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ABSTRACT

This paper presents a theoretical analysis of the Cramer-Rao

lower bound for source localization from time differences of

arrival. We derive properties of the Cramer-Rao bound and

design optimum sensor arrays which minimize the bound.

1. INTRODUCTION

The technique of source localization by using time differ-

ences of arrival (TDOA) plays an important role in many ap-

plications like navigation, localization and tracking of acous-

tic sources, and location services of mobile communication.

In the literature, the main research effort was focused on the

development of various methods for the source position es-

timation. A recent review of some methods can be found in

[1]. In comparison, relatively less is known about the the-

oretical performance of these methods. There exist many

numerical comparisons between different methods, but the

impact of the sensor array geometry on the localization ac-

curacy is still not well understood yet.

This paper aims at a better understanding of the theoret-

ical performance of source localization. We discuss proper-

ties of the Cramer-Rao bound for TDOA based localization.

We derive necessary and sufficient conditions for the op-

timum sensor array geometry which minimizes the bound.

Examples of optimum arrays for both two-dimensional and

three-dimensional localization are given.

The following notations are used in the paper. Matrices

and column vectors are represented by boldface and under-

lined characters. The superscript T denotes transpose. ‖ · ‖
is the Euclidean vector norm. tr(·) is the matrix trace.

2. PROBLEM FORMULATION

We consider the source localization problem in
�

D (D =

2, 3). The sensor array consists of M sensors at the locations

q
i
∈ �

D (i = 1, . . . ,M). The source position is p ∈ �
D . The

distance between the source and sensor i is di(p) = ‖p −
q

i
‖ (i = 1, . . . ,M). The difference in the distances of sensor

i and j from the source is given by di j(p) = di(p) − d j(p).

The noisy TDOA measurement between sensor i and j is

thus

τi j =
1

v
di j(p) + ni j

v is the wave propagation speed and ni j is the TDOA mea-

surement error.

For M sensors, there are a total number of M(M − 1)/2

possible sensor pairs and TDOA measurements. Let

I0 = {(i, j)|1 ≤ j < i ≤ M} (1)

denote the set of all sensor pairs. I is a subset of I0 and

contains these N (N ≤ M(M−1)

2
) sensor pairs whose TDOA

measurements are used in source localization. By introduc-

ing the N × 1 vectors

τ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

τi j

...

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(i, j)∈I

, d =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

di j

...

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(i, j)∈I

, n =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ni j

...

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(i, j)∈I

,

the signal model for the TDOA measurements becomes

τ =
1

v
d(p) + n (2)

The problem of source localization is to estimate the source

position vector p given q
i
, τ, and v.

3. CRAMER-RAO BOUND

The Cramer-Rao bound (CRB) is a lower bound for the co-

variance matrix of unbiased estimators. It is often used as a

benchmark against which the efficiency of unbiased estima-

tors is tested. It is given by J−1 where

J = E
{

[∇ ln f (τ; p)][∇ ln f (τ; p)]T
}

is the Fisher information matrix. f (τ; p) is the probability

density function (PDF) of τ. ∇ is the gradient operator with

respect to p. E(·) denotes the expectation on τ.

Assume that the measurement error vector n in (2) is

Gaussian with zero mean and the full rank covariance ma-

trix C which is independent of p. The PDF of τ is

f (τ; p) =
1

(2π)N/2
√

det(C)
exp

[

−1

2
(τ − 1

v
d)T C−1(τ − 1

v
d)

]

(3)
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The CRB is well known from [2]

J−1
= v2(GC−1GT )−1 (4)

with

G = ∇ dT
= [g

i j
. . .](i, j)∈I,

g
i j
= g

i
− g

j
, (5)

g
i
= ∇di(p) =

p − q
i

‖p − q
i
‖ (i = 1, . . . ,M)

Clearly, g
i

is a unit-length vector with ‖g
i
‖ = 1. It points

from sensor i to the source. G is a D× N matrix. It depends

on the source and sensor positions and on the set I of sensor

pairs which are used for source localization.

4. PROPERTIES OF THE CRAMER-RAO BOUND

In this section, we discuss some properties of the CRB.

Prop. 1: One necessary condition for the existence of the

CRB is M ≥ D + 1.

Proof: For the existence of the D × D inverse Fisher infor-

mation matrix in (4), the D×N matrix G must have rank D.

Due to the definition (5), any vectors g
i j

can be written as a

linear combination of the M − 1 vectors g
i1

(i = 2, . . . ,M):

g
i j
= g

i1
− g

j1
. Therefore, the maximum number of linearly

independent columns in G is M − 1. This means

M − 1 ≥ rank(G) = D

Prop. 2: Under the Gaussian error model (3), no unbiased

estimators attain the CRB.

