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Abstract—The amount and the bodily distribution of different
adipose tissue (AT) compartments are important indicators for
the risk of obesity-related diseases and play an important role
in the investigation of their pathogenesis. Magnetic resonance
imaging can be used to acquire images of the whole body,
showing these compartments and their distribution. In this
article, an automated segmentation algorithm is presented, being
able to create tissue profiles of the whole body for tissue classes
subcutaneous AT, visceral AT and total tissue. The images are
segmented using a fuzzy c-means algorithm, which considers
partial volume effects. A separation of the body into anatomic
regions along the body axis is done to define regions with visceral
AT present. In abdominal image slices, the AT compartments are
divided into subcutaneous and visceral compartments using an
active contour algorithm. The slice-wise areas of different tissues
are plotted against the slice position to obtain their topography.
The automatically obtained tissue profiles were compared to
profiles created manually by an expert and show high corre-
lation coefficients, indicating similar topography. Absolute error
values were calculated for evaluation of the algorithm’s absolute
accuracy. These show low overall mean values for the classes of
total tissue (4.48 %) and visceral AT (3.26 %). The deviation
of total AT (sum of visceral and subcutaneous AT) was higher
though (8.71 %). Whole examination and analysis time is reduced
to less than half an hour.

Index Terms—active contours, adipose tissue profiling, fuzzy
c-means, image segmentation, MRI

I. INTRODUCTION

Obesity and overweight are the emerging health problems

of the last decades, not only in the western world, but on a

worldwide scale [1]. However, not only the amount of total

adipose tissue (TAT), but also its distribution and composition

is of special importance in the pathogenesis of the concomitant

diseases such as metabolic syndrome, type II diabetes or

coronary heart disease [2], [3]. Especially the two chemi-

cally almost identical, but morphologically and functionally

different types of subcutaneous adipose tissue (SCAT) and
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visceral adipose tissue (VAT) have been reported to be of

special interest [4].

MRI enables a reliable quantification of whole body AT

as well as the distinction of different compartments [5]. A

standardized whole body AT assessment procedure, which is

able to show the distribution of all relevant AT compartments

as well as the amount of total tissue (TT) in the body, has

been proposed [6]. However, the manual segmentation of the

images, acquired with this procedure, is time consuming and

requires the attention of an expert. Thus, it is desirable to

automate this task. Methods for automatic quantification of ab-

dominal AT distributions, distinguishing SCAT and VAT, have

been described [7]–[9]. However, none of these approaches is

suited for evaluation of image slices of the whole body. A

novel procedure, dividing the body into anatomic regions and

creating the desired tissue profiles, is proposed in this paper.

II. MATERIALS AND METHODS

A. MR Data Acquisition

Images were acquired on a clinical 1.5 T whole body

scanner (Magnetom Sonata, Siemens Healthcare). During ex-

amination, the volunteers were in prone position with extended

arms (see Fig. 1). A T1-weighted fast spin echo technique with

an echo train length of 7 was applied, using TE = 12 ms,

TR = 490 ms, slice thickness 10 mm, 5 slices per sequence

and 10 mm gap between slices. Field of view was 450 mm

to 530 mm, depending on the volunteer’s extension. Images

with a 256 × 178 matrix were recorded, resulting in voxel

dimensions of approximately 2 mm × 2 mm × 10 mm.

Measuring time per sequence was 12 s, allowing breathhold

examinations in abdominal and thorax regions. Data was col-

lected from fingers to toes using the scanner’s receive/transmit

body coil. The given slice thickness and slice spacing resulted

in 100 to 130 axial image slices per subject, depending on

the volunteer’s height. Total examination time was 20 min to

25 min.

B. Fuzzy Clustering

Typical gray value histograms of T1-weighted MR images

show three maxima. These correspond to the three prevailing

classes background (BG) at the lower end of signal intensity,

lean tissue (LT), having intermediate intensities and AT, having

high intensity values (see Fig. 2). The notches in between these

maxima are not empty, but populated with image elements

with an intermediate intensity. These intensities are on the

one hand caused by intensity non-uniformities (due to spatial

coil characteristics and inhomogeneities of B0 and B1) and on
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Fig. 1. Volunteer position during examination and distribution of SAT and
VAT
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Fig. 2. Typical histogram of a T1-weighted MR image and proposed division
into three classes.

the other hand by partial volume effects. The latter effect is

particularly strong, the coarser the spatial resolution of the MR

images gets, the first one was reduced by using a spin echo

sequence, reducing B0 inhomogeneities to a great extend.

