simulation results

in Section 3.5.

3.2 Signal Model and Sufficient Statistics

The aim of this chapter is to derive recursive estimators for the estimation of θ0(n) in (3.2) from

the observations x(0), . . . ,x(n) subject to the a priori constraint θ0(n) ∈ T. Assume that θ0(n)

is slowly time-varying, such an adaptive estimation (tracking) is feasible. Given the instanta-

neous signal model (3.2) without any constraint on θ0(n), the following exponentially weighted
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least squares (WLS) estimator is popular in adaptive filtering (see [Haykin, 2002; Farrell and

Polycarpou, 2006])

θ̂WLS(n) = argmin
θ(n)

n
∑

i=0

βn−i
(

x(i)−H(i)θ(n)
)T

C(i)−1
(

x(i)−H(i)θ(n)
)

(3.3)

where 0 < β ≤ 1 is the exponential forgetting factor. This estimator can be efficiently calculated

by the recursive weighted least squares (RWLS) algorithm as we will see later. The solution

θ̂WLS(n) of (3.3) can also be interpreted as the ML estimator of the following stacked signal

model

xn = Hnθ(n) + zn. (3.4)

xn, Hn, and zn are stacked versions of x(i), H(i), and z(i) for i = 0, . . . , n, respectively:

xn =
[

x(n)T · · · x(0)T
]T

,

Hn =
[

H(n)T · · · H(0)T
]T

, (3.5)

zn =
[

z(n)T β−1/2z(n− 1)T · · · β−n/2z(0)T
]T

.

Note that the noise term zn is not merely the stacking of z(i), but also incorporates an inten-

tional weighting of z(i) with β−(n−i)/2. This results in a tendentiously larger noise (as it is in

reality) for past measurements, marking them to be less valuable than recent observations for the

estimation of θ0(n). The effect is exactly the same as the exponential down-weighting of error

terms caused by past observations in (3.3). As the noise z(n) is temporally uncorrelated, we

have zn ∼ N (0,Cn) where the covariance matrix Cn ∈ R
(n+1)K×(n+1)K is a block diagonal

matrix

Cn = diag
(

C(n), β−1C(n− 1), · · · , β−nC(0)
)

. (3.6)

The unconstrained maximum likelihood estimate to (3.4) is given by

min
θ(n)

(

xn −Hnθ(n)
)T

C−1
n

(

xn −Hnθ(n)
)

. (3.7)

It is identical to the WLS estimator (3.3). Using the stacked matrices Hn, Cn and xn defined in

(3.5) and (3.6), the solution to (3.7) can be written as

θ̂WLS(n) = R−1
n HT

nC
−1
n xn with Rn = HT

nC
−1
n Hn (3.8)

if Cn is invertible andHn has a full column rank. It is obvious that θ(n) in (3.4) is different from

θ0(n) in (3.2) as (3.4) is an approximation of the original signal model (3.2) for a slowly varying

parameter θ0(n). This approximation, however, has proved to be useful in many applications.

If θ0(n) = θ0 is constant, θ̂WLS(n) will approach θ0 with increasing n. For the case that θ0(n)
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changes slowly, θ̂WLS(n) will follow θ0(n). Therefore, we will use the stacked signal model

(3.4) below and consider in addition the a priori constraint (3.1). We look for estimators for the

signal model

xn = Hnθ(n) + zn, θ(n) ∈ T (3.9)

with a smaller MSE than the previous unconstrained WLS estimator in (3.8). Note that (3.9)

describes a frequentist estimation problem as θ(n) is deterministic. The length of xn, Hn and

Cn grows linearly as the time n proceeds.

In order to avoid estimators with a growing computational complexity, we perform a signal

model transform by using the concept of sufficient statistic as introduced in Section 2.5. Us-

ing (2.44) and (2.45) for the special choice of Q =
(

HTC−1H
)−1

yields the transformed

signal model x̃ = θ + z̃ with z̃ ∼ N (0, C̃) and the new covariance matrix C̃ = TTCT =
(

HTC−1H
)−1

. Therefore, instead of the stacked signal model (3.9), we can look for estima-

tors based on the simpler model x̃n = θ(n) + z̃n with z̃n ∼ N (0, C̃n). The transformed

observation vector x̃n and the new covariance matrix C̃n are given by

x̃n = t(x) =
(

HT
nC

−1
n Hn

)−1

HT
nC

−1
n xn = θ̂WLS(n), (3.10a)

C̃n =
(

HT
nC

−1
n Hn

)−1

= R−1
n . (3.10b)

where θ̂WLS(n) and Rn are defined in (3.8). The main advantage of this model transform is the

fixed vector length M of x̃n in comparison to the linearly growing vector length (n + 1)K of

xn.

An efficient way to compute the sufficient statistic is to use the RWLS algorithm. According to

the definition of Hn in (3.5) and Cn in (3.6), both matrices can be written recursively

Hn+1 =





H(n+ 1)

Hn



 , Cn+1 =





C(n+ 1) 0

0 β−1Cn



 ,

which also implies

Rn+1 = HT
n+1C

−1
n+1Hn+1 = βRn +H(n+ 1)TC(n+ 1)−1H(n+ 1). (3.11)

By applying the matrix inversion lemma

(A+BCD)
−1

= A−1 −A−1B
(

C−1 +DA−1B
)−1

DA−1

we can update R−1
n and the parameter estimate θ̂WLS(n) in (3.8) in a time recursive way. In-

troducing the gain matrix Gn+1 = R−1
n+1H(n+ 1)TC(n + 1)−1, we finally obtain the RWLS
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algorithm [Farrell and Polycarpou, 2006]

θ̂WLS(n+ 1) = θ̂WLS(n) +Gn+1

(

x(n+ 1)−H(n+ 1)θ̂WLS(n)
)

, (3.12a)

R−1
n+1 =

1

β

(

R−1
n −Gn+1H(n+ 1)R−1

n

)

. (3.12b)

At each time step, RWLS updates the sufficient statistic θ̂WLS(n) and the inverse correlation

matrix R−1
n . Both values are needed by the three recursive estimators below subject to the

constraint θ(n) ∈ T.

3.3 Adaptive Estimation for a Linear Time-Variant Gaussian

Model with General Constraints

3.3.1 Recursive Constrained ML Estimator

The first estimator we consider is the constrained maximum likelihood (CML) estimator [Bard,

1973]. Given the linear signal model x = Hθ + z, z ∼ N (0,C) with the constraint θ ∈ T, the

CML is given by the optimization problem

θ̂CML = argmax
θ

p(x; θ) s.t. θ ∈ T. (3.13)

Using the sufficient statistic θ̂WLS in (2.44), we can rewrite (3.13) into

θ̂CML = argmin
θ

(θ − θ̂WLS)
T (HTC−1H)(θ − θ̂WLS) s.t. θ ∈ T. (3.14)

As HTC−1H ≻ 0, we have to check whether θ̂WLS satisfies the constraint or not. If θ̂WLS ∈ T,

then θ̂CML = θ̂WLS. Otherwise we have to find the minimum of (θ − θ̂WLS)
T (HTC−1H)(θ −

θ̂WLS) on the boundary of T. For the special case that we can write θ ∈ T as a linear matrix

inequality (LMI), we can use Schur’s lemma17 to rewrite (3.14) into

θ̂CML = argmin
τ,θ

τ s.t.





(HTC−1H)−1 θ − θ̂WLS

(θ − θ̂WLS)
T τ



 � 0 and θ ∈ T, (3.15)

which is a semidefinite program (SDP) and can be solved efficiently [Boyd and Vandenberghe,

2007].

17Schur’s lemma can be compactly stated as [Boyd and Vandenberghe, 2007]

[

A B

BT C

]

� 0 if and only if A ≻ 0 and C−BTA−1B � 0.
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The extension of the CML to our time-varying signal model (3.9) is now straightforward. All

we have to do is to replace θ̂WLS, C and H by θ̂WLS(n), Cn and Hn in (3.14). Therefore, for

each time step we have to check θ̂WLS(n) ∈ T. If this is satisfied then θ̂RCML(n) = θ̂WLS(n).

Otherwise, we have to find the minimum of (θ − θ̂WLS(n))
T (HT

nC
−1
n Hn)(θ − θ̂WLS(n)) on

the boundary of T. We call this estimator the recursive constrained ML (RCML) estimator.

3.3.2 Recursive Constrained Affine Minimax Estimator

The extension of the AMX (2.20) to our time-variant linear Gaussian model is straightforward.

The unbiased efficient estimator θ̂eff(n) for (3.9) is identical to θ̂WLS(n) in (3.8) and can be

calculated efficiently by the RWLS algorithm. After each update of θ̂eff(n), we multiply it with

I+M(n) and add u(n) to obtain the recursive AMX (RAMX) estimator

θ̂RAMX(n) =
(

I+M(n)
)

θ̂eff(n) + u(n). (3.16)

We have to solve the minimax problem (2.22) to obtain M(n) and u(n). The covariance matrix

of θ̂WLS(n) in (2.22) is given by R−1
n =

(

HT
nC

−1
n Hn

)−1

which is also updated by the RWLS

algorithm. Since R−1
n is time-varying, the minimax problem (2.22) has to be solved repeatedly

at each time step.

In the stationary case with H(n) = H and C(n) = C, we can avoid the repeated solution of

the minimax problem (2.22) by approximating Rn by its steady state value

R∞ = lim
n→∞

Rn = lim
n→∞

n
∑

k=0

βn−kHTC−1H =
1

1− β
HTC−1H, (0 < β < 1). (3.17)

In this case, we only need to compute M and u once from R∞ and use them to change the

efficient estimator θ̂eff(n) to the RAMX estimator θ̂RAMX(n) according to (3.16). This approach

reduces the computational complexity of RAMX at the expense of an increased mean squared

error for small n.

3.3.3 Recursive Constrained MMSE Estimator

The third approach we use after the calculation of the sufficient statistic is the MMSE estimation.

In contrast to the two frequentist approaches (ML and AMX), we now assume θ to be a random

vector and recast the constraint θ ∈ T as an a priori PDF p(θ). In this way, we have reformulated

the frequentist estimation problem (θ deterministic) to a Bayesian one. We assume a uniform a

priori PDF18 (a natural choice as we have no information about θ except for θ ∈ T)

18Note that this prior PDF can be improper [Robert, 2001] if T is an unbounded set, i.e. it does not sum to one.

Nevertheless, one can often compute (3.19) and therefore the RMMSE estimator still exists and is useful.
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p(θ) =







const θ ∈ T

0 otherwise
. (3.18)

The MMSE estimator (2.27b) for this prior simplifies to

θ̂MMSE =

∫

T

θ p(x|θ)dθ
∫

T

p(x|θ)dθ . (3.19)

This estimator is sometimes called the mean likelihood estimator (MELE) [Jenkins and Watts,

1969; Mcleod and Quenneville, 2001] as (3.19) calculates the mean of the normalized likelihood

function p(x|θ)/
∫

T
p(x|θ)dθ.

Using the principle of Bayesian sufficient statistics as introduced in Section 2.5.2 significantly

simplifies the adaptive MMSE estimation which is now split into two steps: First, we apply

the RWLS algorithm to simplify the signal model and to compute the sufficient statistic x̃n =

θ̂WLS(n). Then, we calculate the MMSE estimator from the simplified signal model x̃n =

θ(n) + z̃n with a uniform a priori distribution of θ(n) in T. We refer to this estimator as

recursive MMSE (RMMSE) estimator.

Note that the MMSE estimation in the second step still involves two M -dimensional integrals

which we in general cannot compute analytically. In 3.5.2, we will consider the case of ellip-

soidal constraints on θ and we will show that the computational complexity for this particular

constraint can be reduced to the calculation of M one-dimensional integrals. Here, we apply a

more general statistical approach which is not restricted to ellipsoidal constraints only. We use

the Monte Carlo method to approximate the integrals. Since x̃n|θ ∼ N (θ, C̃n) after the signal

model transform and θ is uniformly distributed in T, we only need to generate random samples

from a truncated multivariate Gaussian distribution, i.e. of a Gaussian distribution which is set

to zero for θ /∈ T. This becomes clear if we consider the MMSE estimator for the simplified

model

θ̂RMMSE(n) =

∫

T

θ exp{− 1
2 (θ − x̃n)

T C̃−1
n (θ − x̃n)}dθ

∫

T

exp{− 1
2 (θ − x̃n)T C̃

−1
n (θ − x̃n)}dθ

. (3.20)

Using Monte Carlo integration [Liu, 2008], we have the approximation

θ̂RMMSE(n) ≈
1

I

I
∑

i=1

θi (3.21)

where θi is a random sample drawn from exp{− 1
2 (θ − x̃n)

T C̃−1
n (θ − x̃n)} satisfying θi ∈ T.

Therefore, θi is a sample of a truncated Gaussian. To generate θi, we first draw a sample ψ

from N (0, I) and then transform it by ϕ = Unψ + x̃n with UnU
T
n = C̃n. It is accepted as a



– 34 –

new value for θi if ϕ ∈ T. Otherwise, it is rejected.

By doing so, we can include any constraints on θ easily into the generation of samples from

p(θ)p(x̃n|θ). This rejection sampling works well when the truncated Gaussian PDF has enough

“probability mass” in T as otherwise we would do many rejections before a sampleϕ is accepted.

This happens, for example, for equality constraints. Such constraints cannot be handled by a

rejection scheme, see Section 3.5.2 for a series expansion approach for this kind of constraints.

Note that there are also more sophisticated methods to draw multivariate samples from a trun-

cated Gaussian, see e.g. [Robert, 1995]. They often yield a smaller rejection rate than the simple

scheme presented here but have the drawback that they are only applicable if it is possible to

easily compute the lower and upper truncation bounds of the PDF of the truncated Gaussian

random variable.

3.4 Discussion of the Approaches

In this section, we compare all three approaches to solve our time-variant estimation problem

(3.9). First, we introduce the concept of hard and soft constraints: If we need to ensure that

the estimator satisfies θ̂(n) ∈ T at any time instance n, we denote it as a hard constraint. If,

however, the estimator is allowed to return a value θ̂(n) which does not lie in T but has a smaller

MSE, we speak of a soft constraint19.

From Section 3.3.1 and 3.3.2, we know that RCML and RAMX are frequentist approaches

assuming θ to be deterministic. On the other hand, Section 3.3.3 showed that RMMSE follows

a different philosophy and assumes θ(n) to be random with an a priori density and thus belongs

to the class of Bayesian estimators. The native estimation problem in (3.9) is a frequentist

problem with the additional information that θ(n) has to lie in T. We have four options:

1. Simply ignore the additional information θ(n) ∈ T and use the ML estimator for (3.9).

This yields the WLS estimator (3.3) and the RWLS algorithm (3.12) for an efficient cal-

culation.

2. A second option is to consider the constrained ML estimator for (3.9) which is given in

(3.14). As Cn ≻ 0, we know that the solution is either the WLS in (3.8) if θ̂WLS ∈ T or

otherwise it lies on the boundary of T. The advantage of this method is that it will ensure

θ̂ ∈ T, i.e. the a priori information is taken into account as a hard constraint. However,

the drawback of this method is that there are no efficient recursive algorithms for the case

19The notion of hard- and soft-constrained estimation was also used in [Benavoli et al., 2006] where hard-constrained

estimation refers to a constrained LS estimator which is equivalent to a MAP with uniform prior on the feasible set.

The soft-constrained estimator that Benavoli considers is the MAP with a Gaussian prior where the prior parameters

are found via solving a convex optimization problem [Benavoli et al., 2007]. [Benavoli et al., 2006] provides an

interesting discussion of both estimation approaches which also match with our observations.
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that θ̂WLS /∈ T. Then, we have the original problem (3.14) at each time step. An exception

is the case of linear equality/inequality, quadratic inequality constraints as considered in

[Van Trees, 2002; Zhu and Li, 2007] or 1-norm constraints as in [Babadi et al., 2009]. In

general, however, the constrained ML is only suited for practical online implementations

where the constraints can be expressed such that the corresponding optimization problem

can be solved efficiently. One example is to express the constraints as LMIs and the

resulting problem is then a semidefinite program as illustrated in Section 3.5.3.

3. Restrict the attention to the class of affine estimators only and find the affine estimator that

has the smallest worst-case MSE for all θ(n) in T. By doing this, the a priori information

is taken into account as a soft constraint by using the minimax approach. Although this

recursive AMX has in general an even higher computational complexity than RCML, it

is in our view still to be favored due to the following three reasons: First, the AMX

estimator often shows a smaller MSE compared to CML. Second, if H(n) and C(n) are

constant over time, M(n) and u(n) reach their steady state value after some time steps

and hence, no update of M(n) and u(n) is needed anymore. Third, we can restrict M(n)

and u(n) to have a special structure, e.g. M(n) is only allowed to be diagonal. By this

we can reduce the number of optimization variables and consequently the computational

complexity.

4. Another possibility is to recast the frequentist problem to a Bayesian one by interpreting

the a priori information θ ∈ T as a priori PDF p(θ) and thus θ ∈ T is used as a soft

constraint. We choose p(θ) as uniform in T and zero otherwise as we do not have any

other information about θ except for θ ∈ T. This is a natural choice as it does not prefer

particular values of θ and can be motivated by the concept of maximum entropy, see

Section 4.2.3. In [Bard, 1973] it is discussed whether such a choice of the a priori density

is useful or not. The main criticism against a uniform prior is that it is not invariant

against reparameterization of the signal model. If we consider g(θ) as a new parameter

vector, still no a priori information is available about g(θ) and thus the new a priori

density of g(θ) should also be uniform which, in general, is not the case. Therefore,

the Jeffreys prior [Robert, 2001] which is invariant with respect to reparameterization

is sometimes favored instead of a uniform prior. However, in this chapter we consider

parameter estimation from real physical problems for which there is a natural choice of θ.

Hence p(θ) has not to be invariant with respect to reparameterization [Robert, 2001]. As

we use rejection sampling to incorporate the a priori information, the RMMSE estimator

has the advantage compared to RCML and RAMX that it can handle quite complicated

constraints.

In summary, all three approaches (RCML, RAMX and RMMSE with a uniform prior) can be

viewed as different methods to model the a priori information θ ∈ T of the frequentist problem
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(3.9). Especially the RAMX and RMMSE estimator allow to efficiently incorporate the a priori

information into the estimation problem.

Note that the RAMX and the RMMSE estimator will in general not ensure θ̂ ∈ T. The a priori

knowledge is only exploited to achieve a smaller mean squared error of θ̂. Consider, for example,

the case that θ has a uniform prior distribution in T = {θ : R2
1 ≤ ‖θ‖2 ≤ R2

2}, a spherical

shell with inner radius R1 and outer radius R2. Clearly, the a priori estimate (a priori mean)

of θ is θ̂ = 0 which is outside T. For observations with a low SNR, both AMX and MMSE

estimator still prefer an estimate that lies near the a priori estimate since the noisy observations

have a smaller contribution to the estimate than the a priori information. This is advantageous

in terms of a smaller MSE though θ̂ /∈ T. Relaxing the constraint as a soft constraint allows

simpler recursive formulations of the estimators. Interestingly, the RMMSE estimator satisfies

the constraint θ̂ ∈ T automatically if T is a convex set [Boyd and Vandenberghe, 2007]. This is

not the case for the RAMX estimator, see [Pilz, 1986] for a discussion of this issue.

The final discussion whether hard or soft constraints should be used depends on the application.

Sometimes, θ̂ ∈ T is more important than a smaller MSE value and then the RCML estimator

should be used as this estimator will always ensure θ̂ ∈ T. If, however, we only want to exploit

the additional information to improve the estimation, then the RAMX and RMMSE approach

should be favored.

3.5 Examples

In this section, we will now study three different examples to see the performance of the pro-

posed time-varying estimators. The first example in Section 3.5.1 will consider the constraint

that the parameter vector θ has to lie inside an ellipsoid. The estimators are compared in terms

of the MSE and it is also studied how many samples I are needed for the Monte-Carlo integra-

tion in (3.21). The second example in Section 3.5.2 will again study ellipsoidal constraints and

it extends the first example by also considering the case that the parameter vector has to lie on

the ellipsoid. Such constraints cannot be handled by the rejection method which was proposed

in Section 3.3.3 and therefore we will show another way to compute both integrals in (3.20).

The last example in Section 3.5.3 finally considers the problem of tracking a time-varying room

impulse response where the estimated impulse response has to fulfill an energy conservation

constraint that is used to improve the performance.

3.5.1 Example 1: Ellipsoidal Constraints

The following example compares the introduced estimators in terms of the mean squared error.

We consider the estimation of θ(n) ∈ T ⊂ R2, i.e. M = 2, under the ellipsoidal constraint

T = {θ : θTAθ ≤ 1} with
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Figure 3.1: Example 1: True trajectory of θ(n)
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Figure 3.1 shows the trajectory of θ(n) (solid line) consisting of N = 45 discrete-time points

and the boundary of T (dotted line). The signal model is given by x(n) = θ(n) + z(n), with

z(n) ∼ N (0, 0.1I). This means H(n) = I.

We use the following five instantaneous estimators to estimate θ(n) given only the observation

x(n):

• Least squares (LS): The LS estimator is given by

θ̂LS(n) =
(

H(n)TH(n)
)−1

H(n)Tx(n) = x(n).

This means, LS accepts each observation x(n) as a new estimate and does not take the

old observations x(n− 1), . . . ,x(0) into account.

• Constrained maximum likelihood (CML): Consider the case of the quadratic constraint

T̃ = {θ : θTAθ + 2bTθ + c ≤ 0,A ≻ 0} which also includes T = {θ : θTAθ ≤ 1}
from this example. The problem in (3.14) is then a quadratically constrained quadratic

program (QCQP), see Appendix B. In the following, we will use the Karush-Kuhn-

Tucker (KKT) conditions [Boyd and Vandenberghe, 2007] which provide a set of suf-

ficient conditions20 for a solution of (3.14) with T̃.

20The KKT conditions are in general only necessary. However, in our case we have a convex optimization problem and

therefore they are also sufficient, see e.g. [Boyd and Vandenberghe, 2007]
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The KKT conditions for the optimization problem (3.14) with constraint θ̂CML(n) ∈ T̃

are given by

(a) Stationarity:

∂L(θ, λ)

∂θ

∣

∣

∣

∣

∣

θ=θ̂CML(n)
λ=λ∗

= 2(θ̂CML(n)− θ̂LS(n))
THTC−1H

+ 2λ∗(θ̂CML(n)
TA+ bT ) = 0T ,

(b) Primal feasibility:

θ̂CML(n)
TAθ̂CML(n) + 2bT θ̂CML(n) + c ≤ 0,

(c) Dual feasibility:

λ∗ ≥ 0,

(d) Complementary slackness:

λ∗(θ̂CML(n)
TAθ̂CML(n) + 2bT θ̂CML(n) + c) = 0,

where L(θ) is the Lagrangian function, which is defined as

L(θ, λ) = (θ − θ̂LS(n))
T (HTC−1H)(θ − θ̂LS(n)) + λ

(

θTAθ + 2bTθ + c
)

.