Proof: A necessary and efficient condition for an unbiased

efficient estimator is the existence of some functions J(·)
and h(·) such that [3]

∇ ln f (τ; p) = J(p)[h(τ) − p] (6)

Starting from (3), the gradient vector is calculated to

∇ ln f (τ; p) =
1

v
G(p)C−1

[

τ − 1

v
d(p)

]

Since the condition (6) can never be satisfied, there are no

efficient estimators for the source position vector p. Never-

theless, the maximum-likelihood (ML) estimator

p̂
ML
= arg max

p
f (τ; p)

is able to attain the CRB asymptotically (N → ∞).

One possibility to find the ML estimator is to use a Gauss-

Newton iteration [4]. Let

d(p) ≈ d(p
k
) + ∇T d(p)

∣

∣

∣

p=p
k

(p − p
k
)

= d(p
k
) +GT (p

k
)(p − p

k
) (7)

be the truncated Taylor series of d(p) around the solution

p
k

found at the k-th iteration. The quadratic order and all

higher-order terms of the Taylor series are ignored. Maxi-

mizing the likelihood f (τ; p) in (3) while using the approx-

imation (7) results in an improved estimate

p
k+1
= p

k
+ [G(p

k
)C−1GT (p

k
)]−1 ·

G(p
k
)C−1[τv − d(p

k
)] (8)

The key issue of this method is to find a good initial guess

p
0

to avoid local minima and divergence.

Prop. 3: The more TDOA measurements we use, the smaller

the CRB is. Let Ii (i = 1, 2) be two sets of TDOA measure-

ments and J−1
Ii

the corresponding CRBs. If I1 ⊂ I2, then

J−1
I1

≥ J−1
I2

, i.e. J−1
I1

− J−1
I2

is non-negative definite.

Proof: The assumption I1 ⊂ I2 implies that all columns of

GI1
= [g

i j
. . .](i, j)∈I1

are also contained in GI2
= [g

i j
. . .](i, j)∈I2

.

This means GI1
C−1GT

I1

≤ GI2
C−1GT

I2

and J−1
I1

≥ J−1
I2

. This

property holds even for correlated TDOA measurements.

In the literature, many source localization methods rely

on the spherical model instead of the hyperbolic model. They

are spherical intersection [5], spherical interpolation [6] and

further improvements of them [2, 1]. These methods are

non-iterative and computationally efficient. However, they

suffer from the drawback that maximum M − 1 sensor pairs

I = {(2, 1), . . . , (M, 1)} (with sensor 1 being the reference

sensor) can be used. This limits the accuracy of the source

localization. According to Prop. 3, the CRB of these meth-

ods is larger than the CRB when we use all M(M − 1)/2

sensor pairs.

Therefore, the following two-step procedure is suitable

to improve the localization accuracy:

• Use a non-iterative method like any of the above spher-

ical methods to find a reliable initial guess p
0

for the

source position.

• Use one or a few Gauss-Newton-iterations in (8), based

on all sensor pairs I0, to further improve the localiza-

tion accuracy.

Prop. 4: The CRB does not depend on the range ‖p − q
i
‖

between the source and sensors. It only depends on the di-

rection of the vectors p − q
i
.

Proof: This follows immediately from (5).

Note that this is a property of the CRB. The covariance

matrices of source position estimators will depend on both

range and direction of p − q
i
.

5. OPTIMUM ARRAY GEOMETRY

The geometry of the source localization problem is deter-

mined by the sensor and source positions q
i

and p. Starting
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from the CRB in (4), we now study how to optimize the ge-

ometry to minimize the CRB for a given number of sensors.

This problem has been addressed in [7, 8] for the narrow-

band far-field direction-of-arrival (DOA) estimation. To our

knowledge, there are no similar works for the TDOA based

source localization which is usually a broadband near-field

estimation problem.

Since the CRB is a square matrix, we consider the mini-

mization of the trace of the CRB tr(J−1). It is a lower bound

for the sum of variances of unbiased estimators for all el-

ements of the sensor position vector p. For simplicity, we

consider white measurement noise with C = σ2I in this pa-

per. I is an identity matrix and σ2 is the variance of the

TDOA measurement noise. According to Prop. 3, we have

to use the set I0 of all M(M − 1)/2 sensor pairs in order to

achieve a CRB as small as possible. This means

G = [g
21
. . . g

M1
g

32
. . . g

M2
. . . g

M,M−1
] (9)

The optimization problem becomes to find M unit-length

vectors g
i
∈ �

D (i = 1, . . . ,M) in such a way that

tr(J−1) = (vσ)2tr[(GGT )−1]

is minimized.

Theorem 1: If C = σ2I and I = I0,

tr(J−1) ≥ (vσ)2 D2

M2
(10)

The equality holds if and only if

C1)
M
∑

i=1

g
i
= 0 and

C2) the D × M matrix g = [g
1
. . . g

M
] satisfies ggT

=

(M/D)I, i.e. g has orthogonal row vectors with equal

row norm.