The first step in segmenting the acquired images into the

desired compartments is to distinguish between these three

classes by dividing the image histogram into three regions

(see Fig. 2). It has been shown, that the so-called fuzzy c-

means (FCM) algorithm obtains good results when segmenting

MR images according to brightness [10], [11]. Considering an

image function I(�x), assigning a scalar gray value (brightness)

to each image coordinate �x ∈ I, the cost function of the FCM

algorithm is given by

JFCM =
∑

�x∈I

C∑

k=1

Pm
k (�x) ·

(
I (�x) − vk

)2
. (1)

Here, C is the number of clusters to be used, Pk(�x) is the

probability of the pixel at position �x to belong to cluster k

(k ∈ [1 . . . C]), vk is the centroid of class k and m is the so-

called fuzziness and controls the blending of the membership

probabilities. In this implementation we chose C = 3 (the

three intensity classes mentioned above) and m = 2. The cost

function JFCM is roughly a measure for the amount of image

elements, which are still assigned to the wrong class. Thus,

it is desired to minimize JFCM which is archived iteratively

by recomputing the cluster centroids vk and membership

probabilities Pk alternately, using (2) and (3):

Pk (�x) =
|I (�x) − vk|

−2/(m−1)

∑C
k=1 |I (�x) − vk|

−2/(m−1)
(2)

vk =

∑

�x∈I
Pm

k (�x) · I (�x)
∑

�x∈I
Pm

k (�x)
(3)

Though this fuzzy approach is widely used in the seg-

mentation of MR images, the final results of Pk are usually

used to create binary (hard) membership masks, by assign-

ing each image element completely to the class k with the
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Fig. 3. Class membership probability depending on pixel intensity before
(upper) and after correction (lower).

highest membership value Pk (maximum membership hard

clustering). Though these hard masks will also be needed in

some subsequent steps of the proposed algorithm (and will be

denoted by M1, M2 and M3) the given application uses the

fuzzy membership values as a direct approximation for the

partial contribution of different tissues to one image element.

This was done because of the relatively coarse resolution of the

axial image slices and especially the slice thickness of 10 mm

which contributes to a high amount of partial volume effects.

However, these fuzzy membership values need to be corrected

with respect to a phenomenon, causing irrational results in the

given application, as described in the following.

Assuming, a FCM algorithm with C = 3 converges,

yielding cluster centroids v1 = 0.1, v2 = 0.5 and v3 = 0.8
(brightness values normalized to fundamental range [0 . . . 1]),
then the upper plot in Fig. 3 plots the three membership

probability functions P1, P2 and P3 versus intensity. Due

to the normalization term in the denominator of (2), the

membership probabilities sum up to 1 for all intensity values.

However, this causes e.g. the membership probability P3 (AT

class) of a very bright pixel (I(�x) > v3) to decrease again.

The value of P3 even decreases more, the higher the intensity

I(�x) gets (see right end of the red line in the upper plot in

Fig. 3). This behavior is undesired in the given application,

which is why all these irrational segments of P1, P2 and P3

are corrected, resulting in the membership probabilities shown

in the lower plot in Fig. 3. The result of this modified FCM

clustering, applied to an abdominal image slice can be seen

in Fig. 4b.

C. Body Division

In order to define the body region in which the detected AT

areas have to be separated into SCAT and VAT, it is helpful

to first detect the shoulder- and hip- joints to get an impresion

of the extension of the trunk. These joints can be detected

by parsing the images for the characteristic pattern, created
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by the heads of femur and humerus in axial images. In T1-

weighted MR images, because of the high percentage of AT

in the long bones of adults, they appear as two circular areas

of a certain size and distance. Axial radii of caput humeri

and caput femori and their distances were manually measured

in ten randomly chosen datasets (five female, five male) to

receive a valid target area. Mean values and standard deviation

of these measures were calculated to r = 20.8 ± 2.2 mm for

the radii, dCF = 188.7± 8.3 mm for the distance between the

caput femori and dCH = 295.8 ± 15.8 mm for the distance

between the caput humeri.

Because of the assumption made above, the hard AT mask

M3 is parsed for circular areas. The circularity ρ of an object is

calculated by considering the distance d of the object’s border

pixels to its centroid as a random variable and dividing the

variable’s mean value μd by its standard deviation σd:

ρ =
μd

σd
(4)

For this application, a circularity threshold of 6.7 was em-

pirically chosen to separate irregular from circular objects.