Now, we have to distinguish two cases:

(i) If λ∗ = 0, then we immediately see from the stationarity condition (a) that θ̂CML(n) =

θ̂LS(n) and therefore, assuming that θ̂LS(n) ∈ T̃, we see that all KKT conditions

are fulfilled and the CML estimator is given by the LS estimator as we already

discussed in Section 3.3.1.

(ii) If λ∗ > 0, then the complementary condition (d) implies θ̂CML(n)
TAθ̂CML(n) +

2bT θ̂CML(n) + c = 0, i.e. the CML estimator has to lie on the boundary of T̃.

Furthermore, the stationarity condition (a) results in

θ̂CML(n) = θ̂CML(n, λ
∗)

=
(

HTC−1H+ λ∗A
)−1 (

HTC−1Hθ̂LS(n)− λ∗b
)

and therefore, we can use Newton’s algorithm to find a root of the functionφ(λ∗) =

θ̂
T

CML(n, λ
∗)Aθ̂CML(n, λ

∗) + 2bT θ̂CML(n, λ
∗) + c. Note that it can be shown that

φ(λ∗) has only one root for all λ∗ > 0.
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• Affine minimax (AMX): Similar to LS, this estimator only uses the actual observationx(n).

As the model matrix H(n) and the covariance matrix C(n) of the noise are time-invariant

in our example, we haveM(n) = M and u(n) = u for our affine estimator. Furthermore,

as the center of the ellipsoid T is the origin, we have u = 0. The optimization problem

(2.22) for the special case of an ellipsoidal constraint θTAθ ≤ 1 was shown in [Eldar,

2006b] to be equivalent to

min
τ,M,λ≥0

τ (3.22a)

subject to





τ − λ bT

b I



 � 0 (3.22b)





λI −A− 1
2MT

−MA− 1
2 I



 � 0 (3.22c)

with b = vec{(HTC−1H)−
1
2MT }. These equations were used to find the optimal M.

Note that (3.22) defines a SDP which can be efficiently solved. We use the software

packages SDPT3 [Toh et al.] and Yalmip [Löfberg, 2004] for solving (3.22).

• Projected AMX: This estimator is identical to the AMX but conditionally does a projec-

tion onto the boundary of T if θ̂AMX(n) /∈ T. The projection problem is given by

θ̂PAMX(n) = argmin
θ∈T

‖θ − θ̂AMX(n)‖2

and using the KKT conditions, a similar algorithm as for the CML estimator can be

derived as discussed in [Kiseliov, 1994].

• MMSE: The MMSE solution is calculated by means of Monte Carlo integration as de-

scribed in Section 3.3.3 using I = 200 samples for approximating the integral.

Furthermore, we use the following five time-recursive estimators to estimate θ(n) given the

observations x(0), . . . ,x(n):

• Recursive weighted least squares (RWLS): We solve the weighted least squares problem

(3.9) where old observations are weighted with a forgetting factor β. The RWLS does

not care about the constraint θ(n) ∈ T.

• Recursive constrained ML (RCML): Similar to the CML, we have to solve the QCQP

(3.14) where θ̂LS(n) is now replaced by θ̂WLS(n).

• Recursive affine minimax (RAMX): As we have seen in Section 3.3.2, RAMX is given by

a matrix multiplication of the RWLS solution with I + M(n) plus an addition of u(n).
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Thus, we have to solve the minimax optimization problem (2.22) repeatedly at each time

step from Rn. Similar to the AMX estimator, we use (3.22) to find M(n) at each step.

Again, we have u(n) = 0.

• Projected RAMX: Similar to the projected AMX, this estimator does a conditional projec-

tion if the RAMX estimate is not in T.

• Recursive MMSE (RMMSE): The RMMSE estimator combines RWLS and MMSE as

described in Section 3.3.3. We use again Monte Carlo integration with I = 200 samples.

Figure 3.2 shows the overlay of ten realizations of the considered estimators with a forgetting

factor of β = 0.5. Beside the projected AMX/RAMX and CML/RCML, also the MMSE and

RMMSE estimators always ensure θ̂(n) ∈ T as expected because of the convex set T. This is

not the case for the other estimators.

Figure 3.3 shows the mean squared error 1
N

∑N
n=1‖θ̂(n) − θ(n)‖2 averaged over 1 500 trials

of this experiment for all estimators as a function of the forgetting factor β. Note that the five

instantaneous estimators do not depend on β. The RMMSE estimator and the projected RAMX

have the smallest mean squared error for all values of β among the recursive estimators. They

also outperform the instantaneous estimators for 0 < β < 0.75. The optimal forgetting factor

for this time-variant problem is βopt ≈ 0.5. If the forgetting factor is smaller, the effective

number 1
1−β of observations (degrees of freedom) is too small for a reliable estimation of θ(n).

If, however, the forgetting factor is too large, the estimator is not able to track the time-varying

parameter θ(n).

We rerun the first experiment with a slower change of θ(n). The parameter θ(n) is again as-

sumed to follow the trajectory in Figure 3.1, however this time with three times more discrete

points. Figure 3.4 shows the result. We see that the optimal choice of the forgetting factor β is

now β ≈ 0.7, indicating a slower decaying exponential window and hence a longer memory. As

θ(n) changes more slowly, the MSE can further be reduced compared to Figure 3.3.

The choice of the number of samples I in the Monte Carlo integration also plays an important

role in the design of the estimator. To analyze the influence of I , we varied its value. Figure 3.5

shows the mean squared error of the RMMSE for different values of I and the noise variance σ2.

We see that it is sufficient to use I ≥ 100 samples. To be on the safe side, we choose I = 200.

Finally, we compare the RAMX and its steady-state version. Instead of calculating M(n) at

each time step, we calculate a fixed M from the steady-state correlation matrix R∞ given in

(3.17). Figure 3.6 shows the ratio of the mean squared errors of both estimators as a function of

the time index n, i.e. κ = MSE(RAMX)/MSE(steady-state RAMX). Clearly, the MSE values

of the steady-state approximation are larger than the corresponding values of the RAMX. The

difference between both estimators vanishes for increasing time indices n.
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(b) Recursive weighted least squares
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(c) Constrained ML
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(d) Recursive Constrained ML

Figure 3.2: Example 1: Overlay of ten realizations for the first experiment with β = 0.5
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(e) Affine minimax
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(f) Recursive affine minimax
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(g) MMSE
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(h) Recursive MMSE

Figure 3.2: Example 1: Overlay of ten realizations for the first experiment with β = 0.5
(continued from previous page)
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Figure 3.3: Example 1: Mean squared error vs. the forgetting factor β for N = 45
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Figure 3.4: Example 1: Mean squared error vs. the forgetting factor β for N = 137
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Figure 3.5: Example 1: Mean squared error for varying number of Monte Carlo samples
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3.5.2 Example 2: Ellipsoidal Constraints

In this second example, we will show a different way to compute the RMMSE estimator than

using rejection sampling as proposed in Section 3.3.3. This is necessary as the two constraints

that we consider are given by

Case A: TA = {θ ∈ R
M : (θ − θ0)TA(θ − θ0) ≤ R2,A ≻ 0} (3.23a)

Case B: TB = {θ ∈ R
M : (θ − θ0)TA(θ − θ0) = R2,A ≻ 0}, (3.23b)

i.e. θ has to lie inside or on an ellipsoid. The constraint θ ∈ TA can be handled by rejection

sampling as shown in the first example (Section 3.5.1). The second constraint θ ∈ TB, however,

is not suited for rejection sampling as the equality constraint for a random sample will not be

fulfilled with probability one. Therefore, a different way to compute (3.20) is needed and we

will show in this example that a series expansion approach of the occurring integrals for the

RMMSE in (3.20) can be used.

Derivation of a Series Expansion for the RMMSE Estimators

We now derive θ̂RMMSE(x) for the constraints in (3.23). From (3.20), we know that it is sufficient

to consider

θ̂RMMSE(n) =

∫

T

θ exp{− 1
2 (θ − x̃n)

T C̃−1
n (θ − x̃n)}dθ

∫

T

exp{− 1
2 (θ − x̃n)T C̃

−1
n (θ − x̃n)}dθ

(3.24)

which is obtained after the transformation using the sufficient statistic x̃n = θ̂WLS(n). For

convenience, we drop the dependence on the time instance n in the following and apply a two-

step procedure to solve the problem:

(a) Whitening Transformation: First, we transform the problem to one of estimating a vector

in white noise where the axes of the ellipsoid are parallel to the coordinate axes. Let U be

one matrix square root of C̃, i.e. C̃ = UTU. One possibility is the Cholesky factor of C̃.

Furthermore, let V and D = diag(d1, . . . , dM ) be the matrix of eigenvectors and eigenvalues

of UAUT . Using the substitution θ − x̃ = UTVy, (3.24) reads

θ̂RMMSE =

∫

T∗

(x̃+UTVy) exp{− 1
2‖y‖2}dy

∫

T∗

exp{− 1
2‖y‖2}dy

= x̃n +UTV

∫

T∗

y exp{− 1
2‖y‖2}dy

∫

T∗

exp{− 1
2‖y‖2}dy

=: x̃n +UTV
i1

i2
(3.25)
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where T∗ is either T∗
A = {y : (y−y0)

TD(y−y0) ≤ R2} or T∗
B = {y : (y−y0)

TD(y−y0) =

R2} with y0 = (UTV)−1(θ0 − x̃n).

(b) Series Expansion: The second step is to represent both integrals in (3.25) in terms of a series

of central χ2 cumulative distribution functions (CDF)s or PDFs.

We first consider case A that θ has to lie inside the ellipsoid, i.e. θ ∈ TA. In Appendix C.2.2

it is shown that i2 can be expressed as an infinite linear combination of χ2-CDFs, i.e. we can

write

i2 = (2π)M/2
∞
∑

k=0

akFχ2(R2/β;M + 2k) (3.26)

where Fχ2(R2/β;M +2k) is the central χ2-CDF withM +2k degrees of freedom evaluated at

position R2/β and β is an arbitrary constant. The coefficients ak can be found by the recursive

rule

a0 =

M
∏

m=1

√

β

dm
e−

1
2y

2
0m , ak =

1

2k

k−1
∑

l=0

bk−lal,

where bk =
∑M

m=1

(

1− β
dm

)k

+kβ
∑M

m=1
y2
0m

dm

(

1− β
dm

)k−1

, dm is themth diagonal element

of D and y0m is the mth component of y0. The calculation of i2 is therefore straightforward

where the summation is stopped if the relative error is small enough. An estimate of the trun-

cation error is given in (C.29) and was used as a stopping criterion. It therefore remains to

calculate i1. Its mth element reads

i1m =

∫

T∗
A

yme
− 1

2 ‖y‖
2

dy =

y0m+ R√
dm

∫

y0m− R√
dm

yme
− 1

2y
2
m









∫

T∗
Am

e−
1
2 ‖ỹm‖2

dỹm









dym (3.27)

where ỹm = Pmy is identical to y except for the removed mth element. The selection matrix

Pm ∈ R(M−1)×M is the identity matrix with the mth row erased. Note that the inner integral

is of the same type as i2 and can thus also be expressed as an infinite series of χ2-CDFs. The

integration area T∗
Am is given by T∗

Am = {ỹm : (ỹm − Pmy0)
TPmDPT

m(ỹm − Pmy0) ≤
R2 − dm(ym − y0m)2} and is a function of ym. Hence, (3.27) can be efficiently solved by an

one-dimensional numerical integration.

For case B we can use the same approach as before, i.e.

i1m =

∫

T∗
B

yme
− 1

2 ‖y‖
2

dy =

y0m+ R√
dm

∫

y0m− R√
dm

yme
− 1

2y
2
m









∫

T∗
Bm

e−
1
2 ‖ỹm‖2

dỹm









dym (3.28a)
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i2 =
(2π)M/2

β

∞
∑

k=0

akpχ2(R2/β;M + 2k) (3.28b)

where pχ2(R2/β;M +2k) is the central χ2-PDF with M +2k degrees of freedom evaluated at

position R2/β and T∗
Bm = {ỹm : (ỹm −Pmy0)

TPmDPT
m(ỹm −Pmy0) = R2 − dm(ym −

y0m)2}. Similar to before, we can express i2 as an infinite series of χ2-PDFs and i1 is found

again by M one-dimensional numerical integrations.

Simulation Results

In the following we show some simulation results for both cases where M = 3 unknowns

have to be estimated from K = 10 observations in a stationary setup. The model matrix H is

randomly chosen for each trial and in total we average over 10 000 trials, except for Figure 3.8

where we average over 100 000 trials. The noise z has the distribution N (0, σ2I) and the SNR

is defined as SNR = 10 log10‖Hθ‖2/(Kσ2). For case A, we assume that the parameter vector

θ is restricted to lie in the unit sphere TA = {θ : ‖θ‖2 ≤ 1} and is uniformly distributed

for the simulation. For case B, we assume that θ is uniformly distributed on the unit sphere

TB = {θ : ‖θ‖2 = 1}.

(a) Case A: We compare the derived MMSE estimator with the following four estimators for a

spherical constraint:

• Least squares (LS) estimator: According to (2.16), the LS is given by [Scharf, 1990]

θ̂LS = (HTC−1H)−1HTC−1x = x̃ (3.29a)

• Projected LS (PLS) estimator: The PLS does a conditional scaling if the constraint θ̂LS ∈
TA is not fulfilled [Stoica and Ganesan, 2000], i.e.

θ̂PLS =











θ̂LS ‖θ̂LS‖ ≤ R

R
‖θ̂LS‖

θ̂LS ‖θ̂LS‖ > R
(3.29b)

• Affine minimax (AMX) estimator: The AMX for this problem can be given analytically

and has the form [Pilz, 1986; Eldar et al., 2005]

θ̂AMX =
R2

R2 + tr{(HTC−1H)−1} θ̂LS (3.29c)

• Projected affine minimax (PAMX) estimator: The PAMX is [Stoica and Ganesan, 2000]
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Figure 3.7: Example 2, Case A: Comparison of averaged squared error

θ̂PAMX =











θ̂AMX ‖θ̂AMX‖ ≤ R

R
‖θ̂AMX‖

θ̂AMX ‖θ̂MX‖ > R
(3.29d)

Figure 3.7 shows the simulation results for the squared error ‖θ− θ̂‖2 averaged over all θ ∈ TA.

The derived MMSE estimator has clearly the minimal averaged squared error and is therefore

superior to the other estimators as expected. It has, however, a higher computational complexity

because of the M one-dimensional numerical integrations.

The second comparison is in terms of the risk of the affine minimax and the MMSE estimator.21

The risk of an estimator that corresponds to a quadratic loss function is defined as [Scharf,

1990]

R(θ, θ̂) = Ex|θ‖θ − θ̂(x)‖2 =

∫

‖θ − θ̂(x)‖2p(x|θ)dx. (3.30)

It is the quadratic loss ‖θ − θ̂‖2 averaged over the distribution of the measurements with θ

fixed. This comparison is interesting as the affine minimax estimator minimizes the worst case

mean squared error for each deterministic θ ∈ TA opposed to the MMSE estimator which only

considers the overall mean squared error. Note that the estimator risk is rotational invariant in

the parameter space of θ as the model matrix H is chosen randomly. Thus, it is sufficient to

plot the estimator risk as a function of the norm of θ only and the risk in (3.30) is calculated

by averaging the squared error over all θ with ‖θ‖ = const. Figure 3.8 depicts the simulation

results for a SNR of 0dB. It shows that the MMSE estimator is, except for a small region around

‖θ‖ = 0.4, better than the affine minimax estimator. Thus, although we derived the estimator

21Note that the definition of the risk R(θ, θ̂) in (3.30) can be used in the frequentist and Bayesian case and therefore

we can use it to compare the affine minimax with the MMSE estimator.
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Figure 3.8: Example 2, Case A: Comparison of estimator risk

which minimizes the mean squared error averaged over all possible parameter vectors in TA, it

is still almost always better in terms of the risk than the affine minimax estimator which was

designed to minimize the worst case error for the deterministic case.

(a) Case B: We compare the derived MMSE estimator with the least squares estimator (3.29a)

and the following three estimators:

• Scaled LS (ScLS) estimator: The ScLS is inspired by [Stoica and Ganesan, 2000] and

defined by

θ̂ScLS =
R

‖θ̂LS‖
θ̂LS (3.31)

• Spherical LS (SLS) estimator: The SLS corresponds to the class of constrained LS esti-

mators [Moon and Stirling, 2000]

θ̂SLS = min
θ

‖x−Hθ‖2 s.t. ‖θ‖ = R (3.32)

which we solved by expressing θ in spherical coordinates and using a nonlinear least

squares optimization procedure.

• Affine minimax (AMX) estimator: The AMX for case B is equal to the estimator given in

(3.29c) as the worst case MSE to be minimized is always located on the boundary of the

ellipsoid. Hence, calculating the affine minimax estimator with respect to TB is equal to

calculating it with respect to TA.

Figure 3.9 and 3.10 show simulation results for case B with respect to the averaged squared error

‖θ − θ̂‖2 and the averaged angle between θ and θ̂ in degrees cos−1

(

θT θ̂

‖θ‖‖θ̂‖

)

. The derived
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Figure 3.9: Example 2, Case B: Comparison of averaged squared error
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Figure 3.10: Example 2, Case B: Comparison of averaged angle in degrees

MMSE estimator is superior to the other estimators for both error measures. Especially the

averaged angle error is interesting for DOA applications as in [Mukai et al., 2005] where it is

important that θ and θ̂ point to the same direction.

3.5.3 Example 3: Room Impulse Response Estimation

In the last example, we study the tracking of a room impulse response (RIR) which is time-

varying. In particular, we consider the following setup: Let θ(n) =
[

θ0(n) · · · θM−1(n)
]T

denote the RIR which we want to estimate and let s(n) =
[

s0(n) · · · sS−1(n)
]T

be the known
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signal which is transmitted by the source at time instance n. The corresponding microphone

signal x(n) =
[

x0(n) · · · xK−1(n)
]T

with length K =M + S − 1 is given by

x(n) = Θ(n)s(n) + z(n) = S(n)θ(n) + z(n) (3.33)

where Θ(n) ∈ RK×S and S(n) ∈ RK×M are Toeplitz matrices that consist of shifted column

vectors θ(n) and s(n), i.e.

Θ(n) =















θ(n) 0

θ(n)

. . .

0 θ(n)















, S(n) =















s(n) 0

s(n)

. . .

0 s(n)















.

Eq. (3.33) describes a “burst model” where we assume that the RIR is stationary for one input

burst s(n). The noise z(n) in (3.33) is Gaussian with z(n) ∼ N (0,C(n)) and temporally

uncorrelated, i.e. E[z(n1)z(n2)
T ] = 0 for all n1 6= n2.

To improve the recursive estimation of the RIR θ(n), we study the problem (3.33) with the

additional energy conservation constraint

‖Θ(n)s(n)‖2 ≤ ‖s(n)‖2, (3.34)

which states that the energy of the received signal does not exceed the energy of the transmit-

ted signal. The basic idea of (3.34) is to avoid “outliers” of θ̂(n) which violate the physical

constraint that the impulse response is energy conserving.

Beside the many techniques to estimate RIR, which differ in the different choices of excitation

signals [Stan et al., 2002], Lin proposed in [Lin and Lee, 2006] two constraints to improve the

RIR estimation for the stationary case. He introduced the nonnegativity constraints θm ≥ 0,

m = 0, . . . ,M − 1 and added an 1-norm penalty which controls the sparsity of the solution. It

is shown that adding such constraints to the RIR estimation improves the robustness to different

noise distributions and decreases the mean squared error. Adding such additional constraints

to the RCML, RAMX and RMMSE is also possible and can be done in a straightforward way.

Therefore, we will focus in this example on the energy conservation constraint (3.34) to improve

the tracking performance.

Energy Conservation — Mathematical Formulation

To improve the estimation performance, we make use of the energy conservation (3.34) which

must hold for real-world impulse responses. We first give two equivalent mathematical repre-

sentations of (3.34) and then show how to conveniently approximate them using the discrete

Fourier transform (DFT).
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Expressing the energy conservation mathematically, we need to ensure that22

‖Θ(n)s(n)‖2 = s(n)TΘ(n)TΘ(n)s(n) ≤ s(n)T s(n) = ‖s(n)‖2

which implies

Θ(n)TΘ(n)− I � 0. (3.35)

Note that (3.35) has to hold for all signal lengths S. If the condition is fulfilled for a particular

signal length S, it is automatically fulfilled for all smaller signal lengths since an upper-left

submatrix of a negative semidefinite matrix is again negative semidefinite. In the following, we

will now give two equivalent representations of the set that is described by (3.35).

(a) LMI representation: Using Schur’s lemma [Boyd and Vandenberghe, 2007], we can rewrite

(3.35) into




I Θ(n)T

Θ(n) I



 � 0 (3.36)

which is a LMI. Note that (3.36) immediately implies that (3.35) describes a convex set.

(b) Frequency domain representation: From above, we know that it is sufficient to consider the

case S → ∞. This case can be efficiently computed using the theory of bandlimited Toeplitz

matrices [Moon and Stirling, 2000; Alkire, 2003] as we will now show.

Eq. (3.35) is equivalent to requiring that all eigenvalues of Θ(n)TΘ(n) are smaller than or

equal to 1. We will therefore now show how the eigenvalues of Θ(n)TΘ(n) can be computed

for S → ∞. Let

r(n) =















M−1−|n|
∑

m=0

θm(n)θ|n|+m(n) |n| ≤M − 1

0 otherwise

(3.37)

be the (unnormalized) auto-correlation function of the RIR θ(n). Then, the matrixΘ(n)TΘ(n) ∈
RS×S can be written as a symmetric Toeplitz matrix where the first row is given by r(n) for

n = 0, . . . , S − 1. Note that Θ(n)TΘ(n) is bandlimited as only the first M − 1 off-diagonals

are unequal to zero and S > M as we consider the case S → ∞. Using the asymptotic equiva-

lence of the eigenvalues of a bandlimited Toeplitz matrix and the corresponding circulant matrix,

it immediately follows that the condition (3.35) can be transformed into

∣

∣Θ(ω, n)
∣

∣

2
=

∣

∣

∣

∣

∣

∣

M−1
∑

m=0

θm(n)e−jωm

∣

∣

∣

∣

∣

∣

2

≤ 1 ∀ω ∈ [0, 2π) (3.38)

22We assume in this paper that the source and sensor gains are known, i.e. we have no ambiguity in terms of a scaling

of Θ(n)s(n). This can e.g. be achieved by using a calibration step before estimating the RIRs.
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where Θ(ω, n) denotes the room frequency response at time instance n. To derive (3.38), we

used the fact that the eigenvalues of a circulant matrix are given by the DFT of its first column as

shown in Appendix C.3.6 and therefore (3.35) results in (3.38). As we consider only real-valued

impulse responses θ(n), it is sufficient to restrict ω to [0, π] in (3.38).