Proof: The proof consists of two parts. We first find a

lower bound for tr[(GGT )−1] in terms of tr(GGT ) because

tr(GGT ) is simpler to calculate than tr[(GGT )−1]. Then we

maximize tr(GGT ).

Let λi > 0 (i = 1, . . . ,D) be the eigenvalues of the D×D

symmetric and positive definite matrix GGT . The eigenval-

ues of (GGT )−1 are 1/λi. It is well known

tr(GGT ) =

D
∑

i=1

λi, tr[(GGT )−1] =

D
∑

i=1

1/λi

According to the Cauchy-Schwarz inequality,

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
λ1

...√
λD

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T ⎡
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1/
√
λ1

...

1/
√
λD

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤

√

√

√

D
∑

i=1

λi ·
D
∑

i=1

1/λi

=

√

tr(GGT )tr[(GGT )−1]

This means

tr[(GGT )−1] ≥ D2

tr(GGT )
(11)

The equality holds if and only if all eigenvalues of GGT are

identical λi = λ (i = 1, . . . ,D). This is equivalent to

GGT
= λI (12)

Now we study the term tr(GGT ). Due to g
i j
= g

i
− g

j
,

the relationship between the D× M(M−1)

2
matrix G in (9) and

the D × M matrix g in C2 is

G = gT

One example for the M × M(M−1)

2
transform matrix T for

M = 4 is

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 −1 0 0 0

1 0 0 −1 −1 0

0 1 0 1 0 −1

0 0 1 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In general, each row of T has the squared norm M − 1 and

each pair of rows of T has the inner product −1. Corre-

spondingly,

TTT
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M − 1 −1 . . . −1

−1 M − 1 . . . −1
...

...
. . .

...

−1 −1 . . . M − 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= MI − 1 1T

with 1 = [1, . . . , 1]T . This leads to

GGT
= gTTT gT

= MggT − (g1)(g1)T (13)

and

tr(GGT ) = Mtr(ggT ) − tr[(g1)(g1)T ]

= M

M
∑

i=1

tr(g
i
gT

i
) − ‖g1‖2

= M2 − ‖g1‖2 ≤ M2 (14)

The equality holds if and only if the condition C1 is satis-

fied:

g1 =

M
∑

i=1

g
i
= 0 (15)

Combining (11) and (14), we obtain

tr[(GGT )−1] ≥ D2

tr(GGT )
≥ D2

M2

Combining (12) with (13) and (15), we obtain ggT
= cI.

Since tr(ggT ) = Dc = M, the condition C2 yields.
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5.1. Optimum 2D Array

We have derived the necessary and sufficient conditions C1

and C2 to achieve the minimum CRB. But how does the

optimum array look like?

Let g
i
= [cosαi, sinαi]

T for D = 2. The condition C1 is

clearly equivalent to
M
∑

i=1

e jαi = 0. The condition C2 implies

M
∑

i=1

cos2 αi =

M
∑

i=1

sin2 αi =
M
2

and
M
∑

i=1

sinαi cosαi = 0. It is

easy to verify that a “uniform angular array” (UAA) defined

by

αi = α0 +
2π

M
(i − 1) (i = 1, . . . ,M) (16)

satisfies both C1 and C2. UAA, however, is sufficient but

not necessary as shown by the next theorem.

Theorem 2: A sensor array consists of K subarrays charac-

terized by the D × Mk matrices gk (k = 1, . . . ,K). If each

subarray is optimum in the sense of C1 and C2, then the

overall array of M =
K
∑

k=1

Mk sensors with g = [g1 . . . gK] is

optimum as well.

Proof: From gk1 = 0 and gkgT
k
= const · I for all k, we con-

clude immediately g1 =
K
∑

k=1

gk1 = 0 and ggT
=

K
∑

k=1

gkgT
k
=

const · I.

Interestingly, we also know optimum arrays other than

superposition of UAAs.

5.2. Optimum 3D Array

In the three-dimensional case (D = 3), we again look for

“uniform angular arrays” whose vectors g
i

are “equally”

distributed on a unit spherical surface. There are exactly five

solutions to this symmetry problem, the so called Platonic

solids: tetrahedron, octahedron, cube, icosahedron, and do-

decahedron [9]. Table 1 shows these solids and summarizes

their number of vertices, edges, and faces. Each of the vec-

tors g
i
points from the center of solids to one of the vertices.

The number of vertices v is identical to the number of sen-

sors M. The vectors g
i

are known from the literature. It is

straightforward to show that all Platonic solids satisfy the

optimum array conditions C1 and C2.

Theorem 2 also applies to the three-dimensional case.

This means, any superposition of centered Platonic solids is

again an optimum sensor array. A superposition of a tetra-

hedron and an octahedron returns, for example, an optimum

array with M = 10 sensors.
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tetrahed. octahed. cube icosahed. dodecahed.

M = v = 4 6 8 12 20

e = 6 12 12 30 30

f = 4 8 6 20 12

Table 1. Platonic solids and their number of vertices v,

edges e, and faces f
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