Hip and shoulder slices are supposed to be detected, when

two such circular objects are found with values for radii and

distances not farther than three times the standard deviation

from the mean of the corresponding empirically determined

values, given above. In cases where such circular objects are

found in two adjacent slices (e.g. a joint has been cut twice)

the slice with the greater radii is chosen to get the z-position

nearest to the center of the joint. Due to the slice spacing of

10 mm and slice thickness of 10 mm, in a worst case scenario,

the hip and shoulder joints will be found 10 mm away from

their actual center.

Anatomically, the region containing VAT was defined as the

area reaching from the hip to the lower end of the heart. The

lower end of this region is already well defined by the hip

slice, obtained previously. Due to the large amount of motion

artifacts in the heart area, an automatic detection of the lower

heart end was omitted. Instead, this upper margin of the VAT

area is calculated using an empirically determined index. This

index expresses the upper VAT area end as fraction of the

distance between the femoral head and the head of the humerus

and was determined to 0.66 from a cohort of 22 datasets (σ =
0.04).

D. Body Mask Creation

The purpose of this step is to separate the background from

objects belonging to the body. As there are also signal-free

areas inside the body (e.g. lungs), simply using the inverse of

the hard background mask M1 is not sufficient. However, M1

is used as starting point for the creation of the body mask.

M1 contains all pixels, with brightness close to zero, thus

representing signal-free areas. To exclude signal-free areas

inside the body from the background mask, all areas, which

are not connected to the upper left corner are deleted. The

inverse of this operation contains all body objects. However,

special care has to be taken in the thorax area, where images

are usually corrupted by a considerable amount of motion

artifacts, caused by the beating heart. To eliminate these small

a b
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Fig. 4. Visualization of the algorithm steps: a) original abdominal image
slice, b) result of FCM clustering (red: AT, green: LT), c) initial alctive contour
and deflation forces, d) poar edge map used on second active contour step, e)

active contour evolution, f) final result (yellow: VAT, red: SCAT, green: LT)

objects outside of the body, all objects with an area less than

400 pixels (≈ 16 cm2) are deleted from the body mask. The

situation is more complicated, if the misclassified artifacts

are connected to the main body object. To get rid of these

undesired extensions, a morphologic opening with a circular

kernel with a radius of 20 pixels is applied to the body mask.

E. Dividing SCAT and VAT

To obtain the desired tissue profiles, the AT compartments

found in the abdominal area have to be divided into the classes

SCAT and VAT. Procedures to automatically separate these

compartments have been proposed [7]–[9]. The most versatile

of these approaches is presented in [7] and uses an active

contour algorithm [12] to detect the inner boundary of the

SCAT belt. However, active contours usually suffer from two

drawbacks: One of them is the reliance on a good initialization

contour, the other one is a limited capture range.

To avoid the first problem the proposed algorithm uses

the body’s outer boundary, extracted from the body mask,

as a reliably detectable initialization. The second problem is

handled by dividing the active contour’s evolution phase into

two sub-steps. The first step is designed to pass the bright,

gradient-free SCAT belt by using an active contour algorithm

with balloon forces [13]. Depending on the application, these

additional balloon forces can be used to give the contour a

tendency to either in- or deflate (a deflation in this case, see

also Fig. 4c). Furthermore, the first step uses relatively large

values for the algorithm’s membrane weight α (making the

contour shrink) and thin-plate weight β (making the contour

smooth). The AT probability mask P3 is used as external

energy field Eext. This causes homogeneous areas, such as

the SCAT ring to be predominantly force-free. On the inner
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TABLE I
THE PARAMETERS USED IN THE TWO-STAGED ACTIVE CONTOUR

ALGORITHM

α β γ k

1st step 0.25 0.5 0.7 0.2

2nd step 0.07 0.05 1 0

edge of the SCAT area, the transition from bright to dark

intensity creates force vectors fx and fy , pointing opposed

to the deflation forces of the balloon contour.

In the second step, an ordinary snake algorithm is used,

this time with relatively small values of α and β, enabling the

snake to accurately locking on to the edge, separating SCAT

and inner tissues. Special care has been taken in choosing an

external force for this evolution step. This time, the exact edge

positions shall be found. To solve this problem, the image is

usually filtered with an edge enhancement filter, such as a

Laplacian filter, resulting in high intensity values at image

edges and values close to zero in homogeneous areas. In this

application, the desired edge is a bright-to-dark transition from

the outside to the center of the image. Thus, it is desirable to

only lock onto edges in this direction. Thus, a so-called polar

edge map is used, containing only such edges, while canceling

out transitions in the opposite direction. This radial edge map

can be computed by

Eext = −
1

2

(

|∇I (�x)| +
�x − �c

|�x − �c|
︸ ︷︷ ︸

�p(�x)

·∇I (�x)

)

, (5)

where �c is the center pixel of the image and thus �p(�x) is a

vector pointing away from the image center at all positions

�x and normalized in length. Edges, orthogonal to this vector

are still considered, but only have half the magnitude of radial

bright-to-dark transitions. An example of a polar edge map

can be seen in Fig. 4d.