Energy Conservation — Approximation using DFT

All three estimators will be based on (3.38) where we evaluate Θ(ω, n) at discrete frequencies

ωl using the DFT. Let ωl =
2πl
L with l = 0, . . . , L− 1 be the equidistant frequency bins which

we consider. L ≥ M denotes the DFT length where L > M corresponds to the case of zero-

padding. As we only need to evaluate Θ(ω, n) in [0, π], we have l = 0, . . . , L̃ with L̃ = ⌊L/2⌋
where ⌊x⌋ is the largest integer not greater than x. Using vector notation, we can therefore

approximate (3.38) by

θT flf
H
l θ ≤ 1 ∀ l = 0, . . . , L̃ (3.39)

where fl ∈ CM is composed of the first M elements of the lth column of the DFT matrix

U ∈ CL×L, i.e. fHl = [ 1 e−jωl · · · e−jωl(M−1) ]. Using the DFT, we can therefore approximate

T = {θ(n) : θ(n) fulfills (3.38)} by the new constraint T̃ = {θ(n) : θ(n) fulfills (3.39)} with

arbitrary precision if L is chosen large enough.

In the following, we will see that it is convenient to consider the zero-padded vector θ̃ ∈ RL

instead of θ ∈ RM . Let P ∈ RM×L be the matrix that consists of the first M rows of the

L × L identity matrix. Then, introducing the zero-padded vector θ̃ = PTθ, condition (3.39)

transforms into

θTPf̃l f̃
H
l PTθ = θ̃

T
f̃lf̃

H
l θ̃ ≤ 1 ∀ l = 0, . . . , L̃ (3.40)

where f̃l ∈ CL is the lth column of the DFT matrix U ∈ CL×L, i.e. f̃Hl = [ 1 e−jωl · · ·
e−jωl(L−1) ], and fl = Pf̃l holds.

Recursive Constrained Estimators

In the following, we will describe in more detail the three recursive tracking algorithms for the

estimation of a time-varying RIR.

(a) Recursive CML: The RCML estimator θ̂RCML(n) for our problem is given by (3.14) with the

constraint (3.39). This is a quadratically constrained quadratic program which can be solved by

standard convex solvers [Boyd and Vandenberghe, 2007].

For completeness, we would like to mention the transform θ̄ = 1√
L
VT θ̃ where 1√

L
V ∈ RL×L

is an orthogonal matrix and for an even L is given by
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V =









1
√
2 ···

√
2 1

√
2 ···

√
2

1
√
2 cos(ω1) ···

√
2 cos(ωL̃−1) cos(ωL̃)

√
2 sin(ω1) ···

√
2 sin(ωL̃−1)

...
...

...
...

...
...

1
√
2 cos(ω1(L−1)) ···

√
2 cos(ωL̃−1(L−1)) cos(ωL̃(L−1))

√
2 sin(ω1(L−1)) ···

√
2 sin(ωL̃−1(L−1))









This transform can be used to simplify the constraints to have the form θ̄20 ≤ 1
L , θ̄2l + θ̄2

L̃+l
≤ 2

L

for all 1 ≤ l < L̃ and θ̄2
L̃
≤ 1

L . Note that the transformation with V can be efficiently calculated

using the fast Fourier transform (FFT).

(b) Recursive AMX: To reduce the computational complexity of RAMX, we consider the special

case of u = 0 and M = αI, i.e. we only allow a shrinkage by the factor 1 + α. First, we

transform the optimization problem (2.22) into the epigraphic23 form

min
M,u,τ

τ (3.41a)

subject to





θ

1





T 



−MTM −MTu

−uTM τ − uTu− tr{(I+M)R−1
n (I+M)T }









θ

1



 ≥ 0 ∀ θ ∈ T, (3.41b)

which is better suited to deal with the constraint (3.40). Using u = 0 and M = αI, (3.41)

simplifies to

min
α,τ

τ (3.42a)

subject to




θ

1





T 



−α2I 0

0T τ − tr{(1 + α)2R−1
n }









θ

1



 ≥ 0 ∀ θ ∈ T. (3.42b)

Condition (3.40) is equivalent to





θ̃(n)

1





T 



−f̃lf̃
H
l 0

0T 1









θ̃(n)

1



 ≥ 0 ∀ l = 0, . . . , L̃ (3.43)

which has to be fulfilled for all l = 0, . . . , L̃. Now, the S-procedure can be used to reformulate

the optimization problem (3.42) into a SDP [Boyd and Vandenberghe, 2007]. The S-procedure

shows that a sufficient condition for the statement

for all z: zTF0z ≥ 0, . . . , zTFL̃z ≥ 0 ⇒ zTGz ≥ 0

to be true is the existence of λ0, . . . , λL̃ ≥ 0 such that G � λ0F0 + · · · + λL̃FL̃. Please see

23The epigraph epi{f} of a function f : Rn → R is the set of all points lying on or above its graph, i.e. epi{f} =
{(x, τ) ∈ Rn+1 : τ ≥ f(x)}.
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Appendix C.2.1 for a detailed discussion of the S-procedure. The optimization problem can

therefore be rewritten as

min
λ0≥0,...,λL̃≥0

τ,α

τ (3.44a)

subject to

λ0 f̃0 f̃
H
0 + · · ·+ λL̃ f̃L̃f

H
L̃

� α2I, (3.44b)

τ − (1 + α)2 tr{R−1
n } ≥ λ0 + · · ·+ λL̃. (3.44c)

Note that (3.44) is still not a SDP as (3.44b) and (3.44c) are not linear in α. However, using the

same idea as in [Eldar, 2008b] and introducing a new variable x and the constraint x ≥ α2, we

finally obtain a SDP which has the same solution as (3.44). Furthermore, the constraint (3.44b)

can be simplified by exploiting the fact that UH f̃l f̃
H
l U = LJl,l where Ji,j is the single-entry

matrix which is all zero except for a one at position i, j. Hence, we can rewrite (3.44b) as the

new set of constraints λl ≥ α2/L for all l = 0, . . . , L̃ and the following SDP is equivalent to

(3.44)

min
λ0≥0,...,λL̃≥0

τ,α,x

τ (3.45a)

subject to

λl ≥ x/L (l = 0, . . . , L̃), (3.45b)




x α

α 1



 � 0, (3.45c)

τ − (1 + 2α+ x) tr{R−1
n } ≥ λ0 + · · ·+ λL̃. (3.45d)

(c) Recursive MMSE: For the RMMSE, we use directly (3.38) for the rejection sampling. A

FFT of length L is used to calculate Θ(ω, n) at discrete frequency points ωl. Note that (3.38)

describes a convex set. Therefore, we know that the estimate θ̂RMMSE(n) of the RMMSE will

lie in T, i.e. it fulfills the energy conservation constraint as was pointed out in Section 3.4.

Simulation Results

To compare the estimators, we consider the problem of estimating the time-varying RIR of a

moving source to a fixed microphone. The room size is 3× 3× 2.3m. The source moves along

a straight line with an increment of 10cm between neighbouring positions. There are N = 11

positions which implies that the source moves one meter in total. At each discrete source posi-

tion n, the RIR θ(n) is calculated using an image source model [Lehmann and Johansson, 2008]
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Figure 3.11: Time-varying RIR estimation setup

with the help of the Matlab implementation from [Lehmann, 2008]. Figure 3.11 summarizes the

simulation setup.

The reverberation time T60 of the room, defined as the time for the reflections to fall 60 dB below

the direct sound, is 120ms and the sampling frequency is fs = 12kHz. The image source model

returned RIRs withM = 1241 taps. The noise covariance is C(n) = σ2I and the corresponding

SNR is defined as SNR = 10 log10‖Θ(n)s(n)‖2/((M +S− 1)σ2). To compare the estimators,

the normalized error measure E = 1/N
∑N

n=1‖θ̂(n) − θ(n)‖2/‖θ(n)‖2 is used. The DFT

length is chosen as L = 16 384 and the signal s(n) is a white Gaussian noise of length S = 100

such that the total number of observations is K =M + S − 1 = 1 340. The RMMSE estimator

is calculated from I = 3 000 samples to approximate the MMSE integrals.

Table 3.1 shows the simulation results for the four instantaneous estimators WLS, CML, AMX

and MMSE, which rely only on x(n) and do not take past measurements into account (i.e. β = 0)

and the recursive estimators RWLS, RCML, RAMX and RMMSE. The results are averaged over

200 trials. The optimal forgetting factors are βopt ≈ 0.55 for a SNR of 5 dB and βopt ≈ 0.28

for a SNR of 10 dB. The results show that the energy conservation constraint improves the

estimation performance, especially for a SNR of 5 dB as the additional information (3.34) is

more important if the SNR is small. If the SNR is higher then all estimators are equivalent, e.g.

the RCML does not have to solve for the minimum on the boundary of T as θ̂RWLS(n) ∈ T. The

MMSE/RMMSE with a uniform prior shows the best results among all estimators.
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SNR WLS CML AMX MMSE

5 dB 1.23×100 1.20×100 1.21×100 1.02×100

10 dB 3.88×10−1 3.88×10−1 3.87×10−1 3.72×10−1

SNR RWLS RCML RAMX RMMSE

5 dB 7.02×10−1 6.97×10−1 6.99×10−1 6.52×10−1

10 dB 2.98×10−1 2.98×10−1 2.98×10−1 2.94×10−1

Table 3.1: Example 3: Normalized error of the estimated RIRs

3.6 Observations and Conclusions

To conclude this chapter, we want two point out two observations which are worthwhile to

mention:

First, the computational complexity of the recursive affine minimax estimator can be simplified

if M(n) and u(n) are modified such that they exhibit a special structure. This was e.g. used in

the third example, where we used M(n) = α(n)I and then only α(n) had to be found during the

optimization step. This possibility together with the option to use a steady-state approximation

of α(n), i.e. α(n) = α, renders the RAMX suitable for practical applications as α can be

computed offline.

Second, the RMMSE estimator showed for all three examples the best results. This was expected

in the second example as the true a priori density was a uniform distribution. However, this

could not be expected for the other examples. Therefore, we can conclude that using a uniform

prior to model the constraints is a useful technique and the RMMSE estimator should be further

investigated. Especially the task of sampling from the a posteriori density is an interesting topic

which should be studied in a future work.
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Chapter 4

Incorporation of Additional Information

using Nonstandard Loss Functions

4.1 Overview

Most often in Bayesian estimation, the MMSE estimator (2.27b) or MAP estimator (2.28b) are

used to estimate an unknown parameter θ ∈ T ⊂ RM from the data x ∈ RK . As we have seen

in Section 2.4.2, the underlying loss functions L(θ, θ̂(x)) are the squared loss (2.27a) and the

hit-or-miss loss (2.28a). The reason that they are used so widely is often not their suitability to

the problem at hand but that the corresponding OBEs are well known and, at least for the MAP

estimator, are often computable as they are the mean and maximum of the a posteriori density

p(θ|x) and powerful methods are available to calculate the estimate θ̂(x), see Section 2.4.3.

In this chapter, we will consider Bayesian estimation with other than those loss functions. This

problem is very important for practical applications as the loss function should reflect the cost

that is connected with a certain estimation error, see. e.g. [Gelman et al., 2003; Norstrom, 1996].

The following two examples illustrate this more clearly:

• Consider the problem of constructing a dam [Zellner, 1986]. Underestimating the peak

water level from older measurements is clearly more serious than overestimating it and

this fact should be reflected in the choice of the loss function L(θ, θ̂(x)). This example

motivates the use of an asymmetric loss function, i.e. L(θ, θ̂) 6= L(−θ,−θ̂) and it is

obvious that the hit-or-miss loss and the squared loss are not suited for such an estimation

problem.

• Another example that gives rise to other loss functions can be found in the field of im-

age processing. Traditionally, the mean squared error is used to compare images and

therefore many algorithms are optimized for this loss function [Wang and Bovik, 2009].

The problem with the MSE is that it does not well represent human perception as is

shown in Figure 4.1. Images which have a small mean squared error may still look very
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(a) Original image

(d) MSE = 150, SSIM = 0.63 (e) MSE = 150, SSIM = 0.83

(b) MSE = 150, SSIM = 0.66 (c) MSE = 150, SSIM = 0.71

Figure 4.1: Comparison of MSE with SSIM for different image operations

(b) = Gaussian blurring with σ = 2.27, (c) = image rotation by β = 0.7◦,

(d) = additive uniform noise, (e) = salt and pepper noise

different and therefore in [Wang and Bovik, 2009] it is suggested to use other distance

measures. One is the structural similarity (SSIM) index, which was introduced by Wang

in [Wang et al., 2004] and e.g. used in [Channappayya et al., 2008] for the design of

linear equalizers. Figure 4.1 clearly shows that the SSIM index better correlates to the

human perception than the MSE as the SSIM index for (b) and (d) are smaller compared

to the SSIM index for (c) and (e). A related example that discusses the design of loss

functions for the reconstruction of images is given by Rue in [Rue, 1995]. He shows how

information about the image structure can be used to find a suitable loss function and he

proposes the use of MCMC and simulated annealing methods to calculate the Bayesian

estimates.

More examples of Bayesian estimation with non-standard loss functions can also be found in

cluster analysis [Binder, 1978, 1981; Lau and Green, 2007] and mixture modeling [Celeux et al.,

2000; Hurn et al., 2003].

Calculating the OBE for many nonstandard loss functions is nontrivial and can often only be

stated in terms of the optimization problem (2.24) which has to be solved for each new data

x. Therefore, we propose in this chapter a parametric family F of estimators which are suited

for a large variety of loss functions but still have a computational complexity comparable to the

MMSE estimator for the same problem. Thus, using the best estimator in F that has the smallest

Bayes risk for a given loss function will be a good approximation of the OBE. Our parametric

family of estimators can be viewed as a compromise between the perfect OBE on one side and

a (nonlinear) regression approach on the other. It trades off performance against computational

complexity as it will have a larger Bayes risk than the OBE but will be easier to learn due to the

small and fixed number of parameters compared to a regression approach.
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In the following, we will introduce our parametric family of estimators and show its relation to

many well-known estimators, including the MAP, MMSE and OBE for the LinEx loss.

4.2 Parametric Family of Estimators

4.2.1 Basic Family of Estimators

Let FB be the set of estimators that have the form

θ̂(x;λ) =

∫

θ p(θ,x)λdθ
∫

p(θ,x)λdθ
(4.1)

and are parameterized by λ. We call FB the basic family of estimators. Thinking of p(θ,x)λ

as a new (unnormalized) density, we see that (4.1) calculates the mean of the conditional den-

sity p(θ,x)λ/
∫

p(θ,x)λdθ and therefore looks similar to the MMSE estimator except for the

modified PDF.

Note that it is reasonable to restrict λ to positive values, i.e. λ ∈ [0,∞). Otherwise we average

over a new density p(θ,x)λ/
∫

p(θ,x)λdθ which is inverted in the sense that it has large values

at positions where p(θ,x) is small, i.e. it emphasizes points (θ,x) ∈ RM+K that are not likely

to occur and we can expect therefore a poor performance for λ < 0.24

We will now show that FB includes three important estimators, namely the uniform a priori

MMSE estimator, the MMSE estimator and the MAP estimator. By uniform a priori MMSE

estimator, we refer to the estimator where we have no data x about θ ∈ T ⊂ RM and the a

priori distribution p(θ) is assumed to be uniform in T. The estimator with the minimum MSE is

then the “center of gravity” of T, i.e. θ̂ = E[θ] =
∫

θ p(θ)dθ =
∫

T
θdθ/

∫

T
1dθ which is well

defined if T is bounded. The following theorem shows that all three estimators are in FB. The

proof can be found in Appendix C.3.1.

Theorem 2 (Relationship to other estimators). The estimator family FB defined in (4.1) includes

the following special cases:

(a) If T ⊂ R
M is bounded and p(θ,x) 6= 0 then θ̂(x;λ) for λ → 0 exists and is equivalent

to the uniform a priori MMSE estimator.

(b) The case λ = 1 corresponds to the MMSE estimator.

(c) The case λ→ ∞ corresponds to the MAP estimator.

24For example the loss L(θ, θ̂) = 1 − LMAP(θ, θ̂) results in seeking the minimum of p(θ|x) which is related (but in

general not identical) to θ̂(x;λ) for λ → −∞.



– 62 –

Although it is interesting to see the relationship of this basic family of estimators to other esti-

mators, we also see that the loss functions associated with λ ∈ {0, 1,∞} are all symmetric as

they are the squared loss (2.27a) and the hit-or-miss loss (2.28a). In the following, we will prove

in Theorem 3 that if there is a continuously differentiable loss function that results in θ̂(x;λ),

then the loss function has to be symmetric.25 For the proof of Theorem 3, we need the following

Lemma. The proofs can be found in Appendix C.3.2.

Lemma 1. The estimator θ̂(x;λ) for the PDFs p(θ,x) = δ(θ−θ0) and p(θ,x) = Pδ(θ−θ0)+
(1−P )δ(θ−θ1) is given by θ̂(x;λ) = θ0 and θ̂(x;λ) = (Pλθ0+(1−P )λθ1)/(Pλ+(1−P )λ),
respectively.

Theorem 3 (Corresponding loss is symmetric). LetL(θ, θ̂) be a continuously differentiable loss

function that results in the optimal Bayesian estimator θ̂(x;λ) for an arbitrary PDF p(θ,x).

Then L(θ, θ̂) is symmetric, i.e. L(θ, θ̂) = L(−θ,−θ̂).

From this Theorem, we see that no estimator resulting from an asymmetric, continuously differ-

entiable loss function is included in FB. However, we would like to use such asymmetric loss

functions due to their practical relevance and hence we have to extend FB. This is done in the

next subsection.

4.2.2 A Generalized Family of Estimators

In order to extend the basic family of estimators FB given in (4.1), we will now modify its para-

metric form such that the OBE for LinEx loss is also included. By doing this, we obtain a new

family of estimators F which can deal with the important case of asymmetric loss functions.

From (2.30b) we know that the OBE for LinEx loss has the form

θ̂LinEx,m = − 1

am
ln

∫

e−amθmp(θm|x)dθm, m = 1, . . . ,M. (4.2)

Knowing the OBE for LinEx loss, we can now extend our basic family of estimators FB. This

will be done in such a way that the new family of estimators F is a kind of “superposition” of

both FB and the OBE (4.2). We define this new family of estimators in the following way: Let

F be the set of estimators where each estimator has the form

θ̂(x;p) = f1

(

∫

f2(θ;p2) p(θ,x)
λdθ

∫

p(θ,x)λdθ
;p1

)

(4.3a)

25Note that it is difficult to prove the existence of such a loss function for an arbitrary λ and the corresponding estimator

θ̂(x; λ).
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and depends on the 2M + 4 parameters p =
[

λ,pT
1 ,p

T
2

]T

with p1 =
[

ξ1, φ1, . . . , φM

]T

and

p2 =
[

ξ2, ξ3, ψ1, . . . , ψM

]T

. f1 and f2 are defined as

f1(z;p1) = ξ1z+ φ ◦ ln|z|, (4.3b)

f2(z;p2) = ξ2z+ ξ3e
ψ◦z (4.3c)

with φ =
[

φ1, . . . , φM

]T

and ψ =
[

ψ1, . . . , ψM

]T

. Note that ez, ln z and |z| are understood

elementwise and the operator “◦” denotes the elementwise multiplication of two vectors or ma-

trices. λ is again chosen such that λ ∈ [0,∞) as discussed in Section 4.2.1.

First, we would like to note that FB ⊂ F as all estimators θ̂(x;λ) from (4.1) are included in

θ̂(x;p) for ξ1 = ξ2 = 1, ξ3 = 0 and φ1 = · · · = φM = 0. Therefore, we already know from

Theorem 2 that the uniform a priori MMSE, the MMSE and the MAP estimator are included

in this family. Furthermore, it is straightforward to see that F also includes the OBE for LinEx

loss as plugging in the values ξ1 = ξ2 = 0, ξ3 = 1, λ = 1 and ψm = 1/φm = −am for

m = 1, . . . ,M into (4.3a) results in (4.2). Thus, we see that the new estimator family F is more

general than FB and also includes estimators with asymmetric loss functions.

4.2.3 Practical Considerations

This section explains the general approach how to obtain the estimator for a given signal model

and loss function and also shows how the estimate θ̂(x;p) can be calculated efficiently for the

given data x. In the sequel, we will make the following two assumptions:

• The generation of samples (θi,xi) ∼ p(θ,x) is manageable, where p(θ,x) is the joint

PDF of θ and x. This is often the case as p(θ,x) can be written as p(θ,x) = p(x|θ)p(θ),
where p(θ) is the a priori PDF of θ and p(x|θ) is the likelihood PDF. Very often, both

are known: p(θ) from expert knowledge and p(x|θ) through the signal model.

• The generation of samples θi ∼ p(θ|x) is manageable. This is not a hard restriction as the

MMSE estimator is often calculated using Markov chain Monte Carlo methods [Robert,

2001; Liu, 2008]. MCMC allows the approximate generation of correlated samples from

the a posteriori distribution and the MMSE estimator is then simply the average over

all samples. Here, we will use importance sampling where the conditional distribution

p(θ|x) is the importance function.

Given the loss function and the signal model, the use of our estimator family for a general

estimation problem consists of two steps:
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Step 1 – Find the optimal estimator in F

In a first step, we have to find the estimator θ̂(x;p0) ∈ F that has the smallest Bayes risk for the

particular loss function and joint PDF p(θ,x), i.e. we have to solve the optimization problem

p0 = argmin
p

∫∫

L(θ, θ̂(x;p))p(θ,x)dθdx. (4.4)

This optimization has only to be carried out once to learn the optimal values of the parameters

p. In the Appendix C.3.3, we give the gradient vector of the Bayes risk in (4.4) with respect

to the parameters in p. The knowledge of the gradient vector allows to use a gradient descent

method to find the locally26 optimal parameter values. Note that the integration with respect to

θ and x can be carried out by a plain MC integration using samples (θi,xi) ∼ p(θ,x). The

optimization problem (4.4) becomes then

p0 = argmin
p

1

I1

I1
∑

i=1

L(θi, θ̂(xi;p)). (4.5)

If the generation of samples from p(θ,x) is not directly possible, then importance sampling

as discussed in Section 2.4.3 is another possibility to obtain an accurate approximation of the

integral.

Step 2 – Calculate the estimate θ̂(x;p0)

In a second step, we calculate the estimate for the given data x. Therefore, we need an efficient

method to compute both integrals in (4.3a). Note that (4.3a) can be written as

θ̂(x;p) = f1

(

∫

f2(θ;p2)
p(θ,x)λ

∫

p(θ,x)λdθ
dθ;p1

)

= f1

(

Epλ

[

f2(θ;p2)
]

;p1

)

. (4.6)

We see that we can write the integrals as the expectation of f2(θ;p) with respect to a new

conditional density pλ(θ|x) = p(θ,x)λ/
∫

p(θ,x)λdθ. Assuming that we can generate samples

from the a posteriori distribution θk ∼ p(θ|x) = p(θ,x)/
∫

p(θ,x)dθ, we can use importance

sampling as shown in Section 2.4.3 for (4.6). Generalizing (2.42) from Section 2.4.3 to the more

general case of calculating E[h(θ)] =
∫

h(θ)p(θ)dθ, the importance sampling approximation

is

E
[

h(θ)
]

≈

I
∑

i=1

wih(θi)

I
∑

i=1

wi

(4.7)

26In general, the gradient descent method will only converge to a local minimum of (4.4) and therefore it is often

advantageous to restart the descent method with a different start value.
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where θi are drawn from a trial distribution g(θ) and the importance weights wi are defined as

wi = p(θi)/g(θi). Note that wi has only to be known up to a multiplicative constant. Using

importance sampling for our problem, we finally obtain the approximation

θ̂(x;p) ≈ f1













I2
∑

i=1

wi f2(θi;p2)

I2
∑

i=1

wi

;p1













(4.8)

with g(θ) = p(θ,x) and thus wi = p(θi,x)
λ−1. The computational complexity is hence

comparable to that of a MMSE estimation if the MMSE estimator also uses MC integration.

4.3 Examples

In the following, we will give three examples that compare the OBE for a nonstandard loss

function to our estimator family F.

4.3.1 Example 1: BLinEx Loss

The first example is as follows: Given the signal model x = θ+z, estimate θ which is uniformly

distributed in [0, 1] from the observation x where we know that the observation is perturbed by

additive Gaussian noise z ∼ N (0, σ2). Furthermore, z and θ are independently distributed.

The considered loss function is the bounded LinEx (BLinEx) loss introduced in [Wen and Levy,

2001]. The univariate BLinEx loss function is given by

LBLinEx(θ, θ̂) =
LLinEx(θ, θ̂)

1 + ρLLinEx(θ, θ̂)
, ρ > 0. (4.9)

Plugging LLinEx(θ, θ̂) from (2.29) into (4.9), we obtain

LBLinEx(θ, θ̂) =
1

ρ

(

1− 1

1 + c(ea(θ̂−θ) − a(θ̂ − θ)− 1)

)

(4.10)

with c = ρb. It differs from the usually used loss functions (2.27a) and (2.28a) in two main

properties, namely it is (a) asymmetric and (b) bounded:

(a) If a > 0 then the positive error θ̂ > θ results in a larger loss than the corresponding

negative error of the same magnitude. If a < 0 then negative errors θ̂ < θ have a larger

loss. A case where such an emphasis of negative errors is useful is the dam construction

example given in Section 4.1 as underestimating the peak water level is more severe than

overestimating it.
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Figure 4.2: Example 1: LinEx and BLinEx loss (ρ = 0.5, a = 10 and b = 1)

(b) LBLinEx(θ, θ̂) is bounded by 0 and 1/ρ. Such a requirement for a loss function may occur

naturally out of the considered problem or may be artificially introduced to improve the

robustness of the estimator in the case of outliers.

In our example, we choose ρ = 0.5, a = 10 and b = 127. Figure 4.2 shows the graph of

the BLinEx loss function for this choice of parameters. Furthermore, the noise variance is

σ2 = 0.25.

We compare the following five estimators with respect to the squared error loss (2.27a) and the

BLinEx loss (4.10):

• MAP estimator: The MAP estimator is in general given by θ̂ = argmaxθ p(θ|x) with

p(θ|x) ∼ p(θ, x) = e−(x−θ)2/(2σ2)u[0,1](θ) and u[0,1](θ) is the a priori PDF of θ which

is uniformly distributed in [0, 1]. This yields

θ̂MAP =























0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

(4.11)

• MMSE estimator: The MMSE estimator is given by θ̂MMSE = E[θ|x]. For our signal

model, the conditional mean can be calculated analytically and one obtains

27We choose these parameter values in order to achieve the following two effects: First, we want to study an asymmetric

loss function and therefore a has to be large. Second, we want a loss function which is bounded and therefore

different from the LinEx loss. To see this effect, we choose ρ = 0.5.
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Estimator Mean squared error loss Mean BLinEx loss

MAP estimator 1.21×10−1 1.02×100

MMSE estimator 6.28×10−2 9.03×10−1

OBE for LinEx loss 1.23×10−1 8.70×10−1

Optimal estimator ∈ F 8.16×10−2 8.21×10−1

OBE for BLinEx loss 8.70×10−2 8.12×10−1

Table 4.1: Example 1: Comparison of the Bayes risks

θ̂MMSE = x+

√

2

π
σ

e−
x2

2σ2 − e−
(x−1)2

2σ2

erf
(

x√
2σ

)

− erf
(

x−1√
2σ

) (4.12)

• OBE for LinEx loss: The OBE for LinEx loss is given by (2.30b) which can be calculated

analytically. It is given by

θ̂OBE,LinEx = x− aσ2

2
− 1

a
ln







erf
(

1+aσ2−x√
2σ

)

− erf
(

aσ2−x√
2σ

)

erf
(

x√
2σ

)

− erf
(

x−1√
2σ

)






(4.13)

• OBE for BLinEx loss: The optimization problem (2.24) for this example cannot be carried

out analytically and thus (2.24) has to be solved for each new observation x individually,

either by Monte Carlo integration or numerical quadrature. For our simulations, we used

the Matlab functions fminunc and quad to solve (2.24).

• Estimator family (4.3) with optimal parameters: The optimal parameters are found via

the Matlab function fmincon using 50 random start points for the gradient descent. The

found parameters are ξ1 ≈ 6.77× 10−1, ξ2 ≈ 4.03× 10−1, ξ3 = 1.33× 10−1, λ ≈ 8.31,

φ ≈ 4.02 × 10−3 and ψ ≈ 1.91. I1 = 5 000 samples are used for the Monte Carlo

approximation in (4.5) and I2 = 5 000 samples are drawn from the a posteriori density

p(θ|x) for (4.8) using the sampling method proposed in Robert [1995]. The values for I1

and I2 were found by simulations to ensure statistical stable results of the MC integral

approximations.

Table 4.1 shows the results averaged over 10 000 trials. Clearly, the MMSE estimator is optimal

in terms of the squared error loss as expected. Similarly, the OBE for the BLinEx loss gives the

smallest Bayes risk if the BLinEx loss function is used. The optimal estimator θ̂(x;p0) from

the set F is a good approximation of the OBE for the BLinEx loss as it has a similar Bayes risk.

Thus, although the OBE for the BLinEx loss itself is not an element of F, there is an estimator

θ̂(x;p0) in F which gives nearly the same performance.
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Figure 4.3: Example 1: Squared error and BLinEx loss for a varying noise variance σ2

In order to study the influence of the noise variance on the simulation results, we rerun the

first experiment with varying σ2 values. Figure 4.3 shows the simulation results and it can be

concluded that the relative performance of θ̂(x;p0) with respect to the OBE for BLinEx loss is

almost constant.

Finally, the run times to compute the estimates on a standard desktop computer are given in

Table 4.2 in order to compare the computational costs of the different approaches. It can be

observed that the run time of the OBE for BLinEx loss is roughly ten times larger as for our

estimator family which justifies to use the approximation given by (4.8) rather than the OBE



– 69 –

Estimator Run time

MAP estimator < 1×10−3 sec.

MMSE estimator < 1×10−1 sec.

OBE for LinEx loss < 1×10−1 sec.

Optimal estimator ∈ F 2.3×101 sec.

OBE for BLinEx loss 3.2×102 sec.

Table 4.2: Example 1: Comparison of the run times for 10 000 trials

itself. Note that the computation of the estimator family according to (4.8) consists of two

steps: First, we have to sample from the a posteriori distribution which in our case is a truncated

Gaussian density. We used the sampling algorithm proposed by Robert in [Robert, 1995] for this

step. Second, we have to use importance sampling as shown in (4.8) to find the estimate. The

run time for the first step is 21 seconds and for the second step 2 seconds which results in the 23

seconds that are given in Table 4.2. These numbers show that most of the run time is spent on

computing samples from the a posteriori density.

4.3.2 Example 2: Speech Enhancement

The second example which we consider is the enhancement of a distorted speech signal. The

goal is to suppress an unwanted noise signal while leaving the speech as undistorted as possible,

see e.g. [Benesty et al., 2005; Loizou, 2011].

In the time domain, the speech enhancement problem can be written as

x(n) = s(n) + z(n), (4.14)

where s(n) is the original (clean) speech signal at time instance n which is distorted by noise

z(n) to result in the observed signal x(n). One solution for this problem is the traditional ap-

proach of short-time spectral attenuation (STSA) which was introduced by [Berouti et al., 1979;

Ephraim and Malah, 1984] and extended in later work [Ephraim and Malah, 1985; Loizou, 2005;

You et al., 2005]. While [Berouti et al., 1979] is based on the method of spectral subtraction, the

other papers use a more statistically motivated approach by introducing a suitable loss function

and signal model for each frequency bin. The corresponding OBE is then used to perform the

STSA operation.

In the following, we will state the speech enhancement problem in the frequency domain where

we assume a Gaussian signal model. All necessary elements to use our family of estimators

from (4.3) are derived and this estimator is then compared to the OBE.
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Problem Formulation and Solution Approach

Using the short-time Fourier transform of (4.14), the signal model can be written in the frequency

domain as

Xl,i = Sl,i + Zl,i, (4.15)

where Xl,i = |Xl,i|ejθl,i , Sl,i = |Sl,i|ejφl,i and Zl,i are the lth spectral component of the noisy

signal x(n), clean speech s(n) and noise z(n) in the ith frame. The frequency index l ranges

from 0 to L−1 where L is the FFT length. In STSA, the speech enhancement problem is solved

by using

Ŝl,i = |Ŝl,i|ejθl,i , (4.16)

i.e. the amplitude |Xl,i| of the noisy spectral componentXl,i is replaced by the estimate |Ŝl,i| =
|Ŝl,i|(Xl,i). For convenience, we will drop the dependence of the spectral components on the

frame index i in the following.

Using the Gaussian model Sl = |Sl|ejφl ∼ CN (0, σ2
s(l)), i.e. Sl is circular complex Gaussian,

we know that the PDF of |Sl| and φl is given by

p(|Sl|, φl) =















1
2π

|Sl|
σ2
s(l)/2

e
− |Sl|

2

σ2
s(l) |Sl| ≥ 0, 0 ≤ φl < 2π

0 otherwise

, (4.17)

i.e. |Sl| follows a Rayleigh distribution, φl is uniformly distributed on [0, 2π) and both are

independent of each other. Assuming furthermore Zl ∼ CN (0, σ2
z(l)) and Zl is independent of

Sl, then we have clearly Xl ∼ CN (0, σ2
s(l) + σ2

z(l)). The a posteriori density p

(

|Sl|
∣

∣

∣Xl

)

for

|Sl| ≥ 0 is given by

p

(

|Sl|
∣

∣

∣Xl

)

=
1

p(Xl)

2π
∫

0

p

(

Xl

∣

∣

∣|Sl|, φl
)

p(|Sl|, φl)dφl

=
|Sl|(σ2

z(l) + σ2
s (l))

πσ2
z(l)σ

2
s (l)

exp

{

−σ
2
z(l) + σ2

s (l)

σ2
z(l)σ

2
s (l)

|Sl|2 −
σ2
s (l)

σ2
z(l)(σ

2
z(l) + σ2

s(l))
|Xl|2

}

×
2π
∫

0

exp

{

2|Sl||Xl|
σ2
z(l)

cos (φl − θl)

}

dφl. (4.18)

Introducing the modified Bessel function of the first kind and nth order In(z) which has the

integral representation

In(z) =
1

2π

2π
∫

0

cos(βn) exp
{

z cos(β)
}

dβ, (4.19)
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and using the shorthand notations vl =
σ2
s(l)

σ2
z(l)(σ

2
z(l)+σ2

s(l))
|Xl|2 and λ−1

l =
σ2
z(l)+σ2

s(l)
σ2
z(l)σ

2
s (l)

, we can

finally write the a posteriori density p

(

|Sl|
∣

∣

∣Xl

)

as

p

(

|Sl|
∣

∣

∣Xl

)

= 2
|Sl|
λl

exp

{

−|Sl|2
λl

− vl

}

I0

(

2|Sl|
√

vlλ
−1
l

)

. (4.20)

This density is well known in the literature and shows that |Sl| given the observationXl follows

a Rice distribution [Papoulis and Pillai, 2002]. It is interesting to note that p(|Sl|
∣

∣

∣
Xl) only

depends on |Xl| and therefore, |Ŝl| = |Ŝl|(|Xl|). To derive the OBE in the next Section, we will

need to calculate the moments E
[

|Sl|m
∣

∣

∣Xl

]

. Interestingly, they can be given analytically using

Kummer’s function M(a, b, z) as defined in Appendix C.3.4 and they are

E

[

|Sl|m
∣

∣

∣Xl

]

= λ
m/2
l Γ

(

m

2
+ 1

)

M

(

−m
2
, 1,−vl

)

(4.21)

for all m > −2 where Γ(x) =
∫∞
0 tx−1e−tdt is the Gamma function. Eq. (4.21) results

from the identities [Abramowitz and Stegun, 1964, 11.4.28] and [Abramowitz and Stegun, 1964,

13.1.27].

Loss Function and Corresponding OBE

In the literature, many different loss functions were proposed to perform STSA speech enhance-

ment. The first approach in [Ephraim and Malah, 1984] was to use the squared loss function

L(|Sl|, |Ŝl|) = (|Sl| − |Ŝl|)2 which results in the MMSE-STSA algorithm. Later, other loss

functions were proposed in [Ephraim and Malah, 1985; Loizou, 2005; You et al., 2005] which

show a better performance with respect to perceptual motivated quality measures, e.g. the per-

ceptual evaluation of speech quality (PESQ) measure [ITU-T Recommendation P.862; Möller

et al., 2011]. In [Plourde and Champagne, 2008], these loss functions were combined into a

family of loss functions of the form

L(|Sl|, |Ŝl|) =
(

|Sl|β − |Ŝl|β
|Sl|α

)2

. (4.22)

This loss function was later generalized in [Plourde and Champagne, 2009] to include even more

proposed loss functions. The corresponding OBE for (4.22) can easily be found by using (2.25)

together with ∂L/∂|Ŝl| = −2β|Ŝl|β−1(|Sl|β − |Ŝl|β)/|Sl|2α and is given by

|Ŝl| =











∞
∫

0

|Sl|β−2αp

(

|Sl|
∣

∣

∣|Xl|
)

d|Sl|
∞
∫

0

|Sl|−2αp

(

|Sl|
∣

∣

∣|Xl|
)

d|Sl|











1
β

=











E

[

|Sl|β−2α
∣

∣

∣|Xl|
]

E

[

|Sl|−2α
∣

∣

∣|Xl|
]











1
β

. (4.23)
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Simulation Results

In the following, we will compare the OBE for the loss function (4.22) with the best estimator

from the generalized family (4.3). Two experiments are conducted: In the first experiment, we

find the best estimator in F with respect to the loss function (4.22) for α = 0.5 and β = 1. This

parameter setup was shown in [Plourde and Champagne, 2008] to result in an STSA algorithm

with the best PESQ value, which is called Weighted Euclidean STSA (WE-STSA). In contrast,

the second experiment optimizes directly on the PESQ measure.

Experiment 1: Fitting of the estimator family to WE-STSA

The following three estimators are considered:

• Minimum Mean-Squared Error STSA (MMSE-STSA): The MMSE-STSA estimator re-

sults from the special choice α = 0 and β = 1 in (4.22). The corresponding OBE is

given by [Ephraim and Malah, 1984]

|Ŝl| = E

[

|Sl|
∣

∣

∣|Xl|
]

=

√
πλl
2

e−
vl
2

[

(1 + vl)I0

(

vl
2

)

+ vlI1

(

vl
2

)

]

(4.24)

where we used the identities [Abramowitz and Stegun, 1964, 13.1.27] and [Abramowitz

and Stegun, 1964, 13.3.6] in (4.21) for m = 1.

• Weighted Euclidean (WE-STSA): The WE-STSA estimator is the OBE that corresponds

to the choice α = 0.5 and β = 1. It is given by [Loizou, 2005]

|Ŝl| =
(

E

[

|Sl|−1
∣

∣

∣|Xl|
]

)−1

=

√

λl
π

evl/2

I0

(

vl
2

) (4.25)

where we used the identity M(12 , 1, z) = ez/2I0

(

z
2

)

[Abramowitz and Stegun, 1964,

9.6.47] in (4.21).

• Estimator Family: To learn the optimal parameters p0, I1 = 5 000 samples from the

joint PDF p(|S|, |X |) and I2 = 5 000 samples from the a posteriori PDF p(|Sl|
∣

∣

∣|Xl|) are

drawn using a uniform (hyper-)prior distribution for σ2
z(l) and σ2

s(l). They were chosen

to be σ2
z(l) ∼ U(10−2, 100) and σ2

s(l) ∼ U(10−12, 103).

We used ten female and ten male speakers from the TIMIT database which resulted in a total of

144 utterances. The noise was assumed to be white Gaussian with a SNR of 10dB. The short-

time Fourier transform was computed using a Hamming window of length 32ms and an overlap

of 50% as in [Plourde and Champagne, 2008]. The noise variance σ2
z(l) was estimated from

noise-only segments where those segments were found by a voice activity detector (VAD). σ2
s (l)

is estimated from the decision-directed approach as proposed in [Ephraim and Malah, 1984].
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MMSE loss WE loss PESQ

(α = 0, β = 1) (α = 0.5, β = 1)

Noisy speech signal 4.13×10−2 8.34×100 2.26

OBE for α = 0, β = 1
1.47×10−2 1.02×100 2.65

(MMSE-STSA)

OBE for α = 0.5, β = 1
2.02×10−2 2.01×10−1 2.86

(WE-STSA)

Optimal estimator in F
2.10×10−2 1.53×10−1 2.80

(WE Loss)

Table 4.3: Example 2, Exp. 1: Performance of the STSA estimators

The results are shown in Table 4.3. Beside the MMSE loss and the WE loss, we also give

the results with respect to the PESQ measure. It can take on values between “1” (bad) and

“4.5” (excellent) and was shown to be a good objective quality measure for speech enhancement

[Hu and Loizou, 2008]. From the results we see that WE-STSA gives the best results with

respect to the PESQ measure which was already observed in [Plourde and Champagne, 2008].

Furthermore, we also see that the best estimator from F is a good approximation of the OBE for

WE loss. It gives a better PESQ measure than the MMSE-STSA and therefore we could adapt

the parametric family to the WE loss function. It is interesting to note that the best estimator

from F has a smaller WE loss than the OBE for this loss function. This stems from the fact

that estimates of σ2
z(l) and σ2

s (l) were used during the speech enhancement which influences

the performance of the estimators.

Experiment 2: Fitting of the estimator family to PESQ

Instead of using the WE loss as for Experiment 1, we also studied the performance of the estima-

tor family F if the PESQ measure is used as loss function, i.e. we rerun the first experiment with

the same setup but this time we search the best estimator in F that yields the maximum PESQ

value. We splitted the 144 files into two sets, a training set consisting of one male and one fe-

male speaker, and a disjoint test set which contains the remaining 142 files. The optimization

problem (4.5) was solved using Matlab’s fminsearch procedure from 50 different randomly

chosen starting points.

Table 4.4 and Table 4.5 show the training and generalization performance for this new optimized

estimator. It can be seen that the estimator which is adapted to the PESQ loss has an improved

mean PESQ value of 2.87 compared to the estimator we found in the first experiment which had

a PESQ loss of 2.80. A difference of 0.07 in the PESQ measure corresponds roughly to a 1dB

difference in SNR and hence, we can conclude that the found estimator is capable of fitting to

the PESQ loss function. Furthermore, it performs also slightly better than WE-STSA on the 142

utterances of the test set.
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MMSE loss WE loss PESQ

(α = 0, β = 1) (α = 0.5, β = 1)

Noisy speech signal 2.89×10−2 9.71×100 2.14

OBE for α = 0, β = 1
1.03×10−2 1.22×100 2.58

(MMSE-STSA)

OBE for α = 0.5, β = 1
1.35×10−2 2.20×10−1 2.81

(WE-STSA)

Optimal estimator in F
1.33×10−2 1.60×10−1 2.73

(for WE Loss)

Optimal estimator in F
1.08×10−2 1.30×10−1 2.82

(for PESQ)

Table 4.4: Example 2, Exp. 2: Performance of the STSA estimators (Training error)

MMSE loss WE loss PESQ

(α = 0, β = 1) (α = 0.5, β = 1)

Noisy speech signal 4.15×10−2 8.28×100 2.26

OBE for α = 0, β = 1
1.48×10−2 1.01×100 2.65

(MMSE-STSA)

OBE for α = 0.5, β = 1
2.04×10−2 1.99×10−1 2.85

(WE-STSA)

Optimal estimator in F
2.09×10−2 1.52×10−1 2.80

(for WE Loss)

Optimal estimator in F
1.57×10−1 1.36×10−1 2.87

(for PESQ)

Table 4.5: Example 2, Exp. 2: Performance of the STSA estimators (Generalization error)

4.3.3 Example 3: Image Denoising

The second example we consider is the denoising of an image which is corrupted by additive

Gaussian noise. We do not intend to design in this section a “state-of-the-art” denoising algo-

rithm but we would like to show that there is an estimator in the proposed family that yields

better results with respect to a perceptional motivated image distance measure than the ordinary

MMSE estimator. This shows that the proposed family is also applicable to such estimation

problems.

Let θ ∈ R
M×1 be the vector containing the pixel luminance values of a grayscale image of size

M1 ×M2 which is obtained after column stacking it, i.e. M = M1M2. Assuming the signal

model

x = θ + z with z ∼ N (0, σ2I), (4.26)

the task is to recover the original image θ from the distorted image x. To use a Bayesian esti-
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mator for this problem, we have to answer two questions: First, which loss function is adequate

for this problem, i.e. is perceptual relevant. Second, we have to choose an a priori density which

can handle the inter-pixel correlation of neighbouring pixels efficiently. Both issues will now be

addressed.

Loss Function

A good loss function for the comparison of images is the structural similarity (SSIM) index

[Wang et al., 2004]. It was shown that this index performs very well compared with other

metrics, see [Sheikh et al., 2006], and that it is a perceptional measure of image similarity

[Wang and Bovik, 2009].