The number of snake points used is determined by a desired

minimum inter-point distance of the snake points. Whenever

the distance between two adjacent snake points gets below this

value (due to snake evolution) one of the points is removed.

This value was chosen to one pixel (approximately 2 mm for

the given FOV and image resolution), resulting in inter-point

distances between 1 and 2 pixels. The values of the snake

algorithm (membrane weight α, thin plate weight β, step size

γ and weight of the deflation force k) used in the two steps

can be found in Table I.

F. Evaluation Procedure

For quantitative analysis of the suggested algorithm, the au-

tomatically obtained tissue profiles of 20 volunteers with body

mass index (BMI) range 18.5–40.4 (28.4 ± 7.1 kg/m2) were

compared to manually obtained profiles. These manual profiles

were obtained using a computer-aided procedure consisting

of thresholding the images at two different intensity levels

to separate BG, LT and AT. In the abdomen, the amount of

VAT was obtained by manually drawing a region of interest.

For each dataset and tissue class, two figures were extracted.

The first one is the mean over all image slices of the slice-

wise absolute tissue difference, expressed as percentage of the

amount of manually obtained area of total tissue in that slice:

|∆A| =
1

N

N∑

z=1

|Aa(z) − Am(z)|

ATT,m(z)
, (6)

where z is the slice index, N the number of image slices in

the dataset and ATT,m(z) is the maually obtained amount of

total tissue in the image slice at position z. This value can be

considered a measure of the algorithm’s accuracy. The second

figure is calculated in the same way as the first, except, that

it uses simple differences rather than absolute ones. Thus it is

calculated by

∆A =
1

N

N∑

z=1

Aa(z) − Am(z)

ATT,m(z)
. (7)

This value does not represent the algorithms accuracy since

positive and negative values might cancel out each other.

However, it is a good estimator of whether the algorithm tends

to overestimate (positive values) or underestimate (negative

values) a certain tissue class.

III. RESULTS

The automatic segmentation algorithm was implemented on

a standard mobile computer (Core 2 Duo, 2 GHz, 2 GB RAM)

using MATLAB (The MathWorks, Inc). Total segmentation

time was 76.1± 6.6 s per dataset (105± 5.5 image slices per

dataset). Structures, limiting the anatomic regions according

to section II-C (hips and shoulders) were reliably detected in

all volunteers, even if the subject was located slightly tilted in

the scanner.

A plot, comparing the automatically and manually obtained

tissue profiles of one volunteer is shown in Fig. 5. The dashed

lines correspond to the manually obtained profiles, solid lines

correspond to the automatically obtained profiles. In Fig. 6,

the mean absolute difference values of all tissue classes and

all 20 volunteers (calculated using (6)) are shown are plotted

against BMI. These values vary in between 2.62 % and 9.41 %

for TT, 4.64 % and 14.20 % for TAT (sum of SCAT and

VAT in abdominal areas) and 1.18 % and 7.13 % for VAT.

In Table II, the average of these values are calculated for four

different BMI classes. The mean difference values, indicationg

the algorithm’s tendency to over- or underestimate certain

tissue classes (calculated using (7)), can be found in Table III.

These values vary in between -1,12 % and 8.77 % for TT,

3.90 % and 14.20 % for TAT and 1.13 % and 7.13 % for

VAT.

IV. DISCUSSION

Due to the increasing world-wide occurrence of obesity and

of the resulting complications, such as type II diabetes or

coronary complications [1], methods for monitoring AT in the

body are of increasing importance. In this, the total amount of

AT without considering the location in the body seems to be

less promising in the prediction of metabolic complications,
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Fig. 5. Comparison of automatically (solid lines) and manually (dashed lines)
obtained tissue profiles.

TABLE II
MEAN VALUES OF IN-SLICE ABSOLUTE DIFFERENCES BETWEEN

MANUALLY AND AUTOMATICALLY OBTAINED TISSUE AREAS FOR

DIFFERENT BMI CLASSES.