The SSIM works by locally calculating the similarity of two image blocks θ(b) and θ̂
(b)

in

terms of the luminance (brightness values) l(θ(b), θ̂
(b)

), contrast c(θ(b), θ̂
(b)

) and structure

s(θ(b), θ̂
(b)

) and is defined as [Wang and Bovik, 2009]

S(θ(b), θ̂
(b)

) = l(θ(b), θ̂
(b)

)c(θ(b), θ̂
(b)
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(b)

)
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(b)

θ̂
+ C1

µ2
θ
(b)

+ µ2
θ̂

(b)
+ C1

·
2σ

(b)
θ σ

(b)

θ̂
+ C2

σ2
θ
(b)

+ σ2
θ̂

(b)
+ C2

·
σ
(b)

θθ̂
+ C3

σ
(b)
θ σ

(b)

θ̂
+ C3

. (4.27)
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whereQ is the number of pixels in the bth image block. The weightswq are the coefficients of a

suitable window function, e.g. a two-dimensional Gaussian window. The constants C1, C2 and

C3 in (4.27) have small positive values to avoid numerical instabilities. The SSIM index is then

computed by averaging the local similarity values, i.e.

SSIM(θ, θ̂) =
1

B

B
∑

b=1

S(θ(b), θ̂
(b)

) (4.28)

whereB is the total number of image blocks. It is easy to show that the SSIM index is symmetric,

i.e. SSIM(θ, θ̂) = SSIM(θ̂, θ), and that it is bounded, i.e. −1 ≤ SSIM(θ, θ̂) ≤ 1, which are

two properties which we would expect from a good image comparison metric. The SSIM index
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Figure 4.4: Example 3: Nearest neighbour dependency graph at position (i, j). The correspond-

ing linear index of the pixels with respect to the whole image are given in red.

has been successfully used in many areas, see [Wang and Bovik, 2009] for a list of applications

to which the SSIM index has already been applied to in the past. For our example, we will use

the special choice C1 = (0.01L)2, C2 = (0.03L)2 = 2C3 where L is the dynamical range

of the pixel values. The used window is a Gaussian window with size 11 × 11 and therefore

Q = 112 = 121. These values were proposed in [Wang et al., 2004] and the SSIM index (4.28)

simplifies to

SSIM(θ, θ̂) =
1

B

B
∑

b=1

(2µ
(b)
θ µ

(b)

θ̂
+ C1)(2σ

(b)

θθ̂
+ C2)

(µ2
θ
(b)

+ µ2
θ̂

(b)
+ C1)(σ2

θ
(b)

+ σ2
θ̂

(b)
+ C2)

. (4.29)

The negative SSIM index from (4.29) will be used as loss function for our minimization (4.4),

i.e. LSSIM(θ, θ̂) = −SSIM(θ, θ̂). Note that due to its simple structure, the derivative of (4.29)

with respect to θ̂ can be obtained after some calculations.

A Priori Density

As a priori density p(θ), we use a Gaussian Markov Random Field (GMRF) [Rue and Held,

2005; Chellappa, 1985]. It will enable us to efficiently model the correlation of neighbouring

pixels by specifying the sparse precision matrix Q̃ which is the inverse of the covariance matrix.

For this example, we will use a GMRF model of order 2, i.e. the neighbour set is given by the

eight neighbour pixels

S = {(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (1,−1), (−1, 1), (−1,−1)}. (4.30)

Figure 4.4 shows the corresponding nearest neighbour dependency graph for an arbitrary pixel

at the position (i, j) where 1 < i < M1 and 1 < j < M2, i.e. it does not lie on the image

boundary.

Using this neighbour set, it is well known that Q̃ will have a sparse and symmetric Toeplitz
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structure [Rue and Held, 2005]. It has the form Q̃ = dQ(q1, q2) where Q is the M × M

Toeplitz matrix28

Q =



















1 q1 0 · · · 0 q2 q1 q2 0 · · · 0

q1 1 q1 0 · · · 0 q2 q1 q2 0 · · · 0

0 q1 1 q1 0 · · · 0 q2 q1 q2 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .



















,Q = QT

with M = M1M2. q1 and q2 are the precision factors with respect to all neighbours of order

1 and 2, respectively. The a priori density is therefore given by a Gaussian PDF with mean µ1,

where 1 denotes a vector of all ones, and covariance matrix Q̃−1, i.e.

p(θ;U) =
dK/2 det{Q}1/2

(2π)K/2
e−

d
2 (θ−µ1)TQ(θ−µ1). (4.31)

The set U = {µ, d, q1, q2} denotes all unknown parameters. For a practical denoising algorithm,

we need to estimate U from a noisy image x ∈ RK ∼ N (µ1, d−1Q−1 + σ2I) with K = M .

This will be done by using the ML method. The log-likelihood function is

L(U) = −K
2
ln(2π)− 1

2
ln det

{

d−1Q−1 + σ2I
}

− 1

2
(x− µ1)T

(

d−1Q−1 + σ2I
)−1

(x− µ1). (4.32)

The first and second-order derivatives with respect to the elements of U can be calculated in a

straightforward way and are given in Appendix C.3.5. Thus, we can use a Newton algorithm to

solve the optimization problem

Û = argmax
U

L(U). (4.33)

To further reduce the computational complexity of the problem, we approximate the Toeplitz

matrix Q by a circulant matrix C. This can be done as Q is a bandlimited Toeplitz matrix

where only the first M1 + 1 off-diagonals are unequal to zero [Gray, 2006]. Using the circulant

matrix C instead of Q has the advantage that all matrix-matrix and matrix-vector operations

can be carried out in “FFT-speed” and thus we can efficiently work with large images [Golub

and Van Loan, 1996]. Appendix C.3.6 gives a brief overview of the basic properties of circulant

matrices which are useful for our calculations.

28Note that this Toeplitz structure is only correct for all inner pixels, i.e. pixels that do not lie on the image boundary.

However, for computational convenience, it is advantageous to use a global Toeplitz structure for the precision

matrix as the induced error will be negligible.
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Denoising Algorithms and Setup

The following four denoising algorithms are used in this example:

• Median filter: A simple denoising algorithm is to use a two-dimensional median filter.

We use a neighbourhood of size 5× 5.

• MMSE estimator: As we have a Gaussian a priori PDF and additive Gaussian noise, the

MMSE estimator is equivalent to the LMMSE estimator

θ̂LMMSE(x) = µ+
(

I+ σ2dQ
)−1

(x− µ) . (4.34)

Note that the estimate θ̂LMMSE(x) can be efficiently computed using the circulant matrix

approximation of the precision matrix as discussed before.

• Estimator Family: Finding the estimator which gives the largest averaged SSIM index

was done as suggested in (4.4). Instead of learning 2M+3 parameters in (4.4), we do the

simplification to use a fixed φ and ψ value for each pixel, i.e. φ1 = φ2 = . . . = φM and

ψ1 = ψ2 = . . . = ψM . Using such a uniform parameter setting assumes that the image is

spatial homogeneous and also has the advantage that it should yield a parameter setting

that is as general as possible and not fitted to a particular image. The value I1 = 32 was

used in (4.5) and I2 = 32 a posteriori samples are used for the importance sampling (4.8).

• Bayes Least Squares - Gaussian Scale Mixture (BLS-GSM) algorithm: The BLS-GSM

algorithm was introduced in [Portilla et al., 2003]. It performs the following three steps:

First, the image is transformed into subbands using a steerable pyramid transform which

provides an overcomplete set of coefficients [Simoncelli et al., 1992]. The basis func-

tions of such a multiscale decomposition are spatially localized, oriented and bandwidth

limited. Second, each subband is denoised, except for the lowpass residual band. Third,

the inverse pyramid transform is applied to obtain the denoised image.

For each neighbourhood, a Gaussian scale mixture (GSM) is assumed which yields the

signal model

x = θ + z =
√
cu+ z, (4.35)

where x, θ and z correspond to the observed coefficients, original (noiseless) coefficients

and the noise. Each set of coefficients for one neighbourhood are assumed to have the

GSM form
√
cu where u is zero-mean Gaussian with covariance matrix Cθ and

√
c

is a positive scalar random variable with a noninformative Jeffreys prior [Robert, 2001]

which controls the local variance for each neighbourhood. Finally, an MMSE estimator is

applied to estimate the original coefficient value from x. The interested reader is referred

to [Portilla et al., 2003] for more details.
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To learn the a priori parameters U which are needed by the MMSE estimator and the estimator

family, we used samples from the same image which ought to be denoised. Furthermore, instead

of using samples from the joint PDF p(θ,x), we used image patches (θk,xk) from the image in

(4.5). Therefore, we consider in this example a supervised denoising problem, where informa-

tion about the image is already present in the learning phase. We will discuss in the next section,

what would change if we had chosen an unsupervised scheme.

Simulation Results

Figure 4.5 shows the simulation results for σ = 30. The best overall performance is shown by

the BLS-GSM algorithm.

Comparing the MMSE estimator with the estimator family, we see that θ̂(x;p0) shows clearly

a better result than the MMSE estimator, as

SSIM(θ, θ̂(x;p0)) = 7.35× 10−1 and SSIM(θ, θ̂MMSE(x)) = 7.00× 10−1

though the MSE value of θ̂(x;p0) is larger than for θ̂MMSE(x). These results are comparable

to the results that were obtained in [Channappayya et al., 2008] where the best linear estimator

with respect to the SSIM was considered. The difference between the MMSE and the estimator

family can also be observed in Figure 4.5. However, θ̂(x;p0) does not perform as well as

BLS-GSM. This can be due to one of the following two reasons:

• Currently, the signal model that is used, i.e. the GMRF (4.31), makes the assumption

of spatial homogeneity and Gaussian distributions. In [Portilla et al., 2003], these as-

sumptions are discussed and it is argued that especially the spatial homogeneity is too

restrictive for a good image representation.

• The estimator family operates until now in the pixel domain. However, it is well known

that multiscale representations like the wavelet transform allow a substantially better de-

scription of an image [Gonzalez and Woods, 2002] which should result in a better denois-

ing algorithm.

As already pointed out, the previous results were obtained in a supervised setup. We also rerun

the simulations where we used different images for the learning of the parameters and the image

denoising and thus considered the generalization error of the denoising algorithms. We started

by using only one image for the training and another image for the test of the learned parameters

and we could observe that the estimator family for this scenario has a lower SSIM index as the

MMSE estimator. This is due to overfitting and the result of training the estimator family with

just one image. Therefore, we also considered the case of using several images for the training

(in our case four different images). However, for this scenario, the improvement with respect

to the MMSE estimator becomes negligible which points out another problem: The proposed
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(a) Original image (b) Noisy image
MSE: 9.61× 102

SSIM: 2.98 × 10−1

(c) Median
MSE: 2.78× 102

SSIM: 6.19 × 10−1

(d) MMSE
MSE: 1.82× 102

SSIM: 7.00 × 10−1

(e) Estimator family
MSE: 3.03 × 102

SSIM: 7.35 × 10−1

(f) BLS-GSM
MSE: 1.00 × 101

SSIM: 8.21× 10−1

Figure 4.5: Example 3: Results of the various reconstruction methods (σ = 30)

family in (4.3) is currently not versatile enough to adequately learn the OBE for the SSIM loss

that can be used for new, i.e. before unseen, images.

4.4 Observations and Conclusions

From the simulation results of all three examples in the last section, we see that the estimator

family could be successfully used to approximate the OBE for a given loss function and signal

model.

However, especially the last example also showed the limitations of our current approach: There

are algorithms like BLS-GSM that perform better with respect to the SSIM index. We can con-

clude that using the estimator family out of the box does not work for this application and more

a priori knowledge, e.g. working in the wavelet domain than in the pixel domain, has to be taken

into account as wavelets are a more universal representation of an image. Therefore, carefully
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adapting the estimator family to the problem at hand is necessary. Beside using a different rep-

resentation of the image data, also the a priori density can be changed or the definition of the

estimator family in (4.3) could be generalized.
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Chapter 5

Loss Reconstruction for a Given Estimator

5.1 Introduction

As we have seen in Section 2.4, the key idea of Bayesian estimation is to minimize the posterior

Bayes risk for a given loss function L(θ, θ̂). In this chapter, we will now consider the inverse

problem of finding a good approximation of the loss functionL(θ, θ̂) for a given estimator θ̂(x).

Such a reconstruction is interesting for the parametric family of estimators θ̂(x;p) which we

introduced in the last chapter. For most parameter values p, the corresponding loss function

that would result in such an estimator is not known and hence, solving the inverse problem as

considered in this chapter is interesting as it can be used to study the influence of a particular

parameter γ of p.

Another application, where the reconstruction of a loss function is interesting and was already

used, arises in economics and finance for testing the rationality of expectations [Muth, 1961].

For example [Elliott et al., 2005] proposed to use a flexible loss function to perform such a hy-

pothesis test and thus allowing a better judging of the forecast rationality. Elliott’s loss function

depends on two unknown parameters which are learned from time-series data and allow the loss

to become asymmetric. This is in contrast to most works which rely on the squared error loss.

Elliott’s approach differs in two aspects to our work: First, he considers a specific parameterized

family of loss functions whereas we deal with the more general aspect of fitting a sum of squares

of polynomials. Second, he derived the estimators for the two loss parameters relying on a linear

forecast and orthogonality conditions underlying the theory of rationality of expectations. Our

reconstruction approach only relies on using a sufficient number of parameter realizations θi,

corresponding observations xi and estimator outputs θ̂(xi) and is thus applicable to a broader

class of problems.

This chapter is organized as follows: First, we formulate in Section 5.2 and Section 5.3 the

problem of loss reconstruction as an optimization problem to find the optimal coefficients of a

sum of squares of polynomials. We will show that additional constraints are needed to avoid
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the trivial solution of all zero coefficients. Two possible constraints are therefore introduced in

Section 5.4 to circumvent this problem. Furthermore, we discuss in Section 5.5 how additional

a priori information can be incorporated using results from algebraic geometry, in particular the

Positivstellensatz. Therefore, we show similar to Chapter 3 and Chapter 4 how specific applica-

tion knowledge can be exploited to solve the inverse problem. Section 5.6 finally provides three

examples and discusses the reconstruction results.

5.2 Problem Formulation

Instead of minimizing (2.24) to find the OBE θ̂(.) for a given loss L(θ, θ̂), we consider the

inverse problem of reconstructing29 the loss L(θ, θ̂) by

min
L(θ,θ̂)

∫∫

L(θ, θ̂(x))p(θ,x)dθdx (5.1a)

subject to

L(θ, θ̂) ≥ 0 ∀ θ, θ̂ (5.1b)

for given θ̂(.) and given joint PDF p(θ,x). This is an ill-posed problem as we may have different

loss functions that result in the same OBE for a particular signal model. One example is the

linear Bayesian model where the OBEs corresponding to the hit-or-miss error, squared error and

absolute error are all identical as the maximum, mean and median of the Gaussian a posteriori

PDF coincide. In this case, additional requirements, i.e. constraints, can be formulated to obtain

a unique solution.

The optimization problem (5.1) has the trivial solution L(θ, θ̂) = 0 which we have to avoid.

This will be done in Section 5.4 by introducing suitable regularizations. Furthermore, we want

to point out that we can reconstruct the loss function L(θ, θ̂) in (5.1) only up to a multiplicative

scaling. This stems from the fact that the OBE is also invariant with respect to a scaling of the

loss.

We will now proceed with explaining our solution approach.

5.3 Solution Approach

We will make the following two simplifications to (5.1) in order to find efficient semidefinite

programming (SDP) formulations:

29Note that there might be cases, where no loss function L(θ, θ̂) exists, e.g. if the considered estimator results from a

different statistical model. However, our approach can still be used and (5.1a) will yield the loss that best fits to the

given estimator and statistical model.
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(S1) First, we do not consider all possible loss functions L(θ, θ̂) ≥ 0 but restrict our attention

to nonnegative polynomials of degree 2D which can be expressed as a sum of squares

[Lasserre, 2010; Parrilo, 2003]. Introducing the notation z = [θ; θ̂] ∈ R2M , this implies

L(θ, θ̂) = L(z) =
∑

i fi(z)
2 where fi(z) are multivariate polynomials of degree ≤ D.

Denote by R[z] the set of all polynomials with 2M variables and let

SOS = {f ∈ R[z] : f(z) =
∑

i

(fi(z))
2, deg{fi} ≤ D}

be the set of all sum of squares polynomials. Then it is obvious that f(z) ∈ SOS implies

that f(z) is a nonnegative polynomial, i.e. f(z) ≥ 0 for all z ∈ R2M . The converse,

however, is not true as there are nonnegative polynomials which are not sum of squares,

e.g. the famous Motzkin example which is studied in Appendix C.4.1. However, there are

denseness results that show that sum of squares polynomials allow a good approximation

of any nonnegative polynomial, e.g. [Lasserre, 2007].

Introducing the monomial vector m(z) ∈ R(
D+2M

D ), an equivalent representation of every

sum of squares polynomial f(z) ∈ SOS is f(z) = m(z)TQm(z) with Q � 0 as is

shown in Appendix C.4.230. This representation is well suited for SDP formulations as

we will see in the following [Parrilo, 2003].

For completeness, we would like to point out that SOS polynomials play a central role in

polynomial optimization where the goal is to optimize a polynomial cost function with re-

spect to constraints given by polynomial equalities/inequalities. Appendix C.4.3 contains

a brief introduction into the topic of polynomial optimization.

(S2) The second simplification is to approximate the integral in (5.1) by Monte Carlo integra-

tion [Liu, 2008] using samples z1, . . . , zI which are tuples of θi and θ̂(xi) generated

according to p(θ,x).

Using these two simplifications, we obtain the following new optimization problem which builds

the basis for our further discussion:

min
L(z)∈SOS

1

I

I
∑

i=1

L(zi) = min
Q�0

tr
{

MTQM
}

= min
Q�0

tr
{

QM̃
}

(5.2)

where M = 1√
I

[

m(z1) · · · m(zI)

]

and M̃ = MMT . The complete information about

the signal model (i.e. p(θ,x)) and the estimator θ̂ are incorporated into (5.2) in form of the

30For example, consider the case M = 1, D = 2 which results in the monomial vector m(z) =
[

1 θ θ̂ θ2 θθ̂ θ̂2

]T

. Using fi(z) = cTi m(z) we can write every f(z) ∈ SOS as f(z) =
∑

i fi(z)
2 = mT (z)

∑

i cic
T
i m(z) = m(z)TQm(z), i.e. all coefficients of f(z) are contained in Q � 0.
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estimated moment matrix M̃. If p(θ,x) and θ̂ allow an analytic calculation of M̃, then this

result could be used in (5.2) instead.

Note that (5.2) has similar to (5.1) the trivial solution Q = 0 which corresponds to L(θ, θ̂) = 0.

Section 5.4 and 5.5 will therefore introduce now suitable additional constraints to (5.2) to obtain

a reasonable estimate of the underlying loss function.

5.4 SDP Formulations

5.4.1 SDP Formulation with Trace Regularization

The first SDP we introduce uses the simple trace regularization tr{Q} ≥ δ with δ > 0 to avoid

the trivial solution. It is given by

min
Q�0

tr
{

QM̃
}

s.t. tr{Q} ≥ δ. (5.3)

The particular value of δ > 0 is not important as any scaling of Q does not change the solu-

tion.

The simple constraint tr{Q} ≥ δ has the drawback that an increasing degreeD of the monomial

vector will yield a reconstructed loss function which is almost zero everywhere and thus this

regularization is only suited for small degrees D. The last example in Section 5.6 will give a

scenario where the trace regularization fails.

5.4.2 SDP Formulation with Unit Volume Regularization

A better constraint is given by requiring L(z) to have a unit volume in a specific hyperrectangle

H in R
2M with H = {z : zi,l ≤ zi ≤ zi,u} where zi,l and zi,u are given lower and upper bounds

for the ith component of z. H defines the region of interest where we want to approximately

reconstruct our loss function. The modified optimization problem is

min
Q�0

tr
{

QM̃
}

s.t.
1

V (H)

∫

H

L(z)dz ≥ 1 (5.4)

with V (H) =
∫

H

dz =
2M
∏

i=1

(

zi,u − zi,l
)

. Using L(z) = tr{Qm(z)m(z)T }, we obtain

1

V (H)

∫

H

L(z)dz = tr











Q
1

V (H)

∫

H

m(z)m(z)T dz











. (5.5)
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Hence, we can replace the integral constraint by tr
{

QŨ
}

≥ 1 where we can think of Ũ

as the moment matrix of a random vector which is uniformly distributed on H, i.e. Ũ =

E
[

m(z)m(z)T
]

. The elements of Ũ are given by

E[zα1
1 · · · zα2M

2M ] =

2M
∏

i=1

zαi+1
i,u − zαi+1

i,l

(αi + 1)(zi,u − zi,l)
.

The unit volume constraint in H forces L(z) to take only small positive values in regions where

the samples zi are located. By this, it prevents the trivial solution and also gives more reasonable

results than the simple trace regularization tr {Q} ≥ δ as we will see in Section 5.6.

5.5 Incorporation of A Priori Knowledge

In this section, we will discuss the possibility of incorporating a priori knowledge into the loss

reconstruction. Using polynomial optimization this can easily be achieved. Before, however,

we have to briefly introduce some notions from algebraic geometry. The interested reader is

referred to [Jarvis-Wloszek et al., 2005; Parrilo, 2003].

5.5.1 Positivstellensatz

The Positivstellensatz allows to give certificates that a system of polynomial constraints has no

solution. The following three algebraic structures are needed to state the Positivstellensatz:

(D1) The multiplicative monoid M generated by the polynomials a1, . . . , as ∈ R[z] is defined

as the set of all finite products of the ai(z)’s including the empty product, the identity.

(D2) The cone K generated by the polynomials b1, . . . , bt ∈ R[z] is defined as

K(b1, . . . , bt) =







s0 +
∑

i

sib̃i

∣

∣

∣

∣

∣

si ∈ SOS, b̃i ∈ M(b1, . . . , bt)







.

(D3) The ideal I generated by the polynomials c1, . . . , cu ∈ R[z] is defined as

I(c1, . . . , cu) =







u
∑

i=1

cipi

∣

∣

∣

∣

∣

pi ∈ R[z]







.

After introducing these three definitions, we can now state the Positivstellensatz (see e.g. [Par-

rilo, 2003]):
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Given the polynomials {a1, . . . , as}, {b1, . . . , bt} and {c1, . . . , cu} in R[z], the following two

statements are equivalent:

1.















z ∈ R2M

∣

∣

∣

∣

∣

∣

a1(z) 6= 0, . . . , as(z) 6= 0

b1(z) ≥ 0, . . . , bt(z) ≥ 0

c1(z) = 0, . . . , cu(z) = 0















= ∅

2. There exist polynomials a ∈ M(a1, . . . , as), b ∈ K(b1, . . . , bt) and c ∈ I(c1, . . . , cu)

such that

a2 + b+ c = 0.

We will now show that the second statement implies the first one and by this also motivate the

definitions given above. The full prove can be found in [Stengle, 1974]. Assume that the set

of the first statement is not empty, i.e. there is a point z0 such that all conditions are fulfilled.

Then, we know that a2(z0) > 0, b(z0) ≥ 0 and c(z0) = 0 as a is an element of M(a1, . . . , as),

b an element of K(b1, . . . , bt) and c an element of I(c1, . . . , cu). However, this contradicts the

second statement a2+b+c = 0 and therefore we have proven that the second statement implies

the first one.

5.5.2 Incorporation of Additional Constraints

After we have introduced the necessary concepts, we can now show how to incorporate addi-

tional a priori information. We will do this by the following example: Assume that we know

that L(θ, θ̂) is unequal to zero for all ‖θ − θ̂‖2 ≥ δ. Thus, our original optimization problem

(5.2) is now

min
Q�0

tr
{

QM̃
}

(5.6a)

subject to

L(z) 6= 0 ∀ ‖θ − θ̂‖2 ≥ δ. (5.6b)

The constraint (5.6b) is equivalent to the statement that the set

{

z = [θ; θ̂] ∈ R
2M

∣

∣

∣

∣

‖θ − θ̂‖2 ≥ δ, L(z) = 0

}

=

{

z ∈ R
2M

∣

∣

∣

∣

b1(z) ≥ 0, c1(z) = L(z) = 0

}

(5.7)

is empty where b1(z) = zT
[

IM −IM
−IM IM

]

z − δ and IM ∈ RM×M the identity matrix. Using

the Positivstellensatz, we can reformulate (5.7) into the condition that there are polynomials
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s0, s1 ∈ SOS and p1 ∈ R[z] such that s0+s1b1+c1p+1 = 0. Defining si(z) = m(z)TQim(z)

and p(z) = m(z)TPm(z) we obtain

min
Q�0,Q0�0,Q1�0,P

tr
{

QM̃
}

(5.8a)

subject to

s0 + s1b1 + c1p1 + 1 = 0 (5.8b)

where the constraint (5.8b) requires all coefficients of the lefthand side to be zero. To obtain the

corresponding set of equality constraints, a computer algebra system like Maxima or Maple can

be used. Note that the constraint (5.8b) is bilinear due to the term c1(z)p1(z). One possibility

to solve such bilinear problems is the V-K iteration [El Ghaoui and Balakrishnan, 1994] which

cyclically fixes either Q or P and solves the SDP (5.8) several times until it converges to a

solution.

As the Positivstellensatz allows constraints involving “=”, “≤” and “ 6=”, quite general a priori

information can be incorporated into the optimization to reconstruct the loss function. Note that

there are also simpler certificates than the Positivstellensatz, e.g. the certificates of Schmüdgen

and Putinar [Lasserre, 2010] for the case that we only have inequality constraints.

5.6 Examples

In the following we will consider three examples involving different loss functions. The com-

mon signal model for all examples is

x = θ + z, (5.9)

i.e. M = N = 1 with θ ∼ N (µθ, σ
2
θ), z ∼ N (0, σ2

z) and both are independent of each other.

The values µθ, σ2
θ and σ2

z determine the valid reconstruction area of the loss function. They

should be chosen such that the following two requirements are fulfilled:

• To get a valid reconstruction of the loss function, we have to make sure that we have sam-

ples zi that are spread over the whole space where we are interested in L(z). Therefore,

the noise variances σ2
z and σ2

θ have to be large enough to “cover” the interesting area.

• The influence of the a priori information has to be small. This can be achieved by us-

ing a large enough σ2
θ and different values for µθ. This has the effect that the a priori

information is averaged out.

In the following examples, we are interested in a reconstruction of the loss function in the

rectangle defined by −1 ≤ θ, θ̂ ≤ 1. Therefore, we choose µθ equidistant in 20 steps from −2
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Figure 5.1: Example 1: Reconstructed loss (D = 1, trace and unit volume regularization)

to 2. Furthermore, σ2
θ = σ2

z = 1 for all examples except σ2
θ = 0.3 for the third example. We

use I = 107 samples for the Monte Carlo integration in (5.2) and the hyperrectangle H for the

unit volume regularization is set to z1,l = z2,l = −1 and z1,u = z2,u = 1.

5.6.1 Example 1: Squared Error Loss

Using the squared error loss LSE(θ, θ̂) = (θ− θ̂)2, it is well known that the corresponding OBE

for our signal model (5.9) is given by [Kay, 1993]

θ̂SE = µθ +
σ2
θ

σ2
θ + σ2

z

(x − µθ). (5.10)

Figure 5.1 shows the result of the reconstructed loss for D = 1, i.e. we consider quadratic poly-

nomials. The transparency of the graph in this figure and all following figures is given by the

bivariate histogram of z1, . . . , zI where the graph is more opaque for larger values in the bivari-

ate histogram. Both proposed semidefinite programs from Section 5.4 show the same result for

D = 1 and yield a good reconstruction of the original loss function LSE(θ, θ̂). If the degree D

is increased then the reconstructed loss function is more flat around θ − θ̂ = 0 as shown by Fig-

ure 5.2 and 5.3. This flattening result is especially severe for the trace regularization. The unit

volume regularization is more robust with respect to choosing the degree of the polynomialL(z)

too large. This effect can be further reduced if the size of the hyperrectangle H is reduced.

5.6.2 Example 2: LinEx Loss

The LINEX loss is an asymmetric loss function, which was defined in (2.29) and has the form

LLINEX(θ, θ̂) = b
(

ea(θ̂−θ) − a(θ̂ − θ)− 1
)

(5.11)
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Figure 5.2: Example 1: Reconstructed loss (D = 3, unit volume regularization)
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Figure 5.3: Example 1: Reconstructed loss (D = 3, trace regularization)

with b > 0 and a 6= 0. Asymmetric loss functions are interesting for applications where under-

/overestimating θ is more severe than over-/underestimating it. The corresponding OBE for our

signal model is according to (2.30b) given by

θ̂LINEX = θ̂SE − a

2

(

σ2
θ − σ4

θ

σ2
θ + σ2

z

)

. (5.12)

Figure 5.4 shows the reconstructed loss function for the unit volume regularization with D = 1

and b = 1, a = 2. Both regularizations from Section 5.4 show almost the same reconstruction

result which is asymmetric with respect to θ − θ̂ = 0 as expected from the original LINEX loss.

Similar as before, we observe that for increasingD the reconstructed loss functions are more flat

around θ − θ̂ = 0. Again, the unit volume regularization can be made more stable by adjusting
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Figure 5.4: Example 2: Reconstructed loss (D = 1, unit volume regularization)

the hyperrectangle H.

5.6.3 Example 3: Normalized Squared Error Loss

For this example, we use the normalized squared error loss

LNSE(θ, θ̂) =
(θ − θ̂)2

θ̂2
(5.13)

which was introduced in [Norstrom, 1996] for risk analysis. Figure 5.5 shows the shape of

the normalized squared error loss. It has the characteristic that the loss LNSE(θ, θ̂) approaches

infinity if θ̂ → 0 and thus is “conservative” if small values θ̂ are estimated. The corresponding

OBE is [Norstrom, 1996]

θ̂NSE = θ̂SE +
1

θ̂SE

σ2
θσ

2
z

σ2
θ + σ2

z

. (5.14)

Figure 5.6 show the reconstruction results for the unit volume regularization with D = 5. The

normalized squared error loss is an example where the trace regularization does not work as

we need a higher polynomial order 2D to approximate the original loss function which results

in a very flat loss reconstruction for the trace regularization. The unit volume regularization,

however, gives a good reconstruction result.

5.7 Observations and Conclusions

The example in Section 5.6.3 revealed that we need a quite high polynomial degree D in or-

der to approximate the normalized squared error loss function LNSE(θ, θ̂). The reason is that

LNSE(θ, θ̂) is not differentiable for θ̂ = 0 in contrast to our sum of squares approximations. To
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Figure 5.5: Example 3: Normalized squared error loss
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Figure 5.6: Example 3: Reconstructed loss (D = 5, unit volume regularization)

compensate this, the polynomial degree D has to be increased. This is an issue that should be

further investigated as solving this problem is important if we want to apply it to our parametric

family of estimators from Chapter 4. For the speech enhancement problem in Section 4.3.2 for

example, we expect that the underlying loss function is discontinuous (similar to the WE loss)

and therefore using the SOS approach is not optimal. One idea could be to use an approach

similar to the one that is used with splines [Unser, 1999] and to introduce piecewise-polynomial

functions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Chapter 3 and Chapter 4 showed two different ways to incorporate a priori information into the

estimation procedure. In Chapter 3, we considered three recursive estimators – the recursive

constrained ML, the recursive affine minimax and the recursive MMSE – for the adaptive esti-

mation of a time-varying parameter vector θ(n) in a linear Gaussian signal model with the a

priori knowledge θ(n) ∈ T. All three estimators use the RWLS algorithm in a preprocessing

step to transform a dimensionally growing estimation problem to a fixed-dimension task. As

the estimators take care of the history of measurements and the a priori knowledge θ(n) ∈ T,

they outperform the instantaneous estimators (least squares, constrained ML, affine minimax,

MMSE) as well as the unconstrained recursive estimator RWLS. Especially the derived RMMSE

estimator is interesting as the proposed rejection sampling allows a simple handling of general

constraints. Furthermore, the computational complexity is moderate as we only have to generate

samples from a truncated Gaussian density. In Section 3.5, we studied three different examples

and could conclude that the RMMSE estimator showed the best performance among the three

proposed estimators.

In Chapter 4, a family of estimators was proposed for the Bayesian estimation with nonstandard

loss functions. This family has the advantage that it is parameterized by a small number of

variables which can be determined offline for a particular loss function and signal model. We

proved that the family includes many important estimators known from the literature, namely

MMSE, MAP, and OBE under LINEX loss which shows that it is quite versatile. The compu-

tational complexity of our approach is comparable to that of an MMSE estimation for the same

signal model if we assume that Monte Carlo integration is used for the calculation of the MMSE

estimator. The examples showed how the parametric family of estimators can be applied to prac-

tical problems and we saw that using nonstandard loss functions gives better results compared

to the traditional approaches.
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Finally, we considered in Chapter 5 the problem of approximately reconstructing the underlying

loss function for a given Bayesian estimator θ̂(x). Two SDP formulations that allow an efficient

reconstruction were proposed. Furthermore, we showed how to incorporate additional a priori

information using the Positivstellensatz. From the three considered examples in 5.6, it turned

out that the SDP using a unit volume regularization allows a good reconstruction of the loss

function.

6.2 Other Work

Beside the work that was presented in this thesis, also the following unrelated work was done

which we want to briefly mention.

In [Uhlich and Yang, 2008], we studied a generalized and optimum multiple description coding

(MDC) prefilter scheme. It allows redundant descriptions to be transmitted which offer an im-

proved robustness against erasure channels. Several properties of the distortion measure could

be proved which help to understand the function of the prefilter. Especially the knowledge of

the Hessian of the distortion measure allows to efficiently find a solution of the optimization

problem. This idea was further extended to the problem of Kalman tracking with lossy channels

using a MDC precoding in [Blind et al., 2009].

In [Uhlich et al., 2009], we investigated the problem of estimating an unknown parameter using

a polynomial LMMSE estimator. There, it was shown in a case study of frequency estimation

that only a sufficiently large polynomial order allows a good estimation performance if we do

not know the signal model at all. A high polynomial order, however, results in two problems:

high computational complexity due to a large length of the augmented observation vector and ill

condition of the autocorrelation matrix due to strong correlation of some elements. In order to

combat these problems, the potential of the sequential floating forward selection (SFFS) algo-

rithm was considered. It is shown that the SFFS yields almost the same performance with only

a small percentage of selected elements from the augmented observation vector.

6.3 Future Work

In this last section, we would like to point the interested reader to five possible directions for

future work.

A first issue is the rejection sampling used by the RMMSE estimator in Section 3.3.3. Using

rejection sampling allowed us to incorporate a wide variety of constraints. However, this simple

scheme is not always optimal. Some work can be found in the literature which aims at designing

more efficient sampling schemes for truncated Gaussian densities, see e.g. [Robert, 1995; Lu,

2008]. Using this techniques and extending them to more sophisticated constraints, e.g. equality
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constraints which we cannot handle with rejection sampling, could yield fast random variable

generators and would be therefore worthwhile for practical signal processing applications.

A second issue which needs further investigation is the efficient solution of the minimax problem

(2.19) for a more general class of constraints as was considered in this thesis. Up to now, we only

studied the RAMX for a superposition of quadratic constraints using the S-procedure and from

the standard literature, it is also well known how to deal with linear constraints (see Finsler’s

lemma [Boyd et al., 1994]). However, more advanced results are known, especially from robust

control [Ben-Tal et al., 2009], which could be transferred to our problems and hence allowing

affine minimax estimation for more general constraints.

As was already pointed out in Section 3.4, another possibility to include a priori information

beside our three considered estimators, is to use the approach of [Benavoli et al., 2007]. He

studied a MAP estimator where the constraints are incorporated by choosing adequate values

of the Gaussian prior density, i.e. its mean and covariance matrix. Extending this approach to

our time-varying scenario by using the sufficient statistic (3.10) and comparing it with the other

three recursive estimators from Chapter 3 would be interesting.

Another direction for further work is the study of lower bounds for estimation problems with

additional information. The additional information that we considered in Chapter 3 was given

by constraints which the estimator has to fulfill. Therefore, it is worthwile to compare the

found estimators of Chapter 3 to the constrained Cramér-Rao bound, which was e.g. derived

in [Gorman and Hero, 1990; Ben-Haim and Eldar, 2009]. [Gorman and Hero, 1990] uses the

Bobrovsky-Zakai bound where the test points are chosen such that the constraints are fulfilled,

i.e. h is chosen such that θ+h ∈ T. Besides looking at lower bounds for constrained problems

it would also be interesting to look at lower bounds for other loss functions than the traditional

squared error. Interestingly, the Ziv-Zakai bound (2.12) can be modified to be a lower bound for

other symmetric loss functions as discussed in [Bell et al., 1997]. These bounds would naturally

complement the estimators from Chapter 4 and would be therefore worthwile to study.

A last issue is related to the parametric family from Section 4.2. From the examples we could

conclude that there are applications where the parametric family needs to be extended, either

by generalizing it using more parameters or by adequately changing the signal model. The first

approach would allow us to incorporate the Bayesian estimators for other loss functions which

would render the family more flexible – this however at the cost of solving an optimization prob-

lem with increased complexity as more parameters have to be determined. The other approach,

i.e. altering the signal model, is motivated by the image denoising example from Section 4.3.3.

This example revealed that it would be better to work in the wavelet domain instead of the orig-

inal pixel domain. Hence, finding suitable representations of our signal model, which allow the

direct usage of the parametric family of estimators, are also interesting.
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Appendix A

Definition of Derivatives for Vectors and

Matrices

Matrix calculus extends the notion of derivatives for scalars to vectors and matrices and is a fre-

quently used tool in signal processing, see e.g. [Minka, 2000; Moon and Stirling, 2000; Magnus

and Neudecker, 2007]. Table A.1 summarizes the definitions for the real-valued case that are

used throughout this thesis. Note that
∂f(x)
∂x results in a row vector31 and therefore the gradient

is given by the transpose, i.e.

∇f(x) =

(

∂f(x)

∂x

)T

.

Using the above definitions of matrix derivatives, the following useful properties can be shown

to be true [Moon and Stirling, 2000]

∂A = 0, A constant,

∂(αX) = α∂X,

∂(X+Y) = ∂X+ ∂Y,

∂(XY) = (∂X)Y +X(∂Y),

∂ tr(X) = tr(∂X),

∂ det(X) = det(X) tr(X−1∂X),

∂(X−1) = −X−1(∂X)X−1,

∂(XT ) = (∂X)T .

Note that some properties hold in general only if we compute the derivative with respect to a

scalar, i.e. ∂ = ∂
∂x . Otherwise, problems with the matrix dimensions occur. For example,

31Some authors use a different (transposed) convention which results in a column vector and therefore their results are

also transposed.
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f ∈ R

Scalar

f ∈ R
N

Vector

F ∈ R
N1×N2

Matrix

x ∈ R

Scalar

∂f
∂x

1× 1

∂f
∂x =

[

∂fi
∂x

]

i
N × 1

∂F
∂x =

[

∂Fij

∂x

]

ij

N1 ×N2

x ∈ RM

Vector

∂f
∂x =

[

∂f
∂xj

]

j

1×M

∂f
∂x =

[

∂fi
∂xj

]

ij

N ×M

N1 ·N2 ·M
derivatives

X ∈ R
M1×M2

Matrix

∂f
∂X =

[

∂f
∂xij

]

ij

M1 ×M2

N ·M1 ·M2

derivatives

N1 ·N2 ·M1 ·M2

derivatives

Table A.1: Definitions of the derivatives for vectors and matrices

∂

∂x
xTx = 2xT 6=

(

∂

∂x
x

)T

x+ xT ∂

∂x
x = x+ xT .  

Two extensions exist in the literature that we would like to mention for completeness. The first

extension deals with the problem of defining a proper derivative for matrix-valued functions

with respect to a matrix argument, i.e. ∂F(X)/∂X. Such problems e.g. occur if the Newton

method for a scalar cost function of the form f(X) is derived as this requires the second-order

derivative of f(X). One possibility to solve this problem is to use the column-stacking operator

vec{.} and to define ∂F(X)/∂X as

∂F(X)

∂X
=
∂ vec{F(vec{X})}

∂ vec{X} ,

which was e.g. done in [Magnus and Neudecker, 2007]. Another possibility is to use the concept

of directional derivatives as it allows to solve many problems, e.g. deriving the Newton method,

without explicitly computing the second-order derivative ∂F(X)/∂X. This technique was e.g.

used in [Dattorro, 2011] to prove convexity of a matrix-valued function.

The second extension is with respect to the domain of a function. Very often, it is natural to

use complex-valued arguments instead of real-valued ones. A convenient way to compute the

derivatives in this case is given by Wirtinger calculus, see e.g. [Gentle, 2007; Schreier and

Scharf, 2010; Hjørungnes, 2011].
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Appendix B

A Brief Introduction to Convex

Optimization

In this Chapter, we will briefly review the basic concepts from optimization theory, which are

needed in this thesis. We will in particular focus on the special case of convex optimization. A

more detailed introduction and discussion can e.g. be found in [Luo and Yu, 2006; Boyd and

Vandenberghe, 2007].

Consider the general optimization problem

min
x∈Rn

f0(x) (B.1a)

subject to

fi(x) ≤ 0 for all i = 1, . . . ,m, (B.1b)

hj(x) = 0 for all j = 1, . . . , r, (B.1c)

where f0(x) denotes the objective function and {fi(x)}mi=1, {hj(x)}rj=1 denote the inequality

and equality constraint functions, respectively. The set which is described by the inequality and

equality constraint functions is called the feasible set and defined as

FS = {x : fi(x) ≤ 0, hj(x) = 0}.

A feasible solution x∗ ∈ FS is called globally optimal, if f0(x
∗) ≤ f0(x) for all x ∈ FS.

In contrast, a feasible vector x∗ is called locally optimal, if there exists an ǫ > 0 such that

f0(x
∗) ≤ f0(x) for all feasible x in the ǫ-neighbourhood of x∗, i.e. all points x satisfying

‖x− x∗‖ ≤ ǫ.

Interestingly, there exists a set of local optimality conditions, known as Karush-Kuhn-Tucker

(KKT) conditions, which have to be fulfilled for a local optimum x∗, given that the optimization
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problem (B.1) satisfies some regularity conditions, the so-called constraint qualifications. Let

L(x,λ,ν) = f0(x) +
∑m

i=1 λifi(x) +
∑r

j=1 νjhj(x) denote the Lagrangian function. Then,

for a locally optimal point x∗, there exist dual variables λ∗ and ν∗ such that the following

conditions are satisified:

(a) Stationarity:

∇xL(x
∗,λ∗,ν∗) = 0,

(b) Primal feasibility:

fi(x
∗) ≤ 0 for all i = 1, . . . ,m,

hj(x
∗) = 0 for all j = 1, . . . , r,

(c) Dual feasibility:

λ∗i ≥ 0 for all i = 1, . . . ,m,

(d) Complementary slackness:

λ∗i fi(x
∗) = 0 for all i = 1, . . . ,m.

An important special case of the general optimization problem (B.1) are convex optimization

problems. To introduce them, we have to first define the notions of a convex set and function.

• Convex Set:

A set S ⊂ Rn is called convex if for every point pair the line segment joining these two

points is also an element of S, i.e.

λx1 + (1− λ)x2 ∈ S for all x1,x2 ∈ S and λ ∈ (0, 1).

Figure B.1 gives an example of a convex and non-convex set.

• Convex Function:

A function f : Rn → R is called convex if the function always lies below the straight line

connecting two points on the curve, i.e.

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for all λ ∈ (0, 1).

Figure B.2 gives an example of a convex and non-convex function.
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(a) Convex set (b) Non-convex set

b x2

b x1

Figure B.1: Example of a convex and non-convex set

x

f(x)

b

b

(a) Convex function

x

f(x)

(b) Non-convex function

b

b

Figure B.2: Example of a convex and non-convex function

This allows us now to define convex optimization problems: A convex optimization problem

denotes the special case that the cost function f0(x) and the feasible set FS are convex. FS is e.g.

convex if the inequality constraint functions {fi(x)}mi=1 are convex and the equality constraint

functions {hj(x)}rj=1 are affine in x, i.e. they can be written as hj(x) = aTj x + bj for all

j = 1, . . . , r.

Convex optimization problems have the important property that each local minimum is also

globally optimal and hence each local optimization technique, e.g. gradient descent, will yield

the global optimum. This fact can easily be proved by contradiction: Let x∗ ∈ FS be a local

minimum, i.e. f(x∗) ≤ f(x) for all x ∈ FS with ‖x−x∗‖ ≤ ǫ. Furthermore, assume that there

is another x∗∗ ∈ FS with f(x∗∗) < f(x∗). As the feasible set FS and the objective function

f0(x) are convex, we know that

(i) λx∗ + (1− λ)x∗∗ ∈ FS for all λ ∈ (0, 1),

(ii) f(λx∗ + (1− λ)x∗∗) ≤ λf(x∗) + (1− λ)f(x∗∗) for all λ ∈ (0, 1).
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Using f(x∗∗) < f(x∗), we obtain f(λx∗ + (1 − λ)x∗∗) < f(x∗), which contradicts our

assumption that f(x∗) is locally optimal.