BMI Group |∆ATT| |∆ATAT| |∆AVAT|

(kg/m2) (%) (%) (%)

18–24.9 5.63 9.12 4.61

25–29.9 3.90 8.73 2.10

30–34.9 3.16 7.97 2.70

35–40.5 3.91 8.50 3.26

Overall 4.48 8.71 3.26

TABLE III
MEAN VALUES OF IN-SLICE DIFFERENCES BETWEEN MANUALLY AND

AUTOMATICALLY OBTAINED TISSUE AREAS FOR DIFFERENT BMI
CLASSES.

BMI Group ∆ATT ∆ATAT ∆AVAT

(kg/m2) (%) (%) (%)

18–24.9 3.94 8.71 4.61

25–29.9 1.75 8.34 1.82

30–34.9 0.05 7.13 2.46

35–40.5 0.54 8.13 2.54

Overall 2.07 8.13 3.21

than the precise distinction of specific compartments, such

as SCAT and VAT and its spatial distribution [2]–[4]. By

using MRI, these compartments can be assessed and used to

create standardized tissue profiles of the whole body, while

avoiding the use of ionizing radiation [5], [6]. To reduce the

time and personal needed for the segmentation of appropriate

MR datasets, this paper proposes an integrated method for

standardized and region-depended assessment of AT volumes.

The primary goal of the proposed algorithm is to work

completely without any user interaction, creating the need of

a robust routine. The most challenging step is the division of

the body into anatomic regions, which succeeded for all of the

volunteers. Also, the separation of SCAT and VAT, using an

active contour algorithm achieved the desired results in 98.9 %

of all cases, which is also an indicator for the robustness of

15 20 25 30 35 40 45
0

5

10

15

BMI (kg/m
2
)

M
ea

n
 A

b
so

lu
te

 E
rr

o
r 

(%
) TT

TAT

VAT

Fig. 6. Mean absolute difference values of all volunteers plotted vs. BMI.

the method.

The automatically obtained TT profiles showed good corre-

lation with those, obtained manually (overall mean absolute

difference 4.48 %). The TT profiles showed the strongest

deviation in the thorax area, where images were heavily

corrupted by motion artifacts caused by the heart. The mean

absolute differences was significantly above average for the

BMI class of normal weight persons where it was 5.63 % and

below average for the three remaining classes. The correlation

between BMI and mean absolute differences was calculated to

r = −0.49, indicating a tendency to higher deviation values

for lower BMI values. The overall mean difference value of

2.07 % (as given in Table III) shows that the algorithm tends

to slightly overestimate the amount of TT. Again, this behav-

ior was stronger for the class of normal weight volunteers,

whereas for the two classes of obese volunteers, a tendency

was hardly recognizable.

The TAT profiles showed a higher overall mean absolute

difference of 8.71 %. Here, the automatically obtained amount

of TAT was usually higher in the extremities and significantly

higher in feet and hands, as bone marrow was mainly con-

sidered as AT by the algorithm. However, the inclusion of

bone marrow can easily be compensated for retrospectively,

since its amount does not change with BMI. Motion artifacts

in the thorax area made an accurate tissue profiling difficult,

thus creating high profile deviations. In the class of TAT, the

correlation between BMI and mean absolute differences, as

well as mean differences was very low. Generally, the mean

difference values were very close to those of the mean abso-

lute differences, indicating the algorithm’s tendency to over-

estimate the amount of TAT compared to manual segmentation

for all BMI classes.

The VAT profiles showed a lower overall mean absolute dif-

ference than TAT (3.28 %). This good correlation is especially

desirable, as VAT is the main subject of this method. Just like

for TT, this value was above average for the class of normal

weight volunteers (4.52 %) and below average for all other

classes. The values of the mean differences again show that

the algorithm tends to overestimate the amount of VAT in a

vast majority of cases (overall 3.21 % overestimation).

A visual inspection of the segmented images showed that the

overestimation of VAT in the class of normal weight volunteers

(BMI < 25) was mainly caused by the lack of a significant
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amount of AT in the abdominal area. This causes the FCM-

algorithm to detect the bone marrow of pelvis and spine (which

is slightly brighter than surrounding LT, but usually detected

as LT in obese volunteers) to be detected as VAT. In very lean

subjects (BMI < 20) even parts of the liver were detected as

VAT due to the lack of AT present.

In conclusion, this paper proposes a robust, automatic

segmentation method, supplying standardized whole-body AT

profiles for metabolism risk indication and intervention mon-

itoring. The proposed algorithm is capable to reduce the total

examination time to less than 30 minutes.
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