The class of convex optimization problems includes many well known special cases which we

will now briefly list:

• Linear program (LP):

– linear objective function, i.e. f0(x) = cTx

– linear constraints, i.e. Aineqx ≤ bineq,Aeqx = beq

• Quadratic program (QP):

– quadratic objective function, i.e. f0(x) = xTQ0x+ cTx with Q0 � 0

– linear constraints, i.e. Aineqx ≤ bineq,Aeqx = beq

• Quadratically constrained quadratic program (QCQP):

– quadratic objective function, i.e. f0(x) = xTQ0x+ cTx with Q0 � 0

– linear equality and quadratic inequality constraints, i.e.

xTQix+ aTi x+ bi ≤ 0 with Qi � 0 and i = 1, . . . ,m

Aeqx = beq

• Semidefinite program (SDP)32:

– linear objective function, i.e. f0(x) = cTx

– linear matrix inequality (LMI) constraints33, i.e.
∑

i Aixi � A0

It can be shown that LP ⊂ QP ⊂ QCQP ⊂ SDP, i.e. an SDP is the most general form of the

four optimization problems. Many efficient solvers exist for these special cases, for example

the interior-point algorithm [Boyd and Vandenberghe, 2007], which allow to find the optimal

solution even for many optimization variables.

32Please note that we give here only an SDP in standard inequality form. The interested reader should consult [Boyd

and Vandenberghe, 2007] for SDPs with equality constraints.
33A good overview of LMIs and their applications can be found in [Boyd et al., 1994; VanAntwerp and Braatz, 2000].

It is for example easy to show that the feasible set that is described by a LMI is convex.
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Appendix C

Details, Derivations and Proofs

C.1 Details, Derivations and Proofs for Chapter 2

C.1.1 Optimal choice of A for the Covariance-Inequality Family

As (2.2) has to hold for all matrices A, we can choose the optimal Aopt which results in a good

lower bound [Van Trees and Bell, 2007]. Consider therefore the function J(A) defined as

J(A) = vT
(

TAT +ATT −AGAT
)

v, v 6= 0, (C.1)

which measures the “size” of the right-hand side in (2.2). The first-order derivative is given by

∂J(A)

∂A
= 2vvT (T−AG) (C.2)

which, after equating it to zero, yields Aopt = TG−1. Note that J(A) is concave, i.e.

J(λA1 + (1− λ)A2) ≥ λJ(A1) + (1 − λ)A2 ∀ 0 ≤ λ ≤ 1

as J(λA1 + (1 − λ)A2) = λJ(A1) + (1 − λ)A2 + λ(1 − λ)vT (A1 −A2)G(A1 −A2)
Tv

and therefore there is only one (global) maximum at Aopt = TG−1.

C.1.2 Proof of the Ziv-Zakai Identity (2.11)

Let X be an arbitrary scalar random variable with PDF p(x) and CDF P (x). Then E[X2] =

1
2

∞
∫

0

xPr
{

|X | ≥ x
2

}

dx holds as

E[X2] =

∞
∫

−∞

x2p(x)dx = lim
c→∞

c
∫

0

x2[p(x) + p(−x)]dx
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= lim
c→∞











[

x2
(

P (x) − P (−x)
)

]c

0
− 2

c
∫

0

x[P (x) − P (−x)]dx











= lim
c→∞











c2
(

P (c)− P (−c)
)

− 2

c
∫

0

x
[

1− Pr
{

|X | ≥ x
}

]

dx











= lim
c→∞











c2
(

P (c)− P (−c)
)

− c2 + 2

c
∫

0

xPr
{

|X | ≥ x
}

dx











=
1

2

∞
∫

0

xPr

{

|X | ≥ x

2

}

dx.

C.1.3 Derivation of the Ziv-Zakai Bound

In the following, we will briefly review the basic ideas that are used to develop the Ziv-Zakai

bound. The interested reader is referred to [Ziv and Zakai, 1969; Bellini and Tartara, 1974; Bell

et al., 1997] for the Bayesian case and [Gu and Wong, 1991] for the deterministic case.

Bayesian Bound

Using the identity (2.11), we can write

aTS
θ̂
a = E

[

(

aT (θ̂ − θ)
)2
]

=
1

2

∞
∫

0

h Pr

{

∣

∣

∣
aT (θ̂ − θ)

∣

∣

∣
≥ h

2

}

dh

=
1

2

∞
∫

0

h

(

Pr

{

aT (θ̂ − θ) > h

2

}

+ Pr

{

aT (θ̂ − θ) ≤ −h
2

}

)

dh

=
1

2

∞
∫

0

h

∫

(

p(θ0) Pr

{

aT (θ̂ − θ) > h

2

∣

∣

∣θ = θ0

}

+p(θ0 + δ) Pr

{

aT (θ̂ − θ) ≤ −h
2

∣

∣

∣
θ0 + δ

}

)

dθ0 dh, (C.3)

where p(θ) denotes the a priori PDF of θ. Choosing δ as aT δ = h, we obtain

aTS
θ̂
a =

1

2

∞
∫

0

h

∫

(

p(θ0) + p(θ0 + δ)
)

[

p(θ0)

p(θ0) + p(θ0 + δ)
Pr

{

aT θ̂ > aTθ +
h

2

∣

∣

∣θ = θ0

}

+
p(θ0 + δ)

p(θ0) + p(θ0 + δ)
Pr

{

aT θ̂ ≤ aTθ +
h

2

∣

∣

∣θ0 + δ

}

]

dθ0 dh. (C.4)
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Comparing this expression with results from detection theory, it can be seen that the term in

brackets can be interpreted as the error probability of the binary hypothesis test

H0 : θ = θ0 where x ∼ p(x|θ0)
H1 : θ = θ0 + δ where x ∼ p(x|θ0 + δ)

(C.5)

with Pr(H0) = p(θ0)/(p(θ0) + p(θ0 + δ)), Pr(H1) = p(θ0 + δ)/(p(θ0) + p(θ0 + δ)) and

the suboptimal decision rule

Decide H0 if aT θ̂ ≤ aTθ0 +
h

2

Decide H1 if aT θ̂ > aTθ0 +
h

2
.

(C.6)

Thus, the term in brackets can be lower bounded by the minimum error probabilityPmin(θ0, θ0+

δ) obtained from the likelihood ratio test. This results in

aTS
θ̂
a ≤ 1

2

∞
∫

0

h

∫

(

p(θ0) + p(θ0 + δ)
)

Pmin(θ0, θ0 + δ) dh, (C.7)

which is valid for all δ with aTδ = h. As we are interested in a tight lower bound, we can

therefore replace (C.7) by

aTS
θ̂
a ≤ 1

2

∞
∫

0

h max
aTδ=h

∫

(

p(θ0) + p(θ0 + δ)
)

Pmin(θ0, θ0 + δ) dh. (C.8)

Furthermore, a valley-filling function V(.) can be introduced as we know that the original

Pr

{

∣

∣

∣aT (θ̂ − θ)
∣

∣

∣ ≥ h
2

}

is monotonically decreasing. This finally results in (2.12).

Deterministic Bound

Analog to the Bayesian case, we can derive the Ziv-Zakai bound for the deterministic case. The

only difference is that we have to require that the estimator θ̂(x) is translation invariant with

respect to a translation of θ, see [Gu and Wong, 1991]. The final result is

aTS
θ̂
(θ)a ≥

∞
∫

0

hV
(

max
aT δ=h

Pmin(θ, θ + δ)

)

dh. (C.9)
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C.1.4 Derivation of the MMSE Estimator

The following derivation is adapted from [Scharf, 1990]34 and uses a geometric argument to

prove that the estimator with the minimum MSE is the mean of the a posteriori density. Another

possibility is to apply (2.25) which was e.g. done in [Kay, 1993].

Let g(x) : RK → RQ be an arbitrary statistic and W ∈ RM×Q be an arbitary weighting matrix.

Then it holds

E
[

θTWg(x)
]

=

∫∫

θTWg(x)p(θ,x)dθdx =

∫∫

θTWg(x)p(θ|x)p(x)dθdx

=

∫
(
∫

θ p(θ|x)dθ
)T

Wg(x)p(x)dx = E
[

θ̂MMSE(x)
TWg(x)

]

which results in

E

[

(

θ − θ̂MMSE(x)
)T

Wg(x)

]

= 0, (C.10)

i.e. the error θ − θ̂MMSE(x) is orthogonal to any statistic g(x). This allows us to easily verify

the following three facts:

1. Unbiasedness: Using g(x) = 1, it follows that

E
[

θ̂MMSE(x)
]

= E [θ] , (C.11)

i.e. the MMSE estimator is unbiased.

2. Orthogonality of error to observations: Using g(x) = x, we obtain

E

[

(

θ − θ̂MMSE(x)
)T

Wx

]

= 0, (C.12)

which implies that the error θ − θ̂MMSE(x) is orthogonal to the observations.

3. Orthogonality of error to MMSE estimator: Using g(x) = θ̂MMSE(x), we obtain

E

[

(

θ − θ̂MMSE(x)
)T

Wθ̂MMSE(x)

]

= 0, (C.13)

which implies that the error θ − θ̂MMSE(x) is orthogonal to the MMSE estimator.

Figure C.1 shows the orthogonality property (C.10) of the MMSE estimator. The estimation

error θ − θ̂MMSE(x) is orthogonal to any statistic g(x). Using this property allows us to easily

34Note that [Scharf, 1990] considers the more general case of outer products, i.e. he considers expectations of the form

E
[

θg(x)T
]

.
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b

x y

z

g(x)

θ̂MMSE(x)

θ

Figure C.1: Orthogonality property of the MMSE estimator

verify that θ̂MMSE(x) is really the estimator with the minimum MSE as we can use Pythagoras’

theorem and write

E
[

∥

∥θ − g(x)
∥

∥

2

W

]

= E

[

∥

∥

∥θ − θ̂MMSE(x)
∥

∥

∥

2

W

]

+ E

[

∥

∥

∥θ̂MMSE(x) − g(x)
∥

∥

∥

2

W

]

≥ E

[

∥

∥

∥θ − θ̂MMSE(x)
∥

∥

∥

2

W

]

which proves this statement. Note that we require here g(x) ∈ R
M , i.e.Q =M , and W ≻ 0.

C.1.5 Jeffreys Prior

The Jeffreys prior is defined as [Robert, 2001]

p(θ) =
√

det
{

GD(θ)
}

(C.14)

where GD(θ) = E

[

∂ ln p(x;θ)
∂θ

T ∂ ln p(x;θ)
∂θ

]

is the Fisher information matrix from (2.5). The

Jeffreys prior has the nice property that it is invariant against reparameterization: Let ϑ = h(θ)

denote a one-to-one transform of θ, then the new prior according to Jeffreys rule is p(ϑ) =
√

det
{

GD(ϑ)
}

. Using the transformation property of the Fisher information matrix [Kay,

1993], this can be reformulated into

p(ϑ) =
√

det
{

GD(ϑ)
}

=
√

det
{

J(θ)−TGD(θ)J(θ)−1
}

∣

∣

∣

∣

∣

θ=h−1(ϑ)

=
1

det
{

J(θ)
}

√

det
{

GD(θ)
}

∣

∣

∣

∣

∣

θ=h−1(ϑ)

with J(θ) = ∂h(θ)
∂θ . The same result would have been obtained using the change of variables law

for random vectors and hence, we can conclude that the Jeffreys prior is invariant with respect

to a reparameterization of θ.
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C.1.6 Numerical Quadrature

In this section, we will briefly review numerical integration forM = 1, i.e. the one-dimensional

case. The idea is to use

b
∫

a

f(θ)dθ ≈
I
∑

i=1

wif(θi) a ≤ θ1, . . . , θI ≤ b (C.15)

with the requirement that this approach is exact for polynomials up to degree P , i.e.

b
∫

a

θpdθ
!
=

I
∑

i=1

wiθ
p
i for all 0 ≤ p ≤ P. (C.16)

Using equispaced nodes θi yields the well known Newton-Cotes formulas with P = I − 1.

If the nodes are chosen carefully but not equispaced, then the Gaussian quadrature rules with

P = 2I − 1 are obtained.

For example, using equispaced nodes with I = 2 yields the two requirements

p = 0 :

b
∫

a

1dθ = b− a
!
= w1 + w2

p = 1 :

b
∫

a

θ dθ =
b2

2
− a2

2

!
= w1a+ w2b

and, solving for w1, w2, we obtain the trapezoidal rule

b
∫

a

f(θ)dθ ≈ b− a

2

(

f(a) + f(b)
)

. (C.17)

Instead of increasing the quadrature order I , which may yield numerical problems e.g. due to

loss of significant bits, composite rules are used which split [a, b] into L subintervals where for

each subinterval a quadrature rule is used. This allows to obtain better numerical approximations

to the integral. For example, if we use the trapezoidal rule, we obtain

b
∫

a

f(θ)dθ ≈ b− a

L





f(a)

2
+

L−1
∑

l=1

f

(

a+
b− a

L
l

)

+
f(b)

2



 . (C.18)

Table C.1 summarizes the integration error for the Newton-Cotes and the Gaussian quadrature

rules. The shorthand notations D̄j = maxθ∈[a,b]|f (j)(θ)| and S = IL, which denotes the
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Name Integration error

Newton-Cotes, Trapezoidal rule I = 2 (b−a)3

12L2 D̄2 ∼ O
(

S−2
)

Newton-Cotes, Simpson’s rule I = 3 (b−a)5

2880L4 D̄4 ∼ O
(

S−4
)

Newton-Cotes, Simpson’s 3/8 rule I = 4 (b−a)5

6480L4 D̄4 ∼ O
(

S−4
)

Newton-Cotes, Boole’s rule I = 5 (b−a)7

1 935 360L6 D̄6 ∼ O
(

S−6
)

Gaussian Quadrature I O
(

S−2I
)

Table C.1: Overview of Newton-Cotes and Gaussian quadrature

number of nodes in [a, b], are used. For a derivation of the integration error, see e.g. [Dahlquist

and Björck, 2008].

C.2 Details, Derivations and Proofs for Chapter 3

C.2.1 S-Procedure

The S-procedure is a tool which is frequently used in robust optimization to deal with constraints

of the form

f0(x) ≥ 0 for all x such that f1(x) ≥ 0, . . . , fL(x) ≥ 0 (C.19)

where fl(x) = xTFlx + 2sTl x + rl are quadratic functions with Fl = FT
l [Boyd et al., 1994].

Condition (C.19) corresponds in general to checking the nonnegativity of a nonconvex quadratic

form on a nonconvex set as Fl with l = 0, . . . , L does not have to be positive definite. Therefore,

the S-procedure allows us to relax nonconvex problems into convex ones and is therefore very

popular. In the following, we will outline the basic result of the S-procedure. For more details,

the interested reader should consult e.g. [Boyd and Vandenberghe, 2007; Jönsson, 2006].

A sufficient condition to check (C.19) is the existence of λ1, . . . , λL ≥ 0 such that

f0(x)− λ1f1(x)− . . .− λLfL(x) ≥ 0 ∀x (C.20)

is fulfilled. This can be seen from the fact that (C.20) ensures f0(x) ≥ λ1f1(x)+ . . .+λLfL(x)

which implies (C.19). Furthermore, (C.20) corresponds to a linear matrix inequality (LMI) as

(C.20) ⇔ ∃λl ≥ 0 s.t. f0(x) − λ1f1(x) − . . .− λLfL(x) ≥ 0 ∀x

⇔ ∃λl ≥ 0 s.t.







x

1







T 





F0 −
∑

l λlFl s0 −
∑

l λlsl

sT0 −∑l λls
T
l r0 −

∑

l λlrl













x

1






≥ 0 ∀x
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⇔ ∃λl ≥ 0 s.t.







F0 −
∑

l λlFl s0 −
∑

l λlsl

sT0 −∑l λls
T
l r0 −

∑

l λlrl






� 0 (C.21)

which is a LMI.35 Note that the converse, i.e. (C.19) ⇒ (C.20), is in general not true and the

S-procedure is hence often called lossy. An exception for a lossless S-procedure is the case for

L = 1, see e.g. [Boyd and Vandenberghe, 2007].

C.2.2 Series Expansions for the Distribution of Quadratic Forms of

Gaussian Random Variables on Elliptic Regions

In this section, we will give a series expansion of the CDF P [(x − x0)
TA(x − x0) ≤ t] with

x ∼ N (µ,C) and of its corresponding PDF. This problem has been intensively studied in the

past. One of the first results was given by [Ruben, 1962] who established a series expansion in

terms of central and noncentral χ2-CDFs/PDFs. This result was further generalized by [Kotz

et al., 1967a,b; Gideon and Gurland, 1976], who derived other series expansions, namely a

power series, Laguerre series and χ2-series representation using a unifying framework and thus

combining many results that were published before.

The following derivation follows the same lines as in [Johnson and Kotz, 1970] and gives the

expansion in terms of central χ2-CDFs/PDFs. It has the advantage compared to the other ex-

pansions that it allows to develop a mixture representation which does not show the effect of

loss of significance. Moreover, a simple yet good approximation of the truncation error can be

established.

Transformation to Standard Form

Similar to Section 3.5.2, we can apply the transform x − µ = UTVy where U is a Cholesky

factor of C, i.e. C = UTU and V, D are the matrix of eigenvectors/eigenvalues of UAUT .

Applying this transform turns the problem

P [(x− x0)
TA(x− x0) ≤ t] =

∫

(x−x0)TA(x−x0)≤t

exp
{

− 1
2 (x− µ)TC−1(x− µ)

}

(2π)n/2 det{C}1/2 dx

into the standard form

P
[

(y − y0)
TD(y − y0) ≤ t

]

= P





M
∑

m=1

dm(ym − ym0)
2 ≤ t



 = F (t;d,y0) (C.22)

35The last equivalence stems from the fact that each quadratic polynomial can be written as a sum of squares polynomial,

see e.g. [Lasserre, 2010].
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where y ∼ N (0, I) and y0 = (UTV)−1(x0 − µ). F (t;d,y0) gives the probability of M

independent unit normal variables to lie in an ellipsoid where the principal axes are parallel to

the coordinate axes. The corresponding density will be denoted by p(t;d,y0) =
dF (t;d,y0)

dt .

Expansion using Central χ2-Distributions/Densities

The idea is now to find expansions of the form36

p(t;d,y0) =
1

β

∞
∑

k=0

akpχ2(t/β;M + 2k) (C.23a)

F (t;d,y0) =

∞
∑

k=0

akFχ2(t/β;M + 2k) (C.23b)

where Fχ2(t/β;M + 2k) and pχ2(t/β;M + 2k) denote the CDF and PDF of a central χ2-

distribution with M + 2k degrees of freedom evaluated at t/β. β > 0 is a suitable chosen

constant which will be discussed later. Note that (C.23b) follows directly from (C.23a) by

termwise integration with respect to t and hence it suffices to proof (C.23a).

In order to find the coefficients ak in (C.23), we calculate the characteristic function of the

density p(t;d,y0) in (C.23a) and obtain

Φ(ω;d,y0) = E






exp







jω

M
∑

m=1

dm(ym − y0m)2













=
1

(2π)M/2

∫

RM

exp







jω

M
∑

m=1

dm(ym − ym0)
2 − 1

2

M
∑

m=1

y2m







dy

= exp







−1

2

M
∑

m=1

y20m +
1

2

M
∑

m=1

y20m
1− 2jωdm







M
∏

m=1

(1 − 2jωdm)−1/2 (C.24)

as
∫

RM exp
{

bTy − 1
2y

TAy
}

dy = (2π)M/2

det{A}1/2 exp
{

1
2b

TA−1b
}

for A ≻ 0. The character-

istic function of a central χ2-CDF with 2k degrees of freedom is Φχ2(ω; 2k) = (1 − 2jω)−k,

and thus we need to expand (C.24) in powers of β(1 − 2jωβ)−1 in order to obtain the series

expansion as in (C.23a). Using the shorthand notation θ = β(1− 2jωβ)−1 in (C.24) yields

Φ(ω;d,y0) = exp







θ − β

2

M
∑

m=1

y20m
β − (1− β

dm
)θ







M
∏

m=1

(

βθ

dm

)1/2
(

β −
(

1− β

dm

)

θ

)−1/2

36Note that some care is needed if working with infinite series as in (C.23). However, Ruben proved in [Ruben, 1962]

that such an expansion exists and that it is uniformly convergent on any finite interval of t. Furthermore, he also

proved the uniform convergence of the derivative and therefore, we can e.g. safely differentiate each element of the

sum w.r.t. t to obtain a series expansion of the derivative, see also [Kotz et al., 1967a].
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=
θM/2

β

∞
∑

k=0

akθ
k,

i.e. the coefficients ak can be obtained by the Taylor series expansion

exp







θ − β

2

M
∑

m=1

y20m

β − (1− β
dm

)θ







M
∏

m=1

(

β

dm

)1/2
(

β −
(

1− β

dm

)

θ

)−1/2

=
1

β

∞
∑

k=0

akθ
k.

(C.25)

In order to obtain a recursive formula for the coefficients ak, we consider the Taylor series

expansion of the logarithm of the lefthand side in (C.25) 37

θ − β

2

M
∑

m=1

y20m

β − (1− β
dm

)θ
+

1

2

M
∑

m=1

ln

(

β

dm

)

− 1

2

M
∑

m=1

ln

(

β −
(

1− β

dm

)

θ

)

=

∞
∑

k=0

bkθ
k. (C.26)

Using (1 − αx)−1 =
∑∞

k=0 α
kxk and ln(1 − αx) = −∑∞

k=1 k
−1αkxk in (C.26) and some

further manipulations yields

bk =

M
∑

m=1

(

1− β

dm

)k

+ kβ

M
∑

m=1

y20m
dm

(

1− β

dm

)k−1

for all k ≥ 1

and we finally obtain the following recursive representation of the series coefficients ak

ak =























exp

{

− 1
2

M
∑

m=1
y20m

}

M
∏

m=1

(

β
dm

)
1
2

k = 0

1
2k

k−1
∑

l=0

dk−lcl k ≥ 1

. (C.27)

Practical Considerations: Choice of β and Truncation Error Estimate

In [Ruben, 1962], the choice of β was discussed. Ruben showed that if 0 < β ≤ min{d1, . . . , dM}
is chosen, then the series (C.23) are mixture representations, i.e. ak ≥ 0 and

∑∞
k=0 ak = 1. This

37Consider the Taylor series expansion f(x) =
∑∞

k=0
ckx

k and the related Taylor series ln(f(x)) =
∑∞

k=0
dkx

k

(assuming that it exists). Then, the coefficients show the relationship ck =











f(0) k = 0

1

k

∑k−1

l=0
(k − l)dk−lcl k ≥ 1

.

This can be seen from the identity

d

dx
ln(f(x)) =

∞
∑

k=1

kdkx
k−1 =

f ′(x)

f(x)
=

∑∞
k=1

kckx
k−1

∑∞
k=0 ckx

k
⇔

∞
∑

k=0

∞
∑

j=1

ckjdjx
k+j−1 =

∞
∑

k=1

kckx
k−1

which implies ck = 1

k

∑k−1

l=0
(k − l)dk−lcl for all k ≥ 1.
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renders the χ2-expansion especially useful for practical implementations as we can now easily

obtain approximations of the truncation error if only the first K terms are used in (C.23). Let

the truncation error be defined as

eK =
1

β

∞
∑

k=K+1

akpχ2(t/β;M + 2k) (C.28a)

EK =

∞
∑

k=K+1

akFχ2(t/β;M + 2k) (C.28b)

then an upper bound on eK and EK is given by

eK ≤ 1

β



1−
K
∑

k=0

ak



 pχ2(t/β;M + 2(K + 1)) (C.29a)

EK ≤



1−
K
∑

k=0

ak



Fχ2(t/β;M + 2(K + 1)) (C.29b)

as pχ2(t/β;M +2k) and Fχ2(t/β;M +2k) are monotonically decreasing in k for fixed t/β.38

These upper bounds on the error can be used as stopping criterion in a practical implementa-

tion.

C.3 Details, Derivations and Proofs for Chapter 4

C.3.1 Proof of Theorem 2

The proof of Theorem 2 is straightforward and is given below.

(a) Assuming T to be a bounded set on RM , we immediately see that

lim
λ→0

p(θ,x)λ
∫

p(θ,x)λdθ
= const.,

i.e. it converges pointwise to a uniform distribution on T. Therefore, θ̂(x; 0) calculates

the center of gravity of T which is equivalent to the a priori MMSE estimator.

(b) Setting λ = 1 in (4.1), we obtain

p(θ,x)
∫

p(θ,x)dθ
= p(θ|x)

38Note that the PDF pχ2(t/β;M + 2k) is only monotonically decreasing for all k > K0 where K0 is the solution

to ln(t/β) − ln(2) = Ψ(K0/2) and Ψ(.) is the digamma function which is defined as Ψ(x) = Γ′(x)/Γ(x).
However, K0 is in our case often very small and thus (C.29a) is valid.
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and thus θ̂(x; 1) =
∫

θ p(θ|x)dθ = E[θ|x], which is the MMSE estimator.

(c) To prove this part, we use a result from [Pincus, 1968]: Given a continuous function f(θ),

which attains a global maximum at exactly one point in T, then Pincus showed

argmax
θ

f(θ) = lim
λ→∞

∫

T

θ f(θ)λdθ

∫

T

f(θ)λdθ
.

Using this theorem, we conclude that limλ→∞ θ̂(x;λ) is the MAP estimator.

C.3.2 Proof of Theorem 3

To prove Theorem 3, we have to first show that Lemma 1 is true.

First of all, we would like to point out that the delta function can be expressed as a limit of the

normal distribution, i.e.

g(θ; a2) =
1

aMπM/2
e−‖θ‖2/a2 a→0−−−→ δ(θ).

They are equivalent in the sense that f(0) =
∫

f(θ)δ(θ)dθ = lima→0

∫

f(θ)g(θ; a2)dθ.

(a) p(θ,x) = δ(θ − θ0):

θ̂(x;λ) = lim
a→0

∫

θ g(θ − θ0; a2)λdθ
∫

g(θ − θ0; a2)λdθ
= lim

a→0

∫

θ g(θ − θ0; a
2

λ )dθ
∫

g(θ − θ0; a2

λ )dθ

= lim
a→0

∫

θ g(θ − θ0;
a2

λ
)dθ = θ0

(b) p(θ,x) = Pδ(θ − θ0) + (1− P )δ(θ − θ1):

θ̂(x;λ) = lim
a→0

∫

θ [Pg(θ − θ0; a2) + (1− P )g(θ − θ1, a2)]λdθ
∫

[Pg(θ − θ0; a2) + (1− P )g(θ − θ1; a2)]λdθ

= lim
a→0

Pλ

Pλ + (1− P )λ

∫

θ g(θ − θ0;
a2

λ
)dθ

+ lim
a→0

(1− P )λ

Pλ + (1− P )λ

∫

θ g(θ − θ1;
a2

λ
)dθ

=
Pλθ0 + (1 − P )λθ1
Pλ + (1 − P )λ

where we used the fact that

[Pg(θ − θ0; a2) + (1− P )g(θ − θ1; a2)]λ
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→ Pλg(θ − θ0; a2)λ + (1 − P )λg(θ − θ1; a2)λ

for θ0 6= θ1 and a→ 0.

Now, we are in the position to prove Theorem 3 by contradiction. Suppose θ̂(x;λ) has a corre-

sponding loss function L(θ, θ̂) which is continuously differentiable but not symmetric. Then at

least one of the following two cases has to be true:

(a) There is a θ0 such that

∣

∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=θ0
θ̂=θ0

6=
∣

∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=−θ0

θ̂=−θ0

(C.30)

Now, consider the special PDF p(θ,x) = δ(θ − θ0). As θ̂(x;λ) from (4.1) holds for

all densities, we can directly use the result of the Lemma and obtain θ̂(x;λ) = θ0. A

necessary condition that θ̂(x;λ) is the OBE for the loss function L(θ, θ̂) is (2.25)

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=θ0

θ̂=θ0

= 0.

Furthermore, consider the special PDF p(θ,x) = δ(θ+θ0) which has the OBE θ̂(x;λ) =

−θ0. Using again (2.25), we obtain the necessary condition

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=−θ0
θ̂=−θ0

= 0

which cannot be true as we assumed (C.30).

(b) There is a θ0 and θ1 such that

∣

∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=θ0
θ̂=θ1

6=
∣

∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=−θ0

θ̂=−θ1

(C.31)

Now consider the special PDF p(θ,x) = Pδ(θ−θ0)+(1−P )δ(θ−θ1) which, according

to the above Lemma, has the OBE u = θ̂(x;λ) = (Pλθ0+(1−P )λθ1)/(Pλ+(1−P )λ).
A necessary condition that has to be fulfilled is (2.25) which yields

P
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=θ0

θ̂=u

+ (1− P )
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=θ1

θ̂=u

= 0.

Furthermore, the PDF p(θ,x) = Pδ(θ+θ0)+ (1−P )δ(θ+θ1) results in the OBE −u
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and the necessary condition (2.25) is

P
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=−θ0

θ̂=−u

+ (1− P )
∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣θ=−θ1

θ̂=−u

= 0.

Without loss of generality, we can assume

∣

∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=θ1

θ̂=θ1

=

∣

∣

∣

∣

∣

∂L(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ=−θ1
θ̂=−θ1

as we can otherwise use (a) and show that the loss is asymmetric. Taking the limit P → 0

(P > 0), we see that both necessary conditions contradict the assumption (C.31).

C.3.3 Gradient of (4.4)

In this section, we derive the gradient of the Bayes risk with respect to an element γ of p. Using

the gradient is advantageous to solve the optimization problem (4.4) as gradient descent methods

can be used. Taking the derivative of BR in (4.4) with respect to γ, we obtain for the first-order

derivative

∂BR

∂γ
=

∫∫





∂L(θ,u)

∂u

∣

∣

∣

∣

∣

u=θ̂(x;p)





T

∂θ̂(x;p)

∂γ
p(θ,x)dθdx.

Using the shorthand notations pλ(θ|x) = p(θ,x)λ/
∫

p(θ,x)λdθ and D = ∂f1
∂z = ξ1I +

diag{φ1/z1, . . . , φM/zM} evaluated at z =
∫

f2(θ,p2)pλ(θ|x)dθ 6= 0, we obtain

∂θ̂(x;p)

∂ξ1
=

∫

f2(θ,p2)pλ(θ|x)dθ

∂θ̂(x;p)

∂ξ2
= D ·

∫

θ pλ(θ|x)dθ

∂θ̂(x;p)

∂ξ3
= D ·

∫

eψ◦θ pλ(θ|x)dθ

∂θ̂(x;p)

∂λ
= D ·

(∫

f2(θ;p2) ln
(

p(θ,x)
)

pλ(θ|x)dθ

−
∫

f2(θ;p2) pλ(θ|x)dθ
∫

ln
(

p(θ,x)
)

pλ(θ|x)dθ
)

∂θ̂(x;p)

∂φ
= diag

{

ln

∣

∣

∣

∣

∫

f2(θ;p2) pλ(θ|x)dθ
∣

∣

∣

∣

}

∂θ̂(x;p)

∂ψ
= ξ3D · diag

{∫

θ ◦ eψ◦θ pλ(θ|x)dθ
}

.
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Note that all integrals can again be calculated using Monte Carlo integration, especially impor-

tance sampling as discussed in Section 4.2.3.

C.3.4 Definition of Kummer’s Function M(a, b, z)

Kummer’s function M(a, b, z) is one of the two linearly independent solutions of Kummer’s

equation which is an ordinary differential equation (ODE) and defined as [Abramowitz and

Stegun, 1964]

z
d2w(z)

dz2
+ (b− z)

dw(z)

dz
− aw(z) = 0. (C.33)

The two solutions are Kummer’s function M(a, b, z) and Tricomi’s function U(a, b, z). Using

special choices for the arguments of M(a, b, z) and U(a, b, z), many well known functions can

be expressed by them, e.g. the Bessel functions.

For completeness, we would like to mention that Kummer’s function M(a, b, z) can be ex-

pressed as a generalized hypergeometric series, i.e.

M(a, b, z) =
∞
∑

n=0

(a)n
(b)n

zn

n!
, (C.34)

where (a)n and (b)n are rising factorials given by (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) and

in particularly (a)0 = 1. Plugging (C.34) into (C.33), it is easy to prove that M(a, b, z) is a

solution of Kummer’s equation (C.33). The interested reader should consult [National Institute

of Standards and Technology, 2012] for more details and relations.

C.3.5 Gradient and Hessian of the Log-Likelihood (4.32)

In the following, we will give the elements of the gradient and Hessian of the Log-likelihood

functionL(U) in order to use efficient optimization algorithms. The first-order derivatives are

∂L(U)

∂µ
= 1

T
(

d
−1

Q
−1 + σ

2
I
)−1

(x− µ1) = 1
T
dQ

(

I+ σ
2
dQ

)−1

(x− µ1)

∂L(U)

∂d
=

1

2
tr

{

(

d
−1

Q
−1 + σ

2
I
)−1

d
−2

Q
−1

}

−

1

2
(x− µ1)T

(

d
−1

Q
−1 + σ

2
I
)−1

× d
−2

Q
−1

(

d
−1

Q
−1 + σ

2
I
)−1

(x− µ1)

=
1

2d
tr
{

(I+ σ
2
dQ)−1

}

−

1

2
(x− µ1)T

(

I+ σ
2
dQ

)−1

Q
(

I+ σ
2
dQ

)−1

(x− µ1)

∂L(U)

∂qi
=

1

2
tr

{

(

d
−1

Q
−1 + σ

2
I
)−1

d
−1

Q
−1(∂qiQ)Q−1

}

−

1

2
(x− µ1)T

(

d
−1

Q
−1 + σ

2
I
)−1

× d
−1

Q
−1(∂qiQ)Q−1

(

d
−1

Q
−1 + σ

2
I
)−1

(x− µ1)

=
1

2
tr
{

(I+ σ
2
dQ)−1(∂qiQ)Q−1

}

−

d

2
(x− µ1)T

(

I+ σ
2
dQ

)−1

(∂qiQ)
(

I+ σ
2
dQ

)−1

(x− µ1) ,
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where we used ∂ ln(det{X}) = tr{X−1∂X}, ∂(X−1) = −X−1(∂X)X−1 and (X−1 +

Y−1)−1 = X(X+Y)−1Y. Similarly, the second-order derivatives can be computed. They are

given by

∂2L(U)

∂µ2
= −1

T
dQ

(

I+ σ
2
dQ

)−1

1

∂2L(U)

∂d2
= −

1

2d2
tr
{

(I+ σ
2
dQ)−1

}

−

σ2

2d
tr
{

(I+ σ
2
dQ)−2

Q
}

+ σ
2 (x− µ1)T

(

I+ σ
2
dQ

)−1

Q
(

I+ σ
2
dQ

)−1

Q
(

I+ σ
2
dQ

)−1

(x− µ1)

∂2L(U)

∂q2i
= −

σ2d

2
tr
{

(I+ σ
2
dQ)−2(∂qiQ)2Q−1

}

−

1

2
tr
{

(I+ σ
2
dQ)−1

Q
−2(∂qiQ)−2

}

+ σ
2
d
2 (x− µ1)T

(

I+ σ
2
dQ

)−1

(∂qiQ)
(

I+ σ
2
dQ

)−1

(∂qiQ)
(

I+ σ
2
dQ

)−1

(x− µ1)

∂2L(U)

∂µ∂d
= 1

T
(

I+ σ
2
dQ

)−1

Q
(

I+ σ
2
dQ

)−1

(x− µ1)

∂2L(U)

∂µ∂qi
= d1

T
(

I+ σ
2
dQ

)−1

(∂qiQ)
(

I+ σ
2
dQ

)−1

(x− µ1)

∂2L(U)

∂d∂qi
=

σ2

2
tr

{

(

I+ σ
2
dQ

)−2

(∂qiQ)

}

+ σ
2
d (x− µ1)T

(

I+ σ
2
dQ

)−1

(∂qiQ)
(

I+ σ
2
dQ

)−1

Q
(

I+ σ
2
dQ

)−1

(x− µ1)

−

1

2
(x− µ1)T

(

I+ σ
2
dQ

)−1

(∂qiQ)
(

I+ σ
2
dQ

)−1

(x− µ1)

∂2L(U)

∂q1∂q2
= −

σ2d

2
tr
{

(I+ σ
2
dQ)−2(∂q1Q)(∂q2Q)Q−1

}

−

1

2
tr
{

(I+ σ
2
dQ)−1

Q
−2(∂q1Q)(∂q2Q)

}

+ σ
2
d
2 (x− µ1)T

(

I+ σ
2
dQ

)−1

(∂q1Q)
(

I+ σ
2
dQ

)−1

(∂q2Q)
(

I+ σ
2
dQ

)−1

(x− µ1) .

C.3.6 Circulant Matrices

In this section, we will briefly review the basic properties of circulant matrices. For a more de-

tailed treatment, the interested reader should consult [Gray, 2006; Moon and Stirling, 2000].

A circulant matrix C ∈ CL×L has the form

C =



























c0 cL−1 · · · c2 c1

c1 c0 cL−1 c2
... c1 c0

. . .
...

cL−2
. . .

. . . cL−1

cL−1 cL−2 · · · c1 c0



























, (C.35)
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i.e. each column is a cyclically downshifted version of its predecessor. To find the eigenvectors

and eigenvalues of C, we have to consider the equation Cv = λv where λ is the eigenvalue that

corresponds to the eigenvector v =

[

v0 v1 · · · vL−1

]T

. More specifically, we have

Cv = c⊛ v = λv, (C.36)

where c denotes the first column of C and ⊛ denotes the circular convolution. For (C.36), we

used the fact that the matrix-vector multiplication Cv corresponds to a circular convolution of

c with v. Introducing the discrete Fourier transform (DFT) operator DFT{.}, (C.36) can be

rewritten as

DFT{c} ◦DFT{v} = λDFT{v} ⇔
(

DFT{c} − λ1
)

◦DFT{v} = 0, (C.37)

where ◦ denotes the elementwise (Hadamard) product. Using the special choice

vl =

[

1 ej
2π
L l · · · ej

2π
L (L−1)l

]T

,

we obtain DFT{vl} = Lel and therefore the corresponding eigenvalue λ has to be the lth

element of DFT{c}. Thus, each circulant matrix C can be decomposed as C = UDU−1

where D is a diagonal matrix which contains the DFT values of the first column of C on its

diagonal and U ∈ CL×L is the well known DFT matrix with [U]l,k = ej
2π
L (l−1)(k−1) and

U−1 = 1
LU

H .

Using this eigenvalue decomposition, the following nice properties can be proved (see e.g.

[Gray, 2006]):

1. Let C1 andC2 be two circulant matrices then the matrix-product commutes, i.e. C1C2 =

C2C1. Furthermore, C1C2 is again circulant.

2. Let C1 and C2 be two circulant matrices then C1 +C2 is again circulant.

3. If all eigenvalues λ = DFT{c} of a circulant matrix C are unequal to zero then the

inverse exists and is given by UD−1U−1, i.e. it is again circulant.

These properties allow us to do the basic matrix operations that we need in Section 4.3.2 in “FFT

speed”.
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C.4 Details, Derivations and Proofs for Chapter 5

C.4.1 Motzkin’s Example

A famous example of a polynomial that is nonnegative but which cannot be represented as a sum

of squares is the Motzkin polynomial [Reznick, 2000]

f(z) = z41z
2
2 + z21z

4
2 − 3z21z

2
2 + 1. (C.38)

We will first establish that it is nonnegative: Using the inequality of the arithmetic and geometric

mean (AM-GM inequality)
a+ b+ c

3
≥ 3

√
abc

with a = 1, b = z41z
2
2 and c = z21z

4
2 proves this fact. To show that it cannot be written as a sum

of squares, we use the general Ansatz f(z) =
∑

i(fi(z))
2 with

fi(z) = c1,iz
2
1z2 + c2,iz1z

2
2 + c3,iz1z2 + c4,iz

2
1 + c5,iz

2
2 + c6,iz1 + c7,iz2 + c8,i. (C.39)

Comparing (C.38) with (C.39), we can immediately conclude that c4,i = c5,i = c6,i = c7,i = 0

and thus fi(z) from (C.39) reduces to

fi(z) = c1,iz
2
1z2 + c2,iz1z

2
2 + c3,iz1z2 + c8,i.

In order to obtain the monomial −3z21z
2
2 in (C.38) we see that

∑

i c
2
3,i = −3 has to hold which

cannot be fulfilled for c3,i ∈ R and therefore we have proved that the Motzkin polynomial (C.38)

is not SOS.

C.4.2 Equivalence between SOS Polynomials and Quadratic Forms

In this section, we will show that an equivalent representation of f(z) =
∑

i(fi(z))
2 of degree

2D with z ∈ R2M is given by f(z) = m(z)TQm(z) with Q � 0 where m(z) ∈ R(
D+2M

D )

is a column vector containing all monomials up to order D, i.e. the elements have the form

zα =
∏2M

i=1 z
αi

i where α1 + . . .+ α2M ≤ D.

First, we will show that each sum of squares polynomial can be written as f(z) = m(z)TQm(z)

with Q � 0 which can be easily established. It simply stems from the fact that m(z) contains

all monomials of degree less or equal to D and therefore we can represent each fi(z) as fi(z) =

tTi m(z) which implies f(z) = m(z)TTTTm(z) where the ith row of T is given by tTi and

TTT � 0.

To prove the converse, i.e. that each polynomial f(z) = m(z)TQm(z) with Q � 0 is a sum

of squares polynomial, we have to use the Cholesky decomposition of Q [Golub and Van Loan,
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1996]. For a positive semi-definite matrix Q, the Cholesky factorization is given by Q = LTDL

where L is a lower triangular matrix and D is diagonal with elements larger or equal to zero.

Therefore, introducing T = D1/2L we see that f(z) is a SOS polynomial.

C.4.3 A Brief Introduction to Polynomial Optimization

Polynomial optimization deals with finding a good approximation of the global minimum or

maximum of a multivariate polynomial f0(z) with polynomial equality and/or inequality con-

straints [Parrilo, 2003; Lasserre, 2010]. In general, the following two families of problems can

be distinguished:

• Unconstrained problems which have the form

min
z∈Rn

f0(z) (C.40)

where f0(z) is a multivariate polynomial in z, i.e. f0 ∈ R[z].

• Constrained problems which are given by

min
z∈FS

f0(z) (C.41a)

where the feasible set FS is given by

ai(z) 6= 0, i = 1, . . . , s

bj(z) ≥ 0, j = 1, . . . , t (C.41b)

ck(z) = 0, k = 1, . . . , u

and f0, ai, bj , ck ∈ R[z]. The feasible set is therefore the set of solutions fulfilling poly-

nomial equality/inequality constraints.39

Both optimization problems (C.40) and (C.41) are in general nonconvex and therefore difficult

to solve. Using however the SOS relaxation of a nonnegative polynomial, we can come up with

efficient SDP formulations to obtain approximate solutions to (C.40) and (C.41).

Nonnegative Polynomials and Sum of Squares Approximation

As we will see later, nonnegative polynomials play a central role in polynomial optimization.

A polynomial f(z) is called nonnegative if f(z) ≥ 0 for all z ∈ R
n holds. Furthermore, a

polynomial f(z) is called sum of squares (SOS) if f(z) can be written as f(z) =
∑

i(fi(z))
2.

39Such a set is called a semialgebraic set.
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f(z) ≥ 0 ∀ z ∈ Rn ⇐=
=⇒ f(z) =

∑

i f
2
i (z)

m m

f(x) = p(z)
q(z) , p, q SOS f(z) = m(z)TQm(z), Q � 0

(Hilbert’s 17th problem) (SDP formulation)

Figure C.2: Relationship between nonnegative polynomials and SOS

z

f0(z)

t∗

t

Figure C.3: Visual representation of the optimization problem (C.42)

It is obvious that if f(z) is SOS then it is also nonnegative. The converse, however, does not hold

in general as was proven by Hilbert in 1888 [Reznick, 2000].40 The diagram in Figure C.2 sum-

marizes the relationship between nonnegativity and SOS where m(z) is the monomial vector as

introduced in Section 5.3.

SOS Relaxation of Polynomial Optimization Problems

The optimization problem (C.40) can be rewritten in epigraphic form as

max
t

t s.t. f0(z) − t ≥ 0 ∀ z ∈ R
n (C.42)

i.e. t is increased such that the polynomial f0(z) − t is nonnegative for all z ∈ Rn as is shown

in Figure C.3. Relaxing the constraint f0(z) − t ≥ 0 in (C.42) with the constraint f0(z) − t is

SOS, we obtain the SDP

max
t,Q0

t s.t. Q0 − tJ1,1 � 0 (C.43)

m(z)TQ0m(z) = f0(z)

40Exceptions are given by the cases {n = 1, d arbitrary} or {n arbitrary, d = 2} or {n = 2, d = 4} where d denotes

the degree of the polynomial.
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which can be solved efficiently. J1,1 denotes the single-entry matrix which is zero everwhere

except a one at (1, 1).41 The optimal solution z∗ can be extracted from

f0(z
∗) = t∗SDP ⇐⇒ m(z∗)T

(

Q0 − t∗SDPJ
1,1
)

m(z∗) = 0. (C.44)

Further details about the extraction of solutions can e.g. be found in [Lasserre, 2010].

Solving constrained polynomial optimization problems as in (C.41) can be done in the same

manner as for the unconstrained case. The only difference is that we have f0(z) − t ≥ 0

for all z ∈ FS, i.e. we have to ensure nonnegativity of f0(z) − t on the feasible set. The

Positivstellensatz as given in Section 5.5 can be used to handle such constraints and therefore

again, we can give efficient SDP formulations which give good approximations to (C.41).

41We assume here that the monomials in m(z) are sorted in increasing order and therefore the monomial of order zero

is at the first position.